| /* |
| * Copyright (C) 1993-2001, 2003 by Darren Reed. |
| * |
| * See the IPFILTER.LICENCE file for details on licencing. |
| */ |
| #if !defined(lint) |
| static const char sccsid[] = "%W% %G% (C) 1993-2000 Darren Reed"; |
| static const char rcsid[] = "@(#)$Id$"; |
| #endif |
| |
| #include <sys/types.h> |
| #include <sys/errno.h> |
| #include <sys/param.h> |
| #include <sys/cpuvar.h> |
| #include <sys/open.h> |
| #include <sys/ioctl.h> |
| #include <sys/filio.h> |
| #include <sys/systm.h> |
| #if SOLARIS2 >= 10 |
| # include <sys/cred_impl.h> |
| #else |
| # include <sys/cred.h> |
| #endif |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/ksynch.h> |
| #include <sys/kmem.h> |
| #include <sys/mkdev.h> |
| #include <sys/protosw.h> |
| #include <sys/socket.h> |
| #include <sys/dditypes.h> |
| #include <sys/cmn_err.h> |
| #include <net/if.h> |
| #include <net/af.h> |
| #include <net/route.h> |
| #include <netinet/in.h> |
| #include <netinet/in_systm.h> |
| #include <netinet/ip.h> |
| #include <netinet/ip_var.h> |
| #include <netinet/tcp.h> |
| #include <netinet/udp.h> |
| #include <netinet/tcpip.h> |
| #include <netinet/ip_icmp.h> |
| #include "netinet/ip_compat.h" |
| #ifdef USE_INET6 |
| # include <netinet/icmp6.h> |
| #endif |
| #include "netinet/ip_fil.h" |
| #include "netinet/ip_nat.h" |
| #include "netinet/ip_frag.h" |
| #include "netinet/ip_state.h" |
| #include "netinet/ip_auth.h" |
| #include "netinet/ip_proxy.h" |
| #ifdef IPFILTER_LOOKUP |
| # include "netinet/ip_lookup.h" |
| #endif |
| #include <inet/ip_ire.h> |
| |
| #include "md5.h" |
| |
| static int ipf_send_ip __P((fr_info_t *fin, mblk_t *m, mblk_t **mp)); |
| static void ipf_fixl4sum __P((fr_info_t *)); |
| |
| ipfmutex_t ipl_mutex, ipf_auth_mx, ipf_rw, ipf_stinsert; |
| ipfmutex_t ipf_nat_new, ipf_natio, ipf_timeoutlock; |
| ipfrwlock_t ipf_mutex, ipf_global, ipf_ipidfrag, ipf_frcache, ipf_tokens; |
| ipfrwlock_t ipf_frag, ipf_state, ipf_nat, ipf_natfrag, ipf_authlk; |
| kcondvar_t iplwait, ipfauthwait; |
| #if SOLARIS2 >= 7 |
| timeout_id_t ipf_timer_id; |
| u_int *ip_ttl_ptr = NULL; |
| u_int *ip_mtudisc = NULL; |
| # if SOLARIS2 >= 8 |
| int *ip_forwarding = NULL; |
| u_int *ip6_forwarding = NULL; |
| # else |
| u_int *ip_forwarding = NULL; |
| # endif |
| #else |
| int ipf_timer_id; |
| u_long *ip_ttl_ptr = NULL; |
| u_long *ip_mtudisc = NULL; |
| u_long *ip_forwarding = NULL; |
| #endif |
| int ipf_locks_done = 0; |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipfdetach */ |
| /* Returns: int - 0 == success, else error. */ |
| /* Parameters: Nil */ |
| /* */ |
| /* This function is responsible for undoing anything that might have been */ |
| /* done in a call to ipfattach(). It must be able to clean up from a call */ |
| /* to ipfattach() that did not succeed. Why might that happen? Someone */ |
| /* configures a table to be so large that we cannot allocate enough memory */ |
| /* for it. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipfdetach() |
| { |
| |
| ASSERT(rw_read_locked(&ipf_global.ipf_lk) == 0); |
| |
| if (ipf_control_forwarding & 2) { |
| if (ip_forwarding != NULL) |
| *ip_forwarding = 0; |
| #if SOLARIS2 >= 8 |
| if (ip6_forwarding != NULL) |
| *ip6_forwarding = 0; |
| #endif |
| } |
| |
| #ifdef IPFDEBUG |
| cmn_err(CE_CONT, "ipfdetach()\n"); |
| #endif |
| |
| ipf_deinitialise(); |
| |
| (void) ipf_flush(IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE); |
| (void) ipf_flush(IPL_LOGIPF, FR_INQUE|FR_OUTQUE); |
| |
| if (ipf_locks_done == 1) { |
| MUTEX_DESTROY(&ipf_timeoutlock); |
| MUTEX_DESTROY(&ipf_rw); |
| RW_DESTROY(&ipf_tokens); |
| RW_DESTROY(&ipf_ipidfrag); |
| ipf_locks_done = 0; |
| } |
| return 0; |
| } |
| |
| |
| int |
| ipfattach __P((void)) |
| { |
| int i; |
| |
| #ifdef IPFDEBUG |
| cmn_err(CE_CONT, "ipfattach()\n"); |
| #endif |
| |
| ASSERT(rw_read_locked(&ipf_global.ipf_lk) == 0); |
| |
| bzero((char *)ipf_cache, sizeof(ipf_cache)); |
| MUTEX_INIT(&ipf_rw, "ipf rw mutex"); |
| MUTEX_INIT(&ipf_timeoutlock, "ipf timeout lock mutex"); |
| RWLOCK_INIT(&ipf_ipidfrag, "ipf IP NAT-Frag rwlock"); |
| RWLOCK_INIT(&ipf_tokens, "ipf token rwlock"); |
| ipf_locks_done = 1; |
| |
| if (ipf_initialise() < 0) |
| return -1; |
| |
| #if SOLARIS2 >= 8 |
| ip_forwarding = &ip_g_forward; |
| #endif |
| /* |
| * XXX - There is no terminator for this array, so it is not possible |
| * to tell if what we are looking for is missing and go off the end |
| * of the array. |
| */ |
| |
| #if SOLARIS2 <= 8 |
| for (i = 0; ; i++) { |
| if (!strcmp(ip_param_arr[i].ip_param_name, "ip_def_ttl")) { |
| ip_ttl_ptr = &ip_param_arr[i].ip_param_value; |
| } else if (!strcmp(ip_param_arr[i].ip_param_name, |
| "ip_path_mtu_discovery")) { |
| ip_mtudisc = &ip_param_arr[i].ip_param_value; |
| } |
| #if SOLARIS2 < 8 |
| else if (!strcmp(ip_param_arr[i].ip_param_name, |
| "ip_forwarding")) { |
| ip_forwarding = &ip_param_arr[i].ip_param_value; |
| } |
| #else |
| else if (!strcmp(ip_param_arr[i].ip_param_name, |
| "ip6_forwarding")) { |
| ip6_forwarding = &ip_param_arr[i].ip_param_value; |
| } |
| #endif |
| |
| if (ip_mtudisc != NULL && ip_ttl_ptr != NULL && |
| #if SOLARIS2 >= 8 |
| ip6_forwarding != NULL && |
| #endif |
| ip_forwarding != NULL) |
| break; |
| } |
| #endif |
| |
| if (ipf_control_forwarding & 1) { |
| if (ip_forwarding != NULL) |
| *ip_forwarding = 1; |
| #if SOLARIS2 >= 8 |
| if (ip6_forwarding != NULL) |
| *ip6_forwarding = 1; |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Filter ioctl interface. |
| */ |
| /*ARGSUSED*/ |
| int |
| iplioctl(dev, cmd, data, mode, cp, rp) |
| dev_t dev; |
| int cmd; |
| #if SOLARIS2 >= 7 |
| intptr_t data; |
| #else |
| int *data; |
| #endif |
| int mode; |
| cred_t *cp; |
| int *rp; |
| { |
| int error = 0; |
| minor_t unit; |
| |
| #ifdef IPFDEBUG |
| cmn_err(CE_CONT, "iplioctl(%x,%x,%x,%d,%x,%d)\n", |
| dev, cmd, data, mode, cp, rp); |
| #endif |
| unit = getminor(dev); |
| if (IPL_LOGMAX < unit) |
| return ENXIO; |
| |
| if (ipf_running <= 0) { |
| if (unit != IPL_LOGIPF) |
| return EIO; |
| if (cmd != SIOCIPFGETNEXT && cmd != SIOCIPFGET && |
| cmd != SIOCIPFSET && cmd != SIOCFRENB && |
| cmd != SIOCGETFS && cmd != SIOCGETFF) |
| return EIO; |
| } |
| |
| error = ipf_ioctlswitch(unit, (caddr_t)data, cmd, mode, |
| cp->cr_uid, curproc); |
| if (error != -1) { |
| return error; |
| } |
| |
| return error; |
| } |
| |
| |
| void * |
| get_unit(char *name, int v) |
| { |
| void *ifp; |
| qif_t *qf; |
| int sap; |
| |
| if (v == 4) |
| sap = 0x0800; |
| else if (v == 6) |
| sap = 0x86dd; |
| else |
| return NULL; |
| rw_enter(&pfil_rw, RW_READER); |
| qf = qif_iflookup(name, sap); |
| rw_exit(&pfil_rw); |
| return qf; |
| } |
| |
| /* |
| * ipf_send_reset - this could conceivably be a call to tcp_respond(), but that |
| * requires a large amount of setting up and isn't any more efficient. |
| */ |
| int |
| ipf_send_reset(fr_info_t *fin) |
| { |
| tcphdr_t *tcp, *tcp2; |
| int tlen, hlen; |
| mblk_t *m; |
| #ifdef USE_INET6 |
| ip6_t *ip6; |
| #endif |
| ip_t *ip; |
| |
| tcp = fin->fin_dp; |
| if (tcp->th_flags & TH_RST) |
| return -1; |
| |
| if (ipf_checkl4sum(fin) == -1) |
| return -1; |
| |
| tlen = (tcp->th_flags & (TH_SYN|TH_FIN)) ? 1 : 0; |
| #ifdef USE_INET6 |
| if (fin->fin_v == 6) |
| hlen = sizeof(ip6_t); |
| else |
| #endif |
| hlen = sizeof(ip_t); |
| hlen += sizeof(*tcp2); |
| if ((m = (mblk_t *)allocb(hlen + 64, BPRI_HI)) == NULL) |
| return -1; |
| |
| m->b_rptr += 64; |
| MTYPE(m) = M_DATA; |
| m->b_wptr = m->b_rptr + hlen; |
| ip = (ip_t *)m->b_rptr; |
| bzero((char *)ip, hlen); |
| tcp2 = (struct tcphdr *)(m->b_rptr + hlen - sizeof(*tcp2)); |
| tcp2->th_dport = tcp->th_sport; |
| tcp2->th_sport = tcp->th_dport; |
| if (tcp->th_flags & TH_ACK) { |
| tcp2->th_seq = tcp->th_ack; |
| tcp2->th_flags = TH_RST; |
| } else { |
| tcp2->th_ack = ntohl(tcp->th_seq); |
| tcp2->th_ack += tlen; |
| tcp2->th_ack = htonl(tcp2->th_ack); |
| tcp2->th_flags = TH_RST|TH_ACK; |
| } |
| tcp2->th_off = sizeof(struct tcphdr) >> 2; |
| |
| ip->ip_v = fin->fin_v; |
| #ifdef USE_INET6 |
| if (fin->fin_v == 6) { |
| ip6 = (ip6_t *)m->b_rptr; |
| ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow; |
| ip6->ip6_src = fin->fin_dst6; |
| ip6->ip6_dst = fin->fin_src6; |
| ip6->ip6_plen = htons(sizeof(*tcp)); |
| ip6->ip6_nxt = IPPROTO_TCP; |
| } else |
| #endif |
| { |
| ip->ip_src.s_addr = fin->fin_daddr; |
| ip->ip_dst.s_addr = fin->fin_saddr; |
| ip->ip_id = ipf_nextipid(fin); |
| ip->ip_hl = sizeof(*ip) >> 2; |
| ip->ip_p = IPPROTO_TCP; |
| ip->ip_len = htons(sizeof(*ip) + sizeof(*tcp)); |
| ip->ip_tos = fin->fin_ip->ip_tos; |
| tcp2->th_sum = ipf_cksum(m, ip, IPPROTO_TCP, tcp2, |
| ntohs(ip->ip_len)); |
| } |
| return ipf_send_ip(fin, m, &m); |
| } |
| |
| |
| /*ARGSUSED*/ |
| static int |
| ipf_send_ip(fr_info_t *fin, mblk_t *m, mb_t **mpp) |
| { |
| qpktinfo_t qpi, *qpip; |
| fr_info_t fnew; |
| qif_t *qif; |
| ip_t *ip; |
| int i, hlen; |
| |
| ip = (ip_t *)m->b_rptr; |
| bzero((char *)&fnew, sizeof(fnew)); |
| |
| #ifdef USE_INET6 |
| if (fin->fin_v == 6) { |
| ip6_t *ip6; |
| |
| ip6 = (ip6_t *)ip; |
| ip6->ip6_vfc = 0x60; |
| ip6->ip6_hlim = 127; |
| fnew.fin_v = 6; |
| hlen = sizeof(*ip6); |
| } else |
| #endif |
| { |
| fnew.fin_v = 4; |
| if (ip_ttl_ptr != NULL) |
| ip->ip_ttl = (u_char)(*ip_ttl_ptr); |
| else |
| ip->ip_ttl = 63; |
| if (ip_mtudisc != NULL) |
| ip->ip_off = htons(*ip_mtudisc ? IP_DF : 0); |
| else |
| ip->ip_off = htons(IP_DF); |
| ip->ip_sum = ipf_cksum((u_short *)ip, sizeof(*ip)); |
| hlen = sizeof(*ip); |
| } |
| |
| qpip = fin->fin_qpi; |
| qpi.qpi_q = qpip->qpi_q; |
| qpi.qpi_off = 0; |
| qpi.qpi_name = qpip->qpi_name; |
| qif = qpip->qpi_real; |
| qpi.qpi_real = qif; |
| qpi.qpi_ill = qif->qf_ill; |
| qpi.qpi_hl = qif->qf_hl; |
| qpi.qpi_ppa = qif->qf_ppa; |
| qpi.qpi_num = qif->qf_num; |
| qpi.qpi_flags = qif->qf_flags; |
| qpi.qpi_max_frag = qif->qf_max_frag; |
| qpi.qpi_m = m; |
| qpi.qpi_data = ip; |
| fnew.fin_qpi = &qpi; |
| fnew.fin_ifp = fin->fin_ifp; |
| fnew.fin_flx = FI_NOCKSUM; |
| fnew.fin_m = m; |
| fnew.fin_ip = ip; |
| fnew.fin_mp = mpp; |
| fnew.fin_hlen = hlen; |
| fnew.fin_dp = (char *)ip + hlen; |
| (void) ipf_makefrip(hlen, ip, &fnew); |
| |
| i = ipf_fastroute(m, mpp, &fnew, NULL); |
| return i; |
| } |
| |
| |
| int |
| ipf_send_icmp_err(int type, fr_info_t *fin, int dst) |
| { |
| struct in_addr dst4; |
| struct icmp *icmp; |
| qpktinfo_t *qpi; |
| int hlen, code; |
| i6addr_t dst6; |
| u_short sz; |
| #ifdef USE_INET6 |
| mblk_t *mb; |
| #endif |
| mblk_t *m; |
| #ifdef USE_INET6 |
| ip6_t *ip6; |
| #endif |
| ip_t *ip; |
| |
| if ((type < 0) || (type > ICMP_MAXTYPE)) |
| return -1; |
| |
| code = fin->fin_icode; |
| #ifdef USE_INET6 |
| if ((code < 0) || (code > sizeof(icmptoicmp6unreach)/sizeof(int))) |
| return -1; |
| #endif |
| |
| if (ipf_checkl4sum(fin) == -1) |
| return -1; |
| |
| qpi = fin->fin_qpi; |
| |
| #ifdef USE_INET6 |
| mb = fin->fin_qfm; |
| |
| if (fin->fin_v == 6) { |
| sz = sizeof(ip6_t); |
| sz += MIN(mb->b_wptr - mb->b_rptr, 512); |
| hlen = sizeof(ip6_t); |
| type = icmptoicmp6types[type]; |
| if (type == ICMP6_DST_UNREACH) |
| code = icmptoicmp6unreach[code]; |
| } else |
| #endif |
| { |
| if ((fin->fin_p == IPPROTO_ICMP) && |
| !(fin->fin_flx & FI_SHORT)) |
| switch (ntohs(fin->fin_data[0]) >> 8) |
| { |
| case ICMP_ECHO : |
| case ICMP_TSTAMP : |
| case ICMP_IREQ : |
| case ICMP_MASKREQ : |
| break; |
| default : |
| return 0; |
| } |
| |
| sz = sizeof(ip_t) * 2; |
| sz += 8; /* 64 bits of data */ |
| hlen = sizeof(ip_t); |
| } |
| |
| sz += offsetof(struct icmp, icmp_ip); |
| if ((m = (mblk_t *)allocb((size_t)sz + 64, BPRI_HI)) == NULL) |
| return -1; |
| MTYPE(m) = M_DATA; |
| m->b_rptr += 64; |
| m->b_wptr = m->b_rptr + sz; |
| bzero((char *)m->b_rptr, (size_t)sz); |
| ip = (ip_t *)m->b_rptr; |
| ip->ip_v = fin->fin_v; |
| icmp = (struct icmp *)(m->b_rptr + hlen); |
| icmp->icmp_type = type & 0xff; |
| icmp->icmp_code = code & 0xff; |
| #ifdef icmp_nextmtu |
| if (type == ICMP_UNREACH && fin->fin_icode == ICMP_UNREACH_NEEDFRAG) { |
| if (fin->fin_mtu != 0) { |
| icmp->icmp_nextmtu = htons(fin->fin_mtu); |
| |
| } else if (qpi->qpi_max_frag != 0) { |
| icmp->icmp_nextmtu = htons(qpi->qpi_max_frag); |
| |
| } else { /* Make up a number */ |
| icmp->icmp_nextmtu = htons(fin->fin_plen - 20); |
| } |
| } |
| #endif |
| |
| #ifdef USE_INET6 |
| if (fin->fin_v == 6) { |
| int csz; |
| |
| if (dst == 0) { |
| if (ipf_ifpaddr(6, FRI_NORMAL, qpi->qpi_real, |
| &dst6, NULL) == -1) { |
| FREE_MB_T(m); |
| return -1; |
| } |
| } else |
| dst6 = fin->fin_dst6; |
| |
| csz = sz; |
| sz -= sizeof(ip6_t); |
| ip6 = (ip6_t *)m->b_rptr; |
| ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow; |
| ip6->ip6_plen = htons((u_short)sz); |
| ip6->ip6_nxt = IPPROTO_ICMPV6; |
| ip6->ip6_src = dst6; |
| ip6->ip6_dst = fin->fin_src6; |
| sz -= offsetof(struct icmp, icmp_ip); |
| bcopy((char *)mb->b_rptr, (char *)&icmp->icmp_ip, sz); |
| icmp->icmp_cksum = csz - sizeof(ip6_t); |
| } else |
| #endif |
| { |
| ip->ip_hl = sizeof(*ip) >> 2; |
| ip->ip_p = IPPROTO_ICMP; |
| ip->ip_id = fin->fin_ip->ip_id; |
| ip->ip_tos = fin->fin_ip->ip_tos; |
| ip->ip_len = (u_short)sz; |
| if (dst == 0) { |
| if (ipf_ifpaddr(4, FRI_NORMAL, qpi->qpi_real, |
| &dst6, NULL) == -1) { |
| FREE_MB_T(m); |
| return -1; |
| } |
| dst4 = dst6.in4; |
| } else |
| dst4 = fin->fin_dst; |
| ip->ip_src = dst4; |
| ip->ip_dst = fin->fin_src; |
| bcopy((char *)fin->fin_ip, (char *)&icmp->icmp_ip, |
| sizeof(*fin->fin_ip)); |
| bcopy((char *)fin->fin_ip + fin->fin_hlen, |
| (char *)&icmp->icmp_ip + sizeof(*fin->fin_ip), 8); |
| icmp->icmp_cksum = ipf_cksum((u_short *)icmp, |
| sz - sizeof(ip_t)); |
| } |
| |
| /* |
| * Need to exit out of these so we don't recursively call rw_enter |
| * from fr_qout. |
| */ |
| return ipf_send_ip(fin, m, &m); |
| } |
| |
| |
| /* |
| * return the first IP Address associated with an interface |
| */ |
| /*ARGSUSED*/ |
| int |
| ipf_ifpaddr(int v, int atype, void *qifptr, i6addr_t *inp, i6addr_t *inpmask) |
| { |
| #ifdef USE_INET6 |
| struct sockaddr_in6 sin6, mask6; |
| #endif |
| struct sockaddr_in sin, mask; |
| qif_t *qif; |
| |
| if ((qifptr == NULL) || (qifptr == (void *)-1)) |
| return -1; |
| |
| qif = qifptr; |
| if (qif->qf_ill == NULL) |
| return -1; |
| |
| #ifdef USE_INET6 |
| if (v == 6) { |
| in6_addr_t *inp6; |
| ipif_t *ipif; |
| ill_t *ill; |
| |
| ill = qif->qf_ill; |
| |
| /* |
| * First is always link local. |
| */ |
| for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { |
| inp6 = &ipif->ipif_v6lcl_addr; |
| if (!IN6_IS_ADDR_LINKLOCAL(inp6) && |
| !IN6_IS_ADDR_LOOPBACK(inp6)) |
| break; |
| } |
| if (ipif == NULL) |
| return -1; |
| |
| mask6.sin6_addr = ipif->ipif_v6net_mask; |
| if (atype == FRI_BROADCAST) |
| sin6.sin6_addr = ipif->ipif_v6brd_addr; |
| else if (atype == FRI_PEERADDR) |
| sin6.sin6_addr = ipif->ipif_v6pp_dst_addr; |
| else |
| sin6.sin6_addr = *inp6; |
| return ipf_ifpfillv6addr(atype, &sin6, &mask6, inp, inpmask); |
| } |
| #endif |
| |
| if (((ill_t *)qif->qf_ill)->ill_ipif == NULL) |
| return -1; |
| |
| switch (atype) |
| { |
| case FRI_BROADCAST : |
| sin.sin_addr.s_addr = QF_V4_BROADCAST(qif); |
| break; |
| case FRI_PEERADDR : |
| sin.sin_addr.s_addr = QF_V4_PEERADDR(qif); |
| break; |
| default : |
| sin.sin_addr.s_addr = QF_V4_ADDR(qif); |
| break; |
| } |
| mask.sin_addr.s_addr = QF_V4_NETMASK(qif); |
| |
| return ipf_ifpfillv4addr(atype, &sin, &mask, &inp->in4, &inpmask->in4); |
| } |
| |
| |
| u_32_t |
| ipf_newisn(fr_info_t *fin) |
| { |
| static int iss_seq_off = 0; |
| u_char hash[16]; |
| u_32_t newiss; |
| MD5_CTX ctx; |
| |
| /* |
| * Compute the base value of the ISS. It is a hash |
| * of (saddr, sport, daddr, dport, secret). |
| */ |
| MD5Init(&ctx); |
| |
| MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_src, |
| sizeof(fin->fin_fi.fi_src)); |
| MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_dst, |
| sizeof(fin->fin_fi.fi_dst)); |
| MD5Update(&ctx, (u_char *) &fin->fin_dat, sizeof(fin->fin_dat)); |
| |
| MD5Update(&ctx, ipf_iss_secret, sizeof(ipf_iss_secret)); |
| |
| MD5Final(hash, &ctx); |
| |
| bcopy(hash, &newiss, sizeof(newiss)); |
| |
| /* |
| * Now increment our "timer", and add it in to |
| * the computed value. |
| * |
| * XXX Use `addin'? |
| * XXX TCP_ISSINCR too large to use? |
| */ |
| iss_seq_off += 0x00010000; |
| newiss += iss_seq_off; |
| return newiss; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_nextipid */ |
| /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* */ |
| /* Returns the next IPv4 ID to use for this packet. */ |
| /* ------------------------------------------------------------------------ */ |
| u_short |
| ipf_nextipid(fr_info_t *fin) |
| { |
| static u_short ipid = 0; |
| ipstate_t *is; |
| nat_t *nat; |
| u_short id; |
| |
| MUTEX_ENTER(&ipf_rw); |
| if (fin->fin_state != NULL) { |
| is = fin->fin_state; |
| id = (u_short)(is->is_pkts[(fin->fin_rev << 1) + 1] & 0xffff); |
| } else if (fin->fin_nat != NULL) { |
| nat = fin->fin_nat; |
| id = (u_short)(nat->nat_pkts[fin->fin_out] & 0xffff); |
| } else |
| id = ipid++; |
| MUTEX_EXIT(&ipf_rw); |
| |
| return id; |
| } |
| |
| |
| #ifndef IPFILTER_CKSUM |
| /* ARGSUSED */ |
| #endif |
| INLINE void |
| ipf_checkv4sum(fr_info_t *fin) |
| { |
| #ifdef IPFILTER_CKSUM |
| if (ipf_checkl4sum(fin) == -1) |
| fin->fin_flx |= FI_BAD; |
| #endif |
| } |
| |
| |
| #ifdef USE_INET6 |
| # ifndef IPFILTER_CKSUM |
| /* ARGSUSED */ |
| # endif |
| INLINE void |
| ipf_checkv6sum(fr_info_t *fin) |
| { |
| # ifdef IPFILTER_CKSUM |
| if (ipf_checkl4sum(fin) == -1) |
| fin->fin_flx |= FI_BAD; |
| # endif |
| } |
| #endif /* USE_INET6 */ |
| |
| |
| /* |
| * Function: ipf_verifysrc |
| * Returns: int (really boolean) |
| * Parameters: fin - packet information |
| * |
| * Check whether the packet has a valid source address for the interface on |
| * which the packet arrived, implementing the "ipf_chksrc" feature. |
| * Returns true iff the packet's source address is valid. |
| * Pre-Solaris 10, we call into the routing code to make the determination. |
| * On Solaris 10 and later, we have a valid address set from pfild to check |
| * against. |
| */ |
| int |
| ipf_verifysrc(fin) |
| fr_info_t *fin; |
| { |
| ire_t *dir; |
| int result; |
| |
| #if SOLARIS2 >= 6 |
| dir = ire_route_lookup(fin->fin_saddr, 0xffffffff, 0, 0, NULL, |
| NULL, NULL, |
| # ifdef IP_ULP_OUT_LABELED |
| NULL, |
| # endif |
| MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| |
| MATCH_IRE_RECURSIVE); |
| #else |
| dir = ire_lookup(fin->fin_saddr); |
| #endif |
| |
| if (!dir) |
| return 0; |
| result = (ire_to_ill(dir) == fin->fin_ifp); |
| #if SOLARIS2 >= 8 |
| ire_refrele(dir); |
| #endif |
| return result; |
| } |
| |
| |
| void |
| #if (SOLARIS2 < 7) |
| ipf_slowtimer() |
| #else |
| /*ARGSUSED*/ |
| ipf_slowtimer __P((void *ptr)) |
| #endif |
| { |
| |
| WRITE_ENTER(&ipf_global); |
| if (ipf_running <= 0) { |
| if (ipf_running >= -1) { |
| ipf_timer_id = timeout(ipf_slowtimer, NULL, |
| drv_usectohz(500000)); |
| } else { |
| ipf_timer_id = NULL; |
| } |
| RWLOCK_EXIT(&ipf_global); |
| return; |
| } |
| MUTEX_DOWNGRADE(&ipf_global); |
| |
| ipf_expiretokens(); |
| ipf_fragexpire(); |
| ipf_timeoutstate(); |
| ipf_natexpire(); |
| ipf_authexpire(); |
| ipf_ticks++; |
| if (ipf_running == -1 || ipf_running == 1) |
| ipf_timer_id = timeout(ipf_slowtimer, NULL, |
| drv_usectohz(500000)); |
| else |
| ipf_timer_id = NULL; |
| RWLOCK_EXIT(&ipf_global); |
| } |
| |
| |
| /* |
| * Function: ipf_fastroute |
| * Returns: 0: success; |
| * -1: failed |
| * Parameters: |
| * mb: the message block where ip head starts |
| * mpp: the pointer to the pointer of the orignal |
| * packet message |
| * fin: packet information |
| * fdp: destination interface information |
| * if it is NULL, no interface information provided. |
| * |
| * This function is for fastroute/to/dup-to rules. It calls |
| * pfil_make_lay2_packet to search route, make lay-2 header |
| * ,and identify output queue for the IP packet. |
| * The destination address depends on the following conditions: |
| * 1: for fastroute rule, fdp is passed in as NULL, so the |
| * destination address is the IP Packet's destination address |
| * 2: for to/dup-to rule, if an ip address is specified after |
| * the interface name, this address is the as destination |
| * address. Otherwise IP Packet's destination address is used |
| */ |
| int |
| ipf_fastroute(mb, mpp, fin, fdp) |
| mblk_t *mb, **mpp; |
| fr_info_t *fin; |
| frdest_t *fdp; |
| { |
| struct in_addr dst; |
| qpktinfo_t *qpi; |
| frentry_t *fr; |
| frdest_t fd; |
| qif_t *ifp; |
| void *dstp; |
| void *sifp; |
| ip_t *ip; |
| #ifndef sparc |
| u_short __iplen, __ipoff; |
| #endif |
| #ifdef USE_INET6 |
| ip6_t *ip6 = (ip6_t *)fin->fin_ip; |
| struct in6_addr dst6; |
| #endif |
| |
| fr = fin->fin_fr; |
| ip = fin->fin_ip; |
| qpi = fin->fin_qpi; |
| |
| /* |
| * If this is a duplicate mblk then we want ip to point at that |
| * data, not the original, if and only if it is already pointing at |
| * the current mblk data. |
| */ |
| if (ip == (ip_t *)qpi->qpi_m->b_rptr && qpi->qpi_m != mb) |
| ip = (ip_t *)mb->b_rptr; |
| |
| /* |
| * If there is another M_PROTO, we don't want it |
| */ |
| if (*mpp != mb) { |
| mblk_t *mp; |
| |
| mp = unlinkb(*mpp); |
| freeb(*mpp); |
| *mpp = mp; |
| } |
| |
| /* |
| * If the fdp is NULL then there is no set route for this packet. |
| */ |
| if (fdp == NULL) { |
| ifp = fin->fin_ifp; |
| |
| switch (fin->fin_v) |
| { |
| case 4 : |
| fd.fd_ip = ip->ip_dst; |
| ifp = qif_illrouteto(4, &ip->ip_dst); |
| break; |
| #ifdef USE_INET6 |
| case 6 : |
| fd.fd_ip6.in6 = ip6->ip6_dst; |
| ifp = qif_illrouteto(6, &ip6->ip6_dst); |
| break; |
| #endif |
| } |
| fdp = &fd; |
| } else { |
| ifp = fdp->fd_ifp; |
| |
| if (ifp == NULL || ifp == (void *)-1) |
| goto bad_fastroute; |
| } |
| |
| /* |
| * In case we're here due to "to <if>" being used with |
| * "keep state", check that we're going in the correct |
| * direction. |
| */ |
| if ((fr != NULL) && (fin->fin_rev != 0)) { |
| if ((ifp != NULL) && (fdp == &fr->fr_tif)) |
| return -1; |
| dst.s_addr = fin->fin_fi.fi_daddr; |
| } else { |
| if (fin->fin_v == 4) { |
| if (fdp->fd_ip.s_addr != 0) |
| dst = fdp->fd_ip; |
| else |
| dst.s_addr = fin->fin_fi.fi_daddr; |
| dstp = &dst; |
| } |
| #ifdef USE_INET6 |
| else if (fin->fin_v == 6) { |
| if (IP6_NOTZERO(&fdp->fd_ip)) |
| dst6 = fdp->fd_ip6.in6; |
| else |
| dst6 = fin->fin_dst6; |
| } |
| #endif |
| } |
| |
| /* |
| * For input packets which are being "fastrouted", they won't |
| * go back through output filtering and miss their chance to get |
| * NAT'd and counted. Duplicated packets aren't considered to be |
| * part of the normal packet stream, so do not NAT them or pass |
| * them through stateful checking, etc. |
| */ |
| if ((fdp != &fr->fr_dif) && (fin->fin_out == 0)) { |
| sifp = fin->fin_ifp; |
| fin->fin_ifp = ifp; |
| fin->fin_out = 1; |
| (void) ipf_acctpkt(fin, NULL); |
| fin->fin_fr = NULL; |
| if (!fr || !(fr->fr_flags & FR_RETMASK)) { |
| u_32_t pass; |
| |
| if (ipf_state_check(fin, &pass) != NULL) |
| ipf_state_deref((ipstate_t **)&fin->fin_state); |
| } |
| |
| switch (ipf_nat_checkout(fin, NULL)) |
| { |
| case 0 : |
| break; |
| case 1 : |
| ipf_nat_deref((nat_t **)&fin->fin_nat); |
| ip->ip_sum = 0; |
| break; |
| case -1 : |
| goto bad_fastroute; |
| break; |
| } |
| |
| fin->fin_out = 0; |
| fin->fin_ifp = sifp; |
| } else if (fin->fin_out == 1) { |
| #if SOLARIS2 >= 6 |
| /* |
| * We're taking a packet from an interface and putting it on |
| * another interface. There's no guarantee that the other |
| * interface will have the same capabilities, so disable |
| * any flags that are set and do things manually for both |
| * IP and TCP/UDP |
| */ |
| if (mb->b_datap->db_struioflag) { |
| mb->b_datap->db_struioflag = 0; |
| |
| if (fin->fin_v == 4) { |
| ip->ip_sum = 0; |
| ip->ip_sum = ipf_cksum((u_short *)ip, |
| sizeof(*ip)); |
| } |
| ipf_fixl4sum(fin); |
| } |
| #endif |
| } |
| |
| #ifndef sparc |
| if (fin->fin_v == 4) { |
| __iplen = (u_short)ip->ip_len, |
| |
| if (pfil_sendbuf(ifp, mb) == 0) { |
| ATOMIC_INCL(fr_frouteok[0]); |
| } else { |
| ATOMIC_INCL(ipf_frouteok[1]); |
| } |
| return 0; |
| |
| bad_fastroute: |
| ATOMIC_INCL(ipf_frouteok[1]); |
| freemsg(mb); |
| return -1; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_pullup */ |
| /* Returns: NULL == pullup failed, else pointer to protocol header */ |
| /* Parameters: m(I) - pointer to buffer where data packet starts */ |
| /* fin(I) - pointer to packet information */ |
| /* len(I) - number of bytes to pullup */ |
| /* */ |
| /* Attempt to move at least len bytes (from the start of the buffer) into a */ |
| /* single buffer for ease of access. Operating system native functions are */ |
| /* used to manage buffers - if necessary. If the entire packet ends up in */ |
| /* a single buffer, set the FI_COALESCE flag even though ipf_coalesce() has */ |
| /* not been called. Both fin_ip and fin_dp are updated before exiting _IF_ */ |
| /* and ONLY if the pullup succeeds. */ |
| /* */ |
| /* We assume that 'min' is a pointer to a buffer that is part of the chain */ |
| /* of buffers that starts at *fin->fin_mp. */ |
| /* ------------------------------------------------------------------------ */ |
| void * |
| ipf_pullup(mb_t *min, fr_info_t *fin, int len) |
| { |
| qpktinfo_t *qpi = fin->fin_qpi; |
| int out = fin->fin_out, dpoff, ipoff; |
| mb_t *m = min; |
| char *ip; |
| |
| if (m == NULL) |
| return NULL; |
| |
| ip = (char *)fin->fin_ip; |
| if ((fin->fin_flx & FI_COALESCE) != 0) |
| return ip; |
| |
| ipoff = fin->fin_ipoff; |
| if (fin->fin_dp != NULL) |
| dpoff = (char *)fin->fin_dp - (char *)ip; |
| else |
| dpoff = 0; |
| |
| if (M_LEN(m) < len) { |
| |
| /* |
| * pfil_precheck ensures the IP header is on a 32bit |
| * aligned address so simply fail if that isn't currently |
| * the case (should never happen). |
| */ |
| if (((ipoff & 3) != 0) || (pullupmsg(m, len + ipoff) == 0)) { |
| ATOMIC_INCL(ipf_stats[out].fr_pull[1]); |
| FREE_MB_T(*fin->fin_mp); |
| *fin->fin_mp = NULL; |
| fin->fin_m = NULL; |
| fin->fin_ip = NULL; |
| fin->fin_dp = NULL; |
| qpi->qpi_data = NULL; |
| return NULL; |
| } |
| |
| fin->fin_m = m; |
| ip = MTOD(m, char *) + ipoff; |
| qpi->qpi_data = ip; |
| } |
| |
| ATOMIC_INCL(ipf_stats[out].fr_pull[0]); |
| fin->fin_ip = (ip_t *)ip; |
| if (fin->fin_dp != NULL) |
| fin->fin_dp = (char *)fin->fin_ip + dpoff; |
| |
| if (len == fin->fin_plen) |
| fin->fin_flx |= FI_COALESCE; |
| return ip; |
| } |
| |
| |
| int |
| ipf_inject(fr_info_t *fin, mb_t *m) |
| { |
| qifpkt_t *qp; |
| |
| qp = kmem_alloc(sizeof(*qp), KM_NOSLEEP); |
| if (qp == NULL) { |
| freemsg(*fin->fin_mp); |
| return ENOMEM; |
| } |
| |
| qp->qp_mb = *fin->fin_mp; |
| if (fin->fin_v == 4) |
| qp->qp_sap = 0x800; |
| else if (fin->fin_v == 6) |
| qp->qp_sap = 0x86dd; |
| qp->qp_inout = fin->fin_out; |
| strncpy(qp->qp_ifname, fin->fin_ifname, LIFNAMSIZ); |
| qif_addinject(qp); |
| return 0; |
| } |
| |
| |
| static void |
| ipf_fixl4sum(fr_info_t *fin) |
| { |
| u_short *csump; |
| udphdr_t *udp; |
| |
| csump = NULL; |
| |
| switch (fin->fin_p) |
| { |
| case IPPROTO_TCP : |
| csump = &((tcphdr_t *)fin->fin_dp)->th_sum; |
| break; |
| |
| case IPPROTO_UDP : |
| udp = fin->fin_dp; |
| if (udp->uh_sum != 0) |
| csump = &udp->uh_sum; |
| break; |
| |
| default : |
| break; |
| } |
| |
| if (csump != NULL) { |
| *csump = 0; |
| *csump = ipf_cksum(fin->fin_m, fin->fin_ip, fin->fin_p, |
| fin->fin_dp, fin->fin_plen); |
| } |
| } |
| |
| |
| mblk_t * |
| ipf_allocmbt(size_t len) |
| { |
| mblk_t *m; |
| |
| /* |
| * +64 is to reverse some token amount of space so that we |
| * might have a good chance of copying over data from the |
| * front of the existing IP packet to this one. |
| */ |
| m = allocb(len + 128, BPRI_HI); |
| if (m == NULL) |
| return NULL; |
| |
| m->b_rptr += 128; |
| m->b_wptr += 128 + len; |
| return m; |
| } |
| |
| |
| void |
| ipf_prependmbt(fr_info_t *fin, mblk_t *m) |
| { |
| mblk_t *o = NULL; |
| mblk_t *n = *fin->fin_mp; |
| |
| if (MTYPE(n) == M_DATA) { |
| /* |
| * The aim here is to copy x bytes of data from immediately |
| * preceding the IP packet in the original mblk to the new |
| * mblk that now precedes it. In doing this, b_rptr in the |
| * original packet is moved so that we don't transmit data |
| * that has been moved. |
| */ |
| int x; |
| |
| x = min(fin->fin_ipoff, m->b_rptr - m->b_datap->db_base); |
| |
| if (x > 0) { |
| m->b_rptr -= x; |
| bcopy(n->b_rptr, m->b_rptr, x); |
| n->b_rptr += fin->fin_ipoff; |
| } |
| linkb(m, n); |
| fin->fin_m = m; |
| *fin->fin_mp = m; |
| return; |
| } |
| |
| /* |
| * If there are special mblk's at the ststart of the current message, |
| * pull them off the front and move them...good or bad? |
| */ |
| while ((n != NULL) && (MTYPE(n) != M_DATA)) { |
| if (o == NULL) |
| o = n; |
| else |
| linkb(o, n); |
| n = unlinkb(n); |
| } |
| |
| if (n != NULL) |
| linkb(m, n); |
| |
| /* |
| * We know that o != NULL because to get here, the first mblk of n |
| * _must_ have not been an M_DATA.. |
| */ |
| *fin->fin_mp = o; |
| linkb(o, m); |
| |
| fin->fin_m = m; |
| } |
| |
| |
| /* |
| * In the face of no kernel random function, this is implemented...it is |
| * not meant to be random, just a fill in. |
| */ |
| int |
| ipf_random(int range) |
| { |
| static int last = 0; |
| static int calls = 0; |
| struct timeval tv; |
| int number; |
| |
| GETKTIME(&tv); |
| last *= tv.tv_usec + calls++; |
| last += (int)&range * ipf_ticks; |
| number = last + tv.tv_sec; |
| number %= range; |
| return number; |
| } |