| /* |
| * Copyright (C) 1995-2003 by Darren Reed. |
| * |
| * See the IPFILTER.LICENCE file for details on licencing. |
| * |
| * $Id$ |
| */ |
| #if defined(KERNEL) || defined(_KERNEL) |
| # undef KERNEL |
| # undef _KERNEL |
| # define KERNEL 1 |
| # define _KERNEL 1 |
| #endif |
| #include <sys/errno.h> |
| #include <sys/types.h> |
| #include <sys/param.h> |
| #include <sys/file.h> |
| #if defined(_KERNEL) && defined(__FreeBSD_version) && \ |
| (__FreeBSD_version >= 400000) && !defined(KLD_MODULE) |
| #include "opt_inet6.h" |
| #endif |
| #if !defined(_KERNEL) && !defined(__KERNEL__) |
| # include <stdio.h> |
| # include <stdlib.h> |
| # include <string.h> |
| # define _KERNEL |
| # ifdef __OpenBSD__ |
| struct file; |
| # endif |
| # include <sys/uio.h> |
| # undef _KERNEL |
| #endif |
| #if defined(_KERNEL) && (__FreeBSD_version >= 220000) |
| # include <sys/filio.h> |
| # include <sys/fcntl.h> |
| #else |
| # include <sys/ioctl.h> |
| #endif |
| #include <sys/time.h> |
| #if !defined(linux) |
| # include <sys/protosw.h> |
| #endif |
| #include <sys/socket.h> |
| #if defined(_KERNEL) |
| # include <sys/systm.h> |
| # if !defined(__SVR4) && !defined(__svr4__) |
| # include <sys/mbuf.h> |
| # endif |
| #endif |
| #if defined(__SVR4) || defined(__svr4__) |
| # include <sys/filio.h> |
| # include <sys/byteorder.h> |
| # ifdef _KERNEL |
| # include <sys/dditypes.h> |
| # endif |
| # include <sys/stream.h> |
| # include <sys/kmem.h> |
| #endif |
| |
| #include <net/if.h> |
| #ifdef sun |
| # include <net/af.h> |
| #endif |
| #include <net/route.h> |
| #include <netinet/in.h> |
| #include <netinet/in_systm.h> |
| #include <netinet/ip.h> |
| #include <netinet/tcp.h> |
| #if !defined(linux) |
| # include <netinet/ip_var.h> |
| #endif |
| #if !defined(__hpux) && !defined(linux) |
| # include <netinet/tcp_fsm.h> |
| #endif |
| #include <netinet/udp.h> |
| #include <netinet/ip_icmp.h> |
| #include "netinet/ip_compat.h" |
| #include <netinet/tcpip.h> |
| #include "netinet/ip_fil.h" |
| #include "netinet/ip_nat.h" |
| #include "netinet/ip_frag.h" |
| #include "netinet/ip_state.h" |
| #include "netinet/ip_proxy.h" |
| #include "netinet/ip_lookup.h" |
| #ifdef IPFILTER_SYNC |
| #include "netinet/ip_sync.h" |
| #endif |
| #ifdef IPFILTER_SCAN |
| #include "netinet/ip_scan.h" |
| #endif |
| #ifdef USE_INET6 |
| #include <netinet/icmp6.h> |
| #endif |
| #if (__FreeBSD_version >= 300000) |
| # include <sys/malloc.h> |
| # if defined(_KERNEL) && !defined(IPFILTER_LKM) |
| # include <sys/libkern.h> |
| # include <sys/systm.h> |
| # endif |
| #endif |
| /* END OF INCLUDES */ |
| |
| |
| #if !defined(lint) |
| static const char sccsid[] = "@(#)ip_state.c 1.8 6/5/96 (C) 1993-2000 Darren Reed"; |
| static const char rcsid[] = "@(#)$Id$"; |
| #endif |
| |
| static ipstate_t **ipf_state_table = NULL; |
| static u_long *ipf_state_seed = NULL; |
| ips_stat_t ipf_state_stats; |
| static ipftq_t ipf_state_pending; |
| static ipftq_t ipf_state_deletetq; |
| |
| #ifdef USE_INET6 |
| static ipstate_t *ipf_checkicmp6matchingstate __P((fr_info_t *)); |
| #endif |
| static int ipf_allowstateicmp __P((fr_info_t *, ipstate_t *, i6addr_t *)); |
| static ipstate_t *ipf_matchsrcdst __P((fr_info_t *, ipstate_t *, i6addr_t *, |
| i6addr_t *, tcphdr_t *, u_32_t)); |
| static ipstate_t *ipf_checkicmpmatchingstate __P((fr_info_t *)); |
| static int ipf_state_flush __P((int, int)); |
| static int ipf_state_flush_entry __P((void *)); |
| static ips_stat_t *ipf_statetstats __P((void)); |
| static int ipf_state_del __P((ipstate_t *, int)); |
| static int ipf_state_remove __P((caddr_t)); |
| static int ipf_state_match __P((ipstate_t *is1, ipstate_t *is2)); |
| static int ipf_state_matchaddresses __P((ipstate_t *is1, ipstate_t *is2)); |
| static int ipf_state_matchipv4addrs __P((ipstate_t *is1, ipstate_t *is2)); |
| static int ipf_state_matchipv6addrs __P((ipstate_t *is1, ipstate_t *is2)); |
| static int ipf_state_matchisps __P((ipstate_t *is1, ipstate_t *is2)); |
| static int ipf_state_matchports __P((udpinfo_t *is1, udpinfo_t *is2)); |
| static int ipf_state_matcharray __P((ipstate_t *, int *)); |
| static void ipf_ipsmove __P((ipstate_t *, u_int)); |
| static int ipf_state_tcp __P((fr_info_t *, tcphdr_t *, ipstate_t *)); |
| static int ipf_tcpoptions __P((fr_info_t *, tcphdr_t *, tcpdata_t *)); |
| static ipstate_t *ipf_state_clone __P((fr_info_t *, tcphdr_t *, ipstate_t *)); |
| static void ipf_fixinisn __P((fr_info_t *, ipstate_t *)); |
| static void ipf_fixoutisn __P((fr_info_t *, ipstate_t *)); |
| static void ipf_checknewisn __P((fr_info_t *, ipstate_t *)); |
| static int ipf_stateiter __P((ipftoken_t *, ipfgeniter_t *)); |
| static int ipf_stgettable __P((char *)); |
| |
| int ipf_stputent __P((caddr_t)); |
| int ipf_stgetent __P((caddr_t)); |
| |
| #define ONE_DAY IPF_TTLVAL(1 * 86400) /* 1 day */ |
| #define FIVE_DAYS (5 * ONE_DAY) |
| #define DOUBLE_HASH(x) (((x) + ipf_state_seed[(x) % ipf_state_size]) % \ |
| ipf_state_size) |
| |
| u_int ipf_tcpidletimeout = FIVE_DAYS, |
| ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL), |
| ipf_tcplastack = IPF_TTLVAL(30), |
| ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL), |
| ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL), |
| ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL), |
| ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL), |
| ipf_tcpclosed = IPF_TTLVAL(30), |
| ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600), /* 2 hours */ |
| ipf_udptimeout = IPF_TTLVAL(120), |
| ipf_udpacktimeout = IPF_TTLVAL(12), |
| ipf_icmptimeout = IPF_TTLVAL(60), |
| ipf_icmpacktimeout = IPF_TTLVAL(6), |
| ipf_iptimeout = IPF_TTLVAL(60), |
| ipf_state_wm_freq = IPF_TTLVAL(10), |
| ipf_state_max = IPSTATE_MAX, |
| ipf_state_size = IPSTATE_SIZE, |
| ipf_state_maxbucket = 0, |
| ipf_state_wm_last = 0, |
| ipf_state_wm_high = 99, |
| ipf_state_wm_low = 90, |
| ipf_state_inited = 0; |
| int ipf_state_lock = 0, |
| ipf_state_doflush = 0; |
| ipftq_t ipf_state_tcptq[IPF_TCP_NSTATES], |
| ipf_state_udptq, |
| ipf_state_udpacktq, |
| ipf_state_iptq, |
| ipf_state_icmptq, |
| ipf_state_icmpacktq, |
| *ipf_state_usertq = NULL; |
| #ifdef IPFILTER_LOG |
| int ipf_state_logging = 1; |
| #else |
| int ipf_state_logging = 0; |
| #endif |
| ipstate_t *ipf_state_list = NULL; |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_init */ |
| /* Returns: int - 0 == success, -1 == failure */ |
| /* Parameters: Nil */ |
| /* */ |
| /* Initialise all the global variables used within the state code. */ |
| /* This action also includes initiailising locks. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_state_init() |
| { |
| int i; |
| |
| KMALLOCS(ipf_state_table, |
| ipstate_t **, ipf_state_size * sizeof(ipstate_t *)); |
| if (ipf_state_table == NULL) |
| return -1; |
| |
| bzero((char *)ipf_state_table, ipf_state_size * sizeof(ipstate_t *)); |
| |
| KMALLOCS(ipf_state_seed, u_long *, |
| ipf_state_size * sizeof(*ipf_state_seed)); |
| if (ipf_state_seed == NULL) |
| return -2; |
| |
| for (i = 0; i < ipf_state_size; i++) { |
| /* |
| * XXX - ipf_state_seed[X] should be a random number of sorts. |
| */ |
| #if (__FreeBSD_version >= 400000) |
| ipf_state_seed[i] = arc4random(); |
| #else |
| ipf_state_seed[i] = ((u_long)ipf_state_seed + i) * |
| ipf_state_size; |
| ipf_state_seed[i] ^= 0xa5a55a5a; |
| ipf_state_seed[i] *= (u_long)ipf_state_seed; |
| ipf_state_seed[i] ^= 0x5a5aa5a5; |
| ipf_state_seed[i] *= ipf_state_max; |
| #endif |
| } |
| |
| /* fill icmp reply type table */ |
| for (i = 0; i <= ICMP_MAXTYPE; i++) |
| icmpreplytype4[i] = -1; |
| icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY; |
| icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY; |
| icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY; |
| icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY; |
| #ifdef USE_INET6 |
| /* fill icmp reply type table */ |
| for (i = 0; i <= ICMP6_MAXTYPE; i++) |
| icmpreplytype6[i] = -1; |
| icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY; |
| icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT; |
| icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY; |
| icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT; |
| icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT; |
| #endif |
| |
| KMALLOCS(ipf_state_stats.iss_bucketlen, u_int *, |
| ipf_state_size * sizeof(u_int)); |
| if (ipf_state_stats.iss_bucketlen == NULL) |
| return -1; |
| bzero((char *)ipf_state_stats.iss_bucketlen, |
| ipf_state_size * sizeof(u_int)); |
| |
| if (ipf_state_maxbucket == 0) { |
| for (i = ipf_state_size; i > 0; i >>= 1) |
| ipf_state_maxbucket++; |
| ipf_state_maxbucket *= 2; |
| } |
| |
| ipf_state_stats.iss_tcptab = ipf_state_tcptq; |
| ipf_sttab_init(ipf_state_tcptq); |
| ipf_state_tcptq[IPF_TCP_NSTATES - 1].ifq_next = &ipf_state_udptq; |
| |
| IPFTQ_INIT(&ipf_state_udptq, ipf_udptimeout, "ipftq udp tab"); |
| ipf_state_udptq.ifq_next = &ipf_state_udpacktq; |
| |
| IPFTQ_INIT(&ipf_state_udpacktq, ipf_udpacktimeout, "ipftq udpack tab"); |
| ipf_state_udpacktq.ifq_next = &ipf_state_icmptq; |
| |
| IPFTQ_INIT(&ipf_state_icmptq, ipf_icmptimeout, "ipftq icmp tab"); |
| ipf_state_icmptq.ifq_next = &ipf_state_icmpacktq; |
| |
| IPFTQ_INIT(&ipf_state_icmpacktq, ipf_icmpacktimeout, |
| "ipftq icmpack tab"); |
| ipf_state_icmpacktq.ifq_next = &ipf_state_iptq; |
| |
| IPFTQ_INIT(&ipf_state_iptq, ipf_iptimeout, "ipftq iptimeout tab"); |
| ipf_state_iptq.ifq_next = &ipf_state_pending; |
| |
| IPFTQ_INIT(&ipf_state_pending, 1, "ipftq pending"); |
| ipf_state_pending.ifq_next = &ipf_state_deletetq; |
| |
| IPFTQ_INIT(&ipf_state_deletetq, 1, "ipftq delete"); |
| ipf_state_deletetq.ifq_next = NULL; |
| |
| RWLOCK_INIT(&ipf_state, "ipf IP state rwlock"); |
| MUTEX_INIT(&ipf_stinsert, "ipf state insert mutex"); |
| |
| ipf_state_inited = 1; |
| |
| ipf_state_wm_last = ipf_ticks; |
| return 0; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_unload */ |
| /* Returns: Nil */ |
| /* Parameters: Nil */ |
| /* */ |
| /* Release and destroy any resources acquired or initialised so that */ |
| /* IPFilter can be unloaded or re-initialised. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_unload() |
| { |
| ipftq_t *ifq, *ifqnext; |
| ipstate_t *is; |
| |
| while ((is = ipf_state_list) != NULL) |
| ipf_state_del(is, ISL_UNLOAD); |
| |
| /* |
| * Proxy timeout queues are not cleaned here because although they |
| * exist on the state list, appr_unload is called after |
| * ipf_state_unload and the proxies actually are responsible for them |
| * being created. Should the proxy timeouts have their own list? |
| * There's no real justification as this is the only complication. |
| */ |
| for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifqnext) { |
| ifqnext = ifq->ifq_next; |
| if (((ifq->ifq_flags & IFQF_PROXY) == 0) && |
| (ipf_deletetimeoutqueue(ifq) == 0)) |
| ipf_freetimeoutqueue(ifq); |
| } |
| |
| ipf_state_stats.iss_inuse = 0; |
| ipf_state_stats.iss_active = 0; |
| |
| if (ipf_state_inited == 1) { |
| ipf_sttab_destroy(ipf_state_tcptq); |
| MUTEX_DESTROY(&ipf_state_udptq.ifq_lock); |
| MUTEX_DESTROY(&ipf_state_icmptq.ifq_lock); |
| MUTEX_DESTROY(&ipf_state_udpacktq.ifq_lock); |
| MUTEX_DESTROY(&ipf_state_icmpacktq.ifq_lock); |
| MUTEX_DESTROY(&ipf_state_iptq.ifq_lock); |
| MUTEX_DESTROY(&ipf_state_deletetq.ifq_lock); |
| } |
| |
| if (ipf_state_table != NULL) { |
| KFREES(ipf_state_table, |
| ipf_state_size * sizeof(*ipf_state_table)); |
| ipf_state_table = NULL; |
| } |
| |
| if (ipf_state_seed != NULL) { |
| KFREES(ipf_state_seed, |
| ipf_state_size * sizeof(*ipf_state_seed)); |
| ipf_state_seed = NULL; |
| } |
| |
| if (ipf_state_stats.iss_bucketlen != NULL) { |
| KFREES(ipf_state_stats.iss_bucketlen, |
| ipf_state_size * sizeof(u_int)); |
| ipf_state_stats.iss_bucketlen = NULL; |
| } |
| |
| if (ipf_state_inited == 1) { |
| ipf_state_inited = 0; |
| RW_DESTROY(&ipf_state); |
| MUTEX_DESTROY(&ipf_stinsert); |
| } |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_statetstats */ |
| /* Returns: ips_state_t* - pointer to state stats structure */ |
| /* Parameters: Nil */ |
| /* */ |
| /* Put all the current numbers and pointers into a single struct and return */ |
| /* a pointer to it. */ |
| /* ------------------------------------------------------------------------ */ |
| static ips_stat_t * |
| ipf_statetstats() |
| { |
| ipf_state_stats.iss_state_size = ipf_state_size; |
| ipf_state_stats.iss_state_max = ipf_state_max; |
| ipf_state_stats.iss_table = ipf_state_table; |
| ipf_state_stats.iss_list = ipf_state_list; |
| ipf_state_stats.iss_ticks = ipf_ticks; |
| return &ipf_state_stats; |
| } |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_remove */ |
| /* Returns: int - 0 == success, != 0 == failure */ |
| /* Parameters: data(I) - pointer to state structure to delete from table */ |
| /* */ |
| /* Search for a state structure that matches the one passed, according to */ |
| /* the IP addresses and other protocol specific information. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_remove(data) |
| caddr_t data; |
| { |
| ipstate_t *sp, st; |
| int error; |
| |
| sp = &st; |
| error = ipf_inobj(data, &st, IPFOBJ_IPSTATE); |
| if (error) |
| return EFAULT; |
| |
| WRITE_ENTER(&ipf_state); |
| for (sp = ipf_state_list; sp; sp = sp->is_next) |
| if ((sp->is_p == st.is_p) && (sp->is_v == st.is_v) && |
| !bcmp((caddr_t)&sp->is_src, (caddr_t)&st.is_src, |
| sizeof(st.is_src)) && |
| !bcmp((caddr_t)&sp->is_dst, (caddr_t)&st.is_dst, |
| sizeof(st.is_dst)) && |
| !bcmp((caddr_t)&sp->is_ps, (caddr_t)&st.is_ps, |
| sizeof(st.is_ps))) { |
| ipf_state_del(sp, ISL_REMOVE); |
| RWLOCK_EXIT(&ipf_state); |
| return 0; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| |
| ipf_interror = 100001; |
| return ESRCH; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_ioctl */ |
| /* Returns: int - 0 == success, != 0 == failure */ |
| /* Parameters: data(I) - pointer to ioctl data */ |
| /* cmd(I) - ioctl command integer */ |
| /* mode(I) - file mode bits used with open */ |
| /* */ |
| /* Processes an ioctl call made to operate on the IP Filter state device. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_state_ioctl(data, cmd, mode, uid, ctx) |
| caddr_t data; |
| ioctlcmd_t cmd; |
| int mode, uid; |
| void *ctx; |
| { |
| int arg, ret, error = 0; |
| SPL_INT(s); |
| |
| switch (cmd) |
| { |
| /* |
| * Delete an entry from the state table. |
| */ |
| case SIOCDELST : |
| error = ipf_state_remove(data); |
| break; |
| |
| /* |
| * Flush the state table |
| */ |
| case SIOCIPFFL : |
| error = BCOPYIN(data, &arg, sizeof(arg)); |
| if (error != 0) { |
| ipf_interror = 100002; |
| error = EFAULT; |
| |
| } else { |
| WRITE_ENTER(&ipf_state); |
| ret = ipf_state_flush(arg, 4); |
| RWLOCK_EXIT(&ipf_state); |
| |
| error = BCOPYOUT(&ret, data, sizeof(ret)); |
| if (error != 0) { |
| ipf_interror = 100003; |
| error = EFAULT; |
| } |
| } |
| break; |
| |
| #ifdef USE_INET6 |
| case SIOCIPFL6 : |
| error = BCOPYIN(data, &arg, sizeof(arg)); |
| if (error != 0) { |
| ipf_interror = 100004; |
| error = EFAULT; |
| |
| } else { |
| WRITE_ENTER(&ipf_state); |
| ret = ipf_state_flush(arg, 6); |
| RWLOCK_EXIT(&ipf_state); |
| |
| error = BCOPYOUT(&ret, data, sizeof(ret)); |
| if (error != 0) { |
| ipf_interror = 100005; |
| error = EFAULT; |
| } |
| } |
| break; |
| #endif |
| |
| case SIOCMATCHFLUSH : |
| WRITE_ENTER(&ipf_state); |
| error = ipf_state_matchflush(data); |
| RWLOCK_EXIT(&ipf_state); |
| break; |
| |
| #ifdef IPFILTER_LOG |
| /* |
| * Flush the state log. |
| */ |
| case SIOCIPFFB : |
| if (!(mode & FWRITE)) { |
| ipf_interror = 100008; |
| error = EPERM; |
| } else { |
| int tmp; |
| |
| tmp = ipf_log_clear(IPL_LOGSTATE); |
| error = BCOPYOUT(&tmp, data, sizeof(tmp)); |
| if (error != 0) { |
| ipf_interror = 100009; |
| error = EFAULT; |
| } |
| } |
| break; |
| |
| /* |
| * Turn logging of state information on/off. |
| */ |
| case SIOCSETLG : |
| if (!(mode & FWRITE)) { |
| ipf_interror = 100010; |
| error = EPERM; |
| } else { |
| error = BCOPYIN(data, &ipf_state_logging, |
| sizeof(ipf_state_logging)); |
| if (error != 0) { |
| ipf_interror = 100011; |
| error = EFAULT; |
| } |
| } |
| break; |
| |
| /* |
| * Return the current state of logging. |
| */ |
| case SIOCGETLG : |
| error = BCOPYOUT(&ipf_state_logging, data, |
| sizeof(ipf_state_logging)); |
| if (error != 0) { |
| ipf_interror = 100012; |
| error = EFAULT; |
| } |
| break; |
| |
| /* |
| * Return the number of bytes currently waiting to be read. |
| */ |
| case FIONREAD : |
| arg = iplused[IPL_LOGSTATE]; /* returned in an int */ |
| error = BCOPYOUT(&arg, data, sizeof(arg)); |
| if (error != 0) { |
| ipf_interror = 100013; |
| error = EFAULT; |
| } |
| break; |
| #endif |
| |
| /* |
| * Get the current state statistics. |
| */ |
| case SIOCGETFS : |
| error = ipf_outobj(data, ipf_statetstats(), IPFOBJ_STATESTAT); |
| break; |
| |
| /* |
| * Lock/Unlock the state table. (Locking prevents any changes, which |
| * means no packets match). |
| */ |
| case SIOCSTLCK : |
| if (!(mode & FWRITE)) { |
| ipf_interror = 100014; |
| error = EPERM; |
| } else { |
| error = ipf_lock(data, &ipf_state_lock); |
| } |
| break; |
| |
| /* |
| * Add an entry to the current state table. |
| */ |
| case SIOCSTPUT : |
| if (!ipf_state_lock || !(mode &FWRITE)) { |
| ipf_interror = 100015; |
| error = EACCES; |
| break; |
| } |
| error = ipf_stputent(data); |
| break; |
| |
| /* |
| * Get a state table entry. |
| */ |
| case SIOCSTGET : |
| if (!ipf_state_lock) { |
| ipf_interror = 100016; |
| error = EACCES; |
| break; |
| } |
| error = ipf_stgetent(data); |
| break; |
| |
| /* |
| * Return a copy of the hash table bucket lengths |
| */ |
| case SIOCSTAT1 : |
| error = BCOPYOUT(ipf_state_stats.iss_bucketlen, data, |
| ipf_state_size * sizeof(u_int)); |
| if (error != 0) { |
| ipf_interror = 100017; |
| error = EFAULT; |
| } |
| break; |
| |
| case SIOCGENITER : |
| { |
| ipftoken_t *token; |
| ipfgeniter_t iter; |
| |
| error = ipf_inobj(data, &iter, IPFOBJ_GENITER); |
| if (error != 0) |
| break; |
| |
| SPL_SCHED(s); |
| token = ipf_findtoken(IPFGENITER_STATE, uid, ctx); |
| if (token != NULL) { |
| error = ipf_stateiter(token, &iter); |
| } else { |
| ipf_interror = 100018; |
| error = ESRCH; |
| } |
| RWLOCK_EXIT(&ipf_tokens); |
| SPL_X(s); |
| break; |
| } |
| |
| case SIOCGTABL : |
| error = ipf_stgettable(data); |
| break; |
| |
| case SIOCIPFDELTOK : |
| error = BCOPYIN(data, &arg, sizeof(arg)); |
| if (error != 0) { |
| ipf_interror = 100019; |
| error = EFAULT; |
| } else { |
| SPL_SCHED(s); |
| error = ipf_deltoken(arg, uid, ctx); |
| SPL_X(s); |
| } |
| break; |
| |
| case SIOCGTQTAB : |
| error = ipf_outobj(data, ipf_state_tcptq, IPFOBJ_STATETQTAB); |
| break; |
| |
| default : |
| ipf_interror = 100020; |
| error = EINVAL; |
| break; |
| } |
| return error; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_stgetent */ |
| /* Returns: int - 0 == success, != 0 == failure */ |
| /* Parameters: data(I) - pointer to state structure to retrieve from table */ |
| /* */ |
| /* Copy out state information from the kernel to a user space process. If */ |
| /* there is a filter rule associated with the state entry, copy that out */ |
| /* as well. The entry to copy out is taken from the value of "ips_next" in */ |
| /* the struct passed in and if not null and not found in the list of current*/ |
| /* state entries, the retrieval fails. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_stgetent(data) |
| caddr_t data; |
| { |
| ipstate_t *is, *isn; |
| ipstate_save_t ips; |
| int error; |
| |
| error = ipf_inobj(data, &ips, IPFOBJ_STATESAVE); |
| if (error) |
| return EFAULT; |
| |
| READ_ENTER(&ipf_state); |
| isn = ips.ips_next; |
| if (isn == NULL) { |
| isn = ipf_state_list; |
| if (isn == NULL) { |
| if (ips.ips_next == NULL) { |
| RWLOCK_EXIT(&ipf_state); |
| ipf_interror = 100021; |
| return ENOENT; |
| } |
| return 0; |
| } |
| } else { |
| /* |
| * Make sure the pointer we're copying from exists in the |
| * current list of entries. Security precaution to prevent |
| * copying of random kernel data. |
| */ |
| for (is = ipf_state_list; is; is = is->is_next) |
| if (is == isn) |
| break; |
| if (!is) { |
| RWLOCK_EXIT(&ipf_state); |
| ipf_interror = 100022; |
| return ESRCH; |
| } |
| } |
| ips.ips_next = isn->is_next; |
| bcopy((char *)isn, (char *)&ips.ips_is, sizeof(ips.ips_is)); |
| ips.ips_rule = isn->is_rule; |
| if (isn->is_rule != NULL) |
| bcopy((char *)isn->is_rule, (char *)&ips.ips_fr, |
| sizeof(ips.ips_fr)); |
| RWLOCK_EXIT(&ipf_state); |
| error = ipf_outobj(data, &ips, IPFOBJ_STATESAVE); |
| return error; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_stputent */ |
| /* Returns: int - 0 == success, != 0 == failure */ |
| /* Parameters: data(I) - pointer to state information struct */ |
| /* */ |
| /* This function implements the SIOCSTPUT ioctl: insert a state entry into */ |
| /* the state table. If the state info. includes a pointer to a filter rule */ |
| /* then also add in an orphaned rule (will not show up in any "ipfstat -io" */ |
| /* output. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_stputent(data) |
| caddr_t data; |
| { |
| ipstate_t *is, *isn; |
| ipstate_save_t ips; |
| int error, out, i; |
| frentry_t *fr; |
| char *name; |
| |
| error = ipf_inobj(data, &ips, IPFOBJ_STATESAVE); |
| if (error != 0) |
| return error; |
| |
| KMALLOC(isn, ipstate_t *); |
| if (isn == NULL) { |
| ipf_interror = 100023; |
| return ENOMEM; |
| } |
| |
| bcopy((char *)&ips.ips_is, (char *)isn, sizeof(*isn)); |
| bzero((char *)isn, offsetof(struct ipstate, is_pkts)); |
| isn->is_sti.tqe_pnext = NULL; |
| isn->is_sti.tqe_next = NULL; |
| isn->is_sti.tqe_ifq = NULL; |
| isn->is_sti.tqe_parent = isn; |
| isn->is_ifp[0] = NULL; |
| isn->is_ifp[1] = NULL; |
| isn->is_ifp[2] = NULL; |
| isn->is_ifp[3] = NULL; |
| isn->is_sync = NULL; |
| fr = ips.ips_rule; |
| |
| if (fr == NULL) { |
| READ_ENTER(&ipf_state); |
| ipf_state_insert(isn, 0); |
| MUTEX_EXIT(&isn->is_lock); |
| RWLOCK_EXIT(&ipf_state); |
| return 0; |
| } |
| |
| if (isn->is_flags & SI_NEWFR) { |
| KMALLOC(fr, frentry_t *); |
| if (fr == NULL) { |
| KFREE(isn); |
| ipf_interror = 100024; |
| return ENOMEM; |
| } |
| bcopy((char *)&ips.ips_fr, (char *)fr, sizeof(*fr)); |
| out = fr->fr_flags & FR_OUTQUE ? 1 : 0; |
| isn->is_rule = fr; |
| ips.ips_is.is_rule = fr; |
| MUTEX_NUKE(&fr->fr_lock); |
| MUTEX_INIT(&fr->fr_lock, "state filter rule lock"); |
| |
| /* |
| * Look up all the interface names in the rule. |
| */ |
| for (i = 0; i < 4; i++) { |
| name = fr->fr_ifnames[i]; |
| fr->fr_ifas[i] = ipf_resolvenic(name, fr->fr_family); |
| name = isn->is_ifname[i]; |
| isn->is_ifp[i] = ipf_resolvenic(name, isn->is_v); |
| } |
| |
| fr->fr_ref = 0; |
| fr->fr_dsize = 0; |
| fr->fr_data = NULL; |
| fr->fr_type = FR_T_NONE; |
| |
| ipf_resolvedest(&fr->fr_tifs[0], fr->fr_family); |
| ipf_resolvedest(&fr->fr_tifs[1], fr->fr_family); |
| ipf_resolvedest(&fr->fr_dif, fr->fr_family); |
| |
| /* |
| * send a copy back to userland of what we ended up |
| * to allow for verification. |
| */ |
| error = ipf_outobj(data, &ips, IPFOBJ_STATESAVE); |
| if (error != 0) { |
| KFREE(isn); |
| MUTEX_DESTROY(&fr->fr_lock); |
| KFREE(fr); |
| ipf_interror = 100025; |
| return EFAULT; |
| } |
| READ_ENTER(&ipf_state); |
| ipf_state_insert(isn, 0); |
| MUTEX_EXIT(&isn->is_lock); |
| RWLOCK_EXIT(&ipf_state); |
| |
| } else { |
| READ_ENTER(&ipf_state); |
| for (is = ipf_state_list; is; is = is->is_next) |
| if (is->is_rule == fr) { |
| ipf_state_insert(isn, 0); |
| MUTEX_EXIT(&isn->is_lock); |
| break; |
| } |
| |
| if (is == NULL) { |
| KFREE(isn); |
| isn = NULL; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| |
| if (isn == NULL) { |
| ipf_interror = 100033; |
| return ESRCH; |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_insert */ |
| /* Returns: Nil */ |
| /* Parameters: is(I) - pointer to state structure */ |
| /* rev(I) - flag indicating forward/reverse direction of packet */ |
| /* */ |
| /* Inserts a state structure into the hash table (for lookups) and the list */ |
| /* of state entries (for enumeration). Resolves all of the interface names */ |
| /* to pointers and adjusts running stats for the hash table as appropriate. */ |
| /* */ |
| /* Locking: it is assumed that some kind of lock on ipf_state is held. */ |
| /* Exits with is_lock initialised and held. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_insert(is, rev) |
| ipstate_t *is; |
| int rev; |
| { |
| frentry_t *fr; |
| u_int hv; |
| int i; |
| |
| MUTEX_INIT(&is->is_lock, "ipf state entry"); |
| |
| fr = is->is_rule; |
| if (fr != NULL) { |
| MUTEX_ENTER(&fr->fr_lock); |
| fr->fr_ref++; |
| fr->fr_statecnt++; |
| MUTEX_EXIT(&fr->fr_lock); |
| } |
| |
| /* |
| * Look up all the interface names in the state entry. |
| */ |
| for (i = 0; i < 4; i++) { |
| if (is->is_ifp[i] != NULL) |
| continue; |
| is->is_ifp[i] = ipf_resolvenic(is->is_ifname[i], is->is_v); |
| } |
| |
| /* |
| * If we could trust is_hv, then the modulous would not be needed, |
| * but when running with IPFILTER_SYNC, this stops bad values. |
| */ |
| hv = is->is_hv % ipf_state_size; |
| /* TRACE is, hv */ |
| is->is_hv = hv; |
| |
| /* |
| * We need to get both of these locks...the first because it is |
| * possible that once the insert is complete another packet might |
| * come along, match the entry and want to update it. |
| */ |
| MUTEX_ENTER(&is->is_lock); |
| MUTEX_ENTER(&ipf_stinsert); |
| |
| /* |
| * add into list table. |
| */ |
| if (ipf_state_list != NULL) |
| ipf_state_list->is_pnext = &is->is_next; |
| is->is_pnext = &ipf_state_list; |
| is->is_next = ipf_state_list; |
| ipf_state_list = is; |
| |
| if (ipf_state_table[hv] != NULL) |
| ipf_state_table[hv]->is_phnext = &is->is_hnext; |
| else |
| ipf_state_stats.iss_inuse++; |
| is->is_phnext = ipf_state_table + hv; |
| is->is_hnext = ipf_state_table[hv]; |
| ipf_state_table[hv] = is; |
| ipf_state_stats.iss_bucketlen[hv]++; |
| ipf_state_stats.iss_active++; |
| MUTEX_EXIT(&ipf_stinsert); |
| |
| ipf_state_setqueue(is, rev); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_matchipv4addrs */ |
| /* Returns: int - 2 addresses match (strong match), 1 reverse match, */ |
| /* 0 no match */ |
| /* Parameters: is1, is2 pointers to states we are checking */ |
| /* */ |
| /* Function matches IPv4 addresses it returns strong match for ICMP proto */ |
| /* even there is only reverse match */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_matchipv4addrs(is1, is2) |
| ipstate_t *is1, *is2; |
| { |
| int rv; |
| |
| if (is1->is_saddr == is2->is_saddr && is1->is_daddr == is2->is_daddr) |
| rv = 2; |
| else if (is1->is_saddr == is2->is_daddr && |
| is1->is_daddr == is2->is_saddr) { |
| /* force strong match for ICMP protocol */ |
| rv = (is1->is_p == IPPROTO_ICMP) ? 2 : 1; |
| } |
| else |
| rv = 0; |
| |
| return (rv); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_matchipv6addrs */ |
| /* Returns: int - 2 addresses match (strong match), 1 reverse match, */ |
| /* 0 no match */ |
| /* Parameters: is1, is2 pointers to states we are checking */ |
| /* */ |
| /* Function matches IPv6 addresses it returns strong match for ICMP proto */ |
| /* even there is only reverse match */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_matchipv6addrs(is1, is2) |
| ipstate_t *is1, *is2; |
| { |
| int rv; |
| |
| if (IP6_EQ(&is1->is_src, &is2->is_src) && |
| IP6_EQ(&is1->is_dst, &is2->is_dst)) |
| rv = 2; |
| else if (IP6_EQ(&is1->is_src, &is2->is_dst) && |
| IP6_EQ(&is1->is_dst, &is2->is_src)) { |
| /* force strong match for ICMPv6 protocol */ |
| rv = (is1->is_p == IPPROTO_ICMPV6) ? 2 : 1; |
| } |
| else |
| rv = 0; |
| |
| return (rv); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_matchaddresses */ |
| /* Returns: int - 2 addresses match, 1 reverse match, zero no match */ |
| /* Parameters: is1, is2 pointers to states we are checking */ |
| /* */ |
| /* function retruns true if two pairs of addresses belong to single */ |
| /* connection. suppose there are two endpoints: */ |
| /* endpoint1 1.1.1.1 */ |
| /* endpoint2 1.1.1.2 */ |
| /* */ |
| /* the state is established by packet flying from .1 to .2 so we see: */ |
| /* is1->src = 1.1.1.1 */ |
| /* is1->dst = 1.1.1.2 */ |
| /* now endpoint 1.1.1.2 sends answer */ |
| /* retreives is1 record created by first packat and compares it with is2 */ |
| /* temporal record, is2 is initialized as follows: */ |
| /* is2->src = 1.1.1.2 */ |
| /* is2->dst = 1.1.1.1 */ |
| /* in this case 1 will be returned */ |
| /* */ |
| /* the ipf_matchaddresses() assumes those two records to be same. of course */ |
| /* the ipf_matchaddresses() also assume records are same in case you pass */ |
| /* identical arguments (i.e. ipf_matchaddress(is1, is1) would return 2 */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_matchaddresses(is1, is2) |
| ipstate_t *is1, *is2; |
| { |
| int rv; |
| |
| if (is1->is_v == 4) { |
| rv = ipf_state_matchipv4addrs(is1, is2); |
| } |
| else { |
| rv = ipf_state_matchipv6addrs(is1, is2); |
| } |
| |
| return (rv); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_matchports */ |
| /* Returns: int - 2 match, 1 rverse match, 0 no match */ |
| /* Parameters: ppairs1, ppairs - src, dst ports we want to match */ |
| /* */ |
| /* performs the same match for isps members as for addresses */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_matchports(ppairs1, ppairs2) |
| udpinfo_t *ppairs1, *ppairs2; |
| { |
| int rv; |
| |
| if (ppairs1->us_sport == ppairs2->us_sport && |
| ppairs1->us_dport == ppairs2->us_dport) |
| rv = 2; |
| else if (ppairs1->us_sport == ppairs2->us_dport && |
| ppairs1->us_dport == ppairs2->us_sport) |
| rv = 1; |
| else |
| rv = 0; |
| |
| return (rv); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_matchisps */ |
| /* Returns: int - nonzero if isps members match, 0 nomatch */ |
| /* Parameters: is1, is2 - states we want to match */ |
| /* */ |
| /* performs the same match for isps members as for addresses */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_matchisps(is1, is2) |
| ipstate_t *is1, *is2; |
| { |
| int rv; |
| |
| if (is1->is_p == is2->is_p) { |
| switch (is1->is_p) |
| { |
| case IPPROTO_TCP : |
| case IPPROTO_UDP : |
| case IPPROTO_GRE : |
| /* greinfo_t can be also interprted as port pair */ |
| rv = ipf_state_matchports(&is1->is_ps.is_us, |
| &is2->is_ps.is_us); |
| break; |
| |
| case IPPROTO_ICMP : |
| case IPPROTO_ICMPV6 : |
| /* force strong match for ICMP datagram. */ |
| if (bcmp(&is1->is_ps, &is2->is_ps, |
| sizeof(icmpinfo_t)) == 0) { |
| rv = 2; |
| } else { |
| rv = 0; |
| } |
| break; |
| |
| default: |
| rv = 0; |
| } |
| } else { |
| rv = 0; |
| } |
| |
| return (rv); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_match */ |
| /* Returns: int - nonzero match, zero no match */ |
| /* Parameters: is1, is2 - states we want to match */ |
| /* */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_match(is1, is2) |
| ipstate_t *is1, *is2; |
| { |
| int rv; |
| int amatch; |
| int pmatch; |
| |
| if (bcmp(&is1->is_pass, &is2->is_pass, |
| offsetof(struct ipstate, is_authmsk) - |
| offsetof(struct ipstate, is_pass)) == 0) { |
| |
| pmatch = ipf_state_matchisps(is1, is2); |
| amatch = ipf_state_matchaddresses(is1, is2); |
| rv = (amatch != 0) && (amatch == pmatch); |
| } else { |
| rv = 0; |
| } |
| |
| return (rv); |
| } |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_add */ |
| /* Returns: ipstate_t - 0 = success */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* stsave(O) - pointer to place to save pointer to created */ |
| /* state structure. */ |
| /* flags(I) - flags to use when creating the structure */ |
| /* */ |
| /* Creates a new IP state structure from the packet information collected. */ |
| /* Inserts it into the state table and appends to the bottom of the active */ |
| /* list. If the capacity of the table has reached the maximum allowed then */ |
| /* the call will fail and a flush is scheduled for the next timeout call. */ |
| /* */ |
| /* NOTE: The use of stsave to point to nat_state will result in memory */ |
| /* corruption. It should only be used to point to objects that will */ |
| /* either outlive this (not expired) or will deref the ip_state_t */ |
| /* when they are deleted. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_state_add(fin, stsave, flags) |
| fr_info_t *fin; |
| ipstate_t **stsave; |
| u_int flags; |
| { |
| ipstate_t *is, ips; |
| struct icmp *ic; |
| u_int pass, hv; |
| frentry_t *fr; |
| tcphdr_t *tcp; |
| frdest_t *fdp; |
| #if 0 |
| grehdr_t *gre; |
| #endif |
| int out; |
| |
| if (ipf_state_lock || |
| (fin->fin_flx & (FI_SHORT|FI_STATE|FI_FRAGBODY|FI_BAD)) || |
| ((fin->fin_flx & FI_OOW) && !(fin->fin_tcpf & TH_SYN))) { |
| ATOMIC_INCL(ipf_state_stats.iss_add_bad); |
| return -1; |
| } |
| |
| if ((ipf_state_stats.iss_active * 100 / ipf_state_max) > |
| ipf_state_wm_high) { |
| ipf_state_doflush = 1; |
| } |
| |
| /* |
| * If a "keep state" rule has reached the maximum number of references |
| * to it, then schedule an automatic flush in case we can clear out |
| * some "dead old wood". Note that because the lock isn't held on |
| * fr it is possible that we could overflow. The cost of overflowing |
| * is being ignored here as the number by which it can overflow is |
| * a product of the number of simultaneous threads that could be |
| * executing in here, so a limit of 100 won't result in 200, but could |
| * result in 101 or 102. |
| */ |
| fr = fin->fin_fr; |
| if (fr != NULL) { |
| if ((ipf_state_stats.iss_active >= ipf_state_max) && |
| (fr->fr_statemax == 0)) { |
| ATOMIC_INCL(ipf_state_stats.iss_max); |
| return 1; |
| } |
| if ((fr->fr_statemax != 0) && |
| (fr->fr_statecnt >= fr->fr_statemax)) { |
| ATOMIC_INCL(ipf_state_stats.iss_max_ref); |
| return 2; |
| } |
| } |
| |
| is = &ips; |
| if (fr == NULL) { |
| pass = ipf_flags; |
| is->is_tag = FR_NOLOGTAG; |
| } else { |
| pass = fr->fr_flags; |
| } |
| |
| ic = NULL; |
| tcp = NULL; |
| out = fin->fin_out; |
| bzero((char *)is, sizeof(*is)); |
| is->is_die = 1 + ipf_ticks; |
| /* |
| * We want to check everything that is a property of this packet, |
| * but we don't (automatically) care about it's fragment status as |
| * this may change. |
| */ |
| is->is_pass = pass; |
| is->is_v = fin->fin_v; |
| is->is_opt[0] = fin->fin_optmsk; |
| is->is_optmsk[0] = 0xffffffff; |
| is->is_optmsk[1] = 0xffffffff; |
| if (is->is_v == 6) { |
| is->is_opt[0] &= ~0x8; |
| is->is_optmsk[0] &= ~0x8; |
| is->is_optmsk[1] &= ~0x8; |
| } |
| is->is_sec = fin->fin_secmsk; |
| is->is_secmsk = 0xffff; |
| is->is_auth = fin->fin_auth; |
| is->is_authmsk = 0xffff; |
| |
| /* |
| * Copy and calculate... |
| */ |
| hv = (is->is_p = fin->fin_fi.fi_p); |
| is->is_src = fin->fin_fi.fi_src; |
| hv += is->is_saddr; |
| is->is_dst = fin->fin_fi.fi_dst; |
| hv += is->is_daddr; |
| #ifdef USE_INET6 |
| if (fin->fin_v == 6) { |
| /* |
| * For ICMPv6, we check to see if the destination address is |
| * a multicast address. If it is, do not include it in the |
| * calculation of the hash because the correct reply will come |
| * back from a real address, not a multicast address. |
| */ |
| if ((is->is_p == IPPROTO_ICMPV6) && |
| IN6_IS_ADDR_MULTICAST(&is->is_dst.in6)) { |
| /* |
| * So you can do keep state with neighbour discovery. |
| * |
| * Here we could use the address from the neighbour |
| * solicit message to put in the state structure and |
| * we could use that without a wildcard flag too... |
| */ |
| flags |= SI_W_DADDR; |
| hv -= is->is_daddr; |
| } else { |
| hv += is->is_dst.i6[1]; |
| hv += is->is_dst.i6[2]; |
| hv += is->is_dst.i6[3]; |
| } |
| hv += is->is_src.i6[1]; |
| hv += is->is_src.i6[2]; |
| hv += is->is_src.i6[3]; |
| } |
| #endif |
| if ((fin->fin_v == 4) && |
| (fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) { |
| flags |= SI_W_DADDR; |
| hv -= is->is_daddr; |
| } |
| |
| switch (is->is_p) |
| { |
| #ifdef USE_INET6 |
| case IPPROTO_ICMPV6 : |
| ic = fin->fin_dp; |
| |
| switch (ic->icmp_type) |
| { |
| case ICMP6_ECHO_REQUEST : |
| hv += (is->is_icmp.ici_id = ic->icmp_id); |
| /*FALLTHROUGH*/ |
| case ICMP6_MEMBERSHIP_QUERY : |
| case ND_ROUTER_SOLICIT : |
| case ND_NEIGHBOR_SOLICIT : |
| case ICMP6_NI_QUERY : |
| is->is_icmp.ici_type = ic->icmp_type; |
| break; |
| default : |
| ATOMIC_INCL(ipf_state_stats.iss_icmp6_notquery); |
| return -2; |
| } |
| break; |
| #endif |
| case IPPROTO_ICMP : |
| ic = fin->fin_dp; |
| |
| switch (ic->icmp_type) |
| { |
| case ICMP_ECHO : |
| case ICMP_TSTAMP : |
| case ICMP_IREQ : |
| case ICMP_MASKREQ : |
| is->is_icmp.ici_type = ic->icmp_type; |
| hv += (is->is_icmp.ici_id = ic->icmp_id); |
| break; |
| default : |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_notquery); |
| return -3; |
| } |
| break; |
| |
| #if 0 |
| case IPPROTO_GRE : |
| gre = fin->fin_dp; |
| |
| is->is_gre.gs_flags = gre->gr_flags; |
| is->is_gre.gs_ptype = gre->gr_ptype; |
| if (GRE_REV(is->is_gre.gs_flags) == 1) { |
| is->is_call[0] = fin->fin_data[0]; |
| is->is_call[1] = fin->fin_data[1]; |
| } |
| break; |
| #endif |
| if ((fin->fin_v == 4) && |
| (fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) { |
| if (fin->fin_out == 0) { |
| flags |= SI_W_DADDR|SI_CLONE; |
| hv -= is->is_daddr; |
| } else { |
| flags |= SI_W_SADDR|SI_CLONE; |
| hv -= is->is_saddr; |
| } |
| } |
| |
| case IPPROTO_TCP : |
| tcp = fin->fin_dp; |
| |
| if (tcp->th_flags & TH_RST) { |
| ATOMIC_INCL(ipf_state_stats.iss_tcp_rstadd); |
| return -4; |
| } |
| |
| /* TRACE is, flags, hv */ |
| |
| /* |
| * The endian of the ports doesn't matter, but the ack and |
| * sequence numbers do as we do mathematics on them later. |
| */ |
| is->is_sport = htons(fin->fin_data[0]); |
| is->is_dport = htons(fin->fin_data[1]); |
| if ((flags & (SI_W_DPORT|SI_W_SPORT)) == 0) { |
| hv += is->is_sport; |
| hv += is->is_dport; |
| } |
| |
| /* TRACE is, flags, hv */ |
| |
| /* |
| * If this is a real packet then initialise fields in the |
| * state information structure from the TCP header information. |
| */ |
| |
| is->is_maxdwin = 1; |
| is->is_maxswin = ntohs(tcp->th_win); |
| if (is->is_maxswin == 0) |
| is->is_maxswin = 1; |
| |
| if ((fin->fin_flx & FI_IGNORE) == 0) { |
| is->is_send = ntohl(tcp->th_seq) + fin->fin_dlen - |
| (TCP_OFF(tcp) << 2) + |
| ((tcp->th_flags & TH_SYN) ? 1 : 0) + |
| ((tcp->th_flags & TH_FIN) ? 1 : 0); |
| is->is_maxsend = is->is_send; |
| |
| /* |
| * Window scale option is only present in |
| * SYN/SYN-ACK packet. |
| */ |
| if ((tcp->th_flags & ~(TH_FIN|TH_ACK|TH_ECNALL)) == |
| TH_SYN && |
| (TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) { |
| if (ipf_tcpoptions(fin, tcp, |
| &is->is_tcp.ts_data[0]) == -1) { |
| fin->fin_flx |= FI_BAD; |
| } |
| } |
| |
| if ((fin->fin_out != 0) && (pass & FR_NEWISN) != 0) { |
| ipf_checknewisn(fin, is); |
| ipf_fixoutisn(fin, is); |
| } |
| |
| if ((tcp->th_flags & TH_OPENING) == TH_SYN) |
| flags |= IS_TCPFSM; |
| else { |
| is->is_maxdwin = is->is_maxswin * 2; |
| is->is_dend = ntohl(tcp->th_ack); |
| is->is_maxdend = ntohl(tcp->th_ack); |
| is->is_maxdwin *= 2; |
| } |
| } |
| |
| /* |
| * If we're creating state for a starting connection, start |
| * the timer on it as we'll never see an error if it fails |
| * to connect. |
| */ |
| break; |
| |
| case IPPROTO_UDP : |
| tcp = fin->fin_dp; |
| |
| is->is_sport = htons(fin->fin_data[0]); |
| is->is_dport = htons(fin->fin_data[1]); |
| if ((flags & (SI_W_DPORT|SI_W_SPORT)) == 0) { |
| hv += tcp->th_dport; |
| hv += tcp->th_sport; |
| } |
| break; |
| |
| default : |
| break; |
| } |
| hv = DOUBLE_HASH(hv); |
| is->is_hv = hv; |
| is->is_rule = fr; |
| is->is_flags = flags & IS_INHERITED; |
| |
| /* |
| * Look for identical state. |
| */ |
| for (is = ipf_state_table[is->is_hv % ipf_state_size]; is != NULL; |
| is = is->is_hnext) { |
| if (ipf_state_match(&ips, is) == 1) |
| break; |
| } |
| if (is != NULL) { |
| ATOMIC_INCL(ipf_state_stats.iss_add_dup); |
| return 3; |
| } |
| |
| if (ipf_state_stats.iss_bucketlen[hv] >= ipf_state_maxbucket) { |
| ATOMIC_INCL(ipf_state_stats.iss_bucket_full); |
| return 4; |
| } |
| KMALLOC(is, ipstate_t *); |
| if (is == NULL) { |
| ATOMIC_INCL(ipf_state_stats.iss_nomem); |
| return 5; |
| } |
| bcopy((char *)&ips, (char *)is, sizeof(*is)); |
| /* |
| * Do not do the modulous here, it is done in ipf_state_insert(). |
| */ |
| if (fr != NULL) { |
| ipftq_t *tq; |
| |
| (void) strncpy(is->is_group, fr->fr_group, FR_GROUPLEN); |
| if (fr->fr_age[0] != 0) { |
| tq = ipf_addtimeoutqueue(&ipf_state_usertq, |
| fr->fr_age[0]); |
| is->is_tqehead[0] = tq; |
| is->is_sti.tqe_flags |= TQE_RULEBASED; |
| } |
| if (fr->fr_age[1] != 0) { |
| tq = ipf_addtimeoutqueue(&ipf_state_usertq, |
| fr->fr_age[1]); |
| is->is_tqehead[1] = tq; |
| is->is_sti.tqe_flags |= TQE_RULEBASED; |
| } |
| |
| is->is_tag = fr->fr_logtag; |
| |
| /* |
| * The name '-' is special for network interfaces and causes |
| * a NULL name to be present, always, allowing packets to |
| * match it, regardless of their interface. |
| */ |
| if ((fin->fin_ifp == NULL) || |
| (fr->fr_ifnames[out << 1][0] == '-' && |
| fr->fr_ifnames[out << 1][1] == '\0')) { |
| is->is_ifp[out << 1] = fr->fr_ifas[0]; |
| strncpy(is->is_ifname[out << 1], fr->fr_ifnames[0], |
| sizeof(fr->fr_ifnames[0])); |
| } else { |
| is->is_ifp[out << 1] = fin->fin_ifp; |
| COPYIFNAME(fin->fin_ifp, is->is_ifname[out << 1]); |
| } |
| |
| is->is_ifp[(out << 1) + 1] = fr->fr_ifas[1]; |
| strncpy(is->is_ifname[(out << 1) + 1], fr->fr_ifnames[1], |
| sizeof(fr->fr_ifnames[1])); |
| |
| is->is_ifp[(1 - out) << 1] = fr->fr_ifas[2]; |
| strncpy(is->is_ifname[((1 - out) << 1)], fr->fr_ifnames[2], |
| sizeof(fr->fr_ifnames[2])); |
| |
| is->is_ifp[((1 - out) << 1) + 1] = fr->fr_ifas[3]; |
| strncpy(is->is_ifname[((1 - out) << 1) + 1], fr->fr_ifnames[3], |
| sizeof(fr->fr_ifnames[3])); |
| } else { |
| if (fin->fin_ifp != NULL) { |
| is->is_ifp[out << 1] = fin->fin_ifp; |
| COPYIFNAME(fin->fin_ifp, is->is_ifname[out << 1]); |
| } |
| } |
| |
| /* |
| * It may seem strange to set is_ref to 2, but ipf_check() will call |
| * ipf_state_deref() after calling ipf_state_add() and the idea is to |
| * have it exist at the end of ipf_check() with is_ref == 1. |
| */ |
| is->is_ref = 2; |
| is->is_pkts[0] = 0, is->is_bytes[0] = 0; |
| is->is_pkts[1] = 0, is->is_bytes[1] = 0; |
| is->is_pkts[2] = 0, is->is_bytes[2] = 0; |
| is->is_pkts[3] = 0, is->is_bytes[3] = 0; |
| if ((fin->fin_flx & FI_IGNORE) == 0) { |
| is->is_pkts[out] = 1; |
| is->is_bytes[out] = fin->fin_plen; |
| is->is_flx[out][0] = fin->fin_flx & FI_CMP; |
| is->is_flx[out][0] &= ~FI_OOW; |
| } |
| |
| if (pass & FR_STSTRICT) |
| is->is_flags |= IS_STRICT; |
| |
| if (pass & FR_STATESYNC) |
| is->is_flags |= IS_STATESYNC; |
| |
| if (flags & (SI_WILDP|SI_WILDA)) { |
| ATOMIC_INCL(ipf_state_stats.iss_wild); |
| } |
| is->is_rulen = fin->fin_rule; |
| |
| |
| if (pass & FR_LOGFIRST) |
| is->is_pass &= ~(FR_LOGFIRST|FR_LOG); |
| |
| READ_ENTER(&ipf_state); |
| |
| ipf_state_insert(is, fin->fin_rev); |
| |
| if (fin->fin_p == IPPROTO_TCP) { |
| /* |
| * If we're creating state for a starting connection, start the |
| * timer on it as we'll never see an error if it fails to |
| * connect. |
| */ |
| (void) ipf_tcp_age(&is->is_sti, fin, ipf_state_tcptq, |
| is->is_flags, 2); |
| MUTEX_EXIT(&is->is_lock); |
| #ifdef IPFILTER_SCAN |
| if ((is->is_flags & SI_CLONE) == 0) |
| (void) ipf_scan_attachis(is); |
| #endif |
| } else { |
| MUTEX_EXIT(&is->is_lock); |
| } |
| #ifdef IPFILTER_SYNC |
| if ((is->is_flags & IS_STATESYNC) && ((is->is_flags & SI_CLONE) == 0)) |
| is->is_sync = ipf_sync_new(SMC_STATE, fin, is); |
| #endif |
| if (ipf_state_logging) |
| ipf_state_log(is, ISL_NEW); |
| |
| RWLOCK_EXIT(&ipf_state); |
| *stsave = is; |
| fin->fin_state = is; |
| fin->fin_rev = IP6_NEQ(&is->is_dst, &fin->fin_daddr); |
| fin->fin_flx |= FI_STATE; |
| if (fin->fin_flx & FI_FRAG) |
| (void) ipf_frag_new(fin, pass); |
| fdp = &fr->fr_tifs[0]; |
| if (fdp->fd_type == FRD_POOL) |
| fdp->fd_ptr = ipf_lookup_res_name(IPLT_DSTLIST, IPL_LOGIPF, |
| fdp->fd_name, NULL); |
| fdp = &fr->fr_tifs[1]; |
| if (fdp->fd_type == FRD_POOL) |
| fdp->fd_ptr = ipf_lookup_res_name(IPLT_DSTLIST, IPL_LOGIPF, |
| fdp->fd_name, NULL); |
| fdp = &fr->fr_dif; |
| if (fdp->fd_type == FRD_POOL) |
| fdp->fd_ptr = ipf_lookup_res_name(IPLT_DSTLIST, IPL_LOGIPF, |
| fdp->fd_name, NULL); |
| |
| ATOMIC_INCL(ipf_state_stats.iss_proto[is->is_p]); |
| ATOMIC_INC(ipf_state_stats.iss_active_proto[is->is_p]); |
| |
| return 0; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_tcpoptions */ |
| /* Returns: int - 1 == packet matches state entry, 0 == it does not, */ |
| /* -1 == packet has bad TCP options data */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* tcp(I) - pointer to TCP packet header */ |
| /* td(I) - pointer to TCP data held as part of the state */ |
| /* */ |
| /* Look after the TCP header for any options and deal with those that are */ |
| /* present. Record details about those that we recogise. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_tcpoptions(fin, tcp, td) |
| fr_info_t *fin; |
| tcphdr_t *tcp; |
| tcpdata_t *td; |
| { |
| int off, mlen, ol, i, len, retval; |
| char buf[64], *s, opt; |
| mb_t *m = NULL; |
| |
| len = (TCP_OFF(tcp) << 2); |
| if (fin->fin_dlen < len) { |
| ATOMIC_INCL(ipf_state_stats.iss_tcp_toosmall); |
| return 0; |
| } |
| len -= sizeof(*tcp); |
| |
| off = fin->fin_plen - fin->fin_dlen + sizeof(*tcp) + fin->fin_ipoff; |
| |
| m = fin->fin_m; |
| mlen = MSGDSIZE(m) - off; |
| if (len > mlen) { |
| len = mlen; |
| retval = 0; |
| } else { |
| retval = 1; |
| } |
| |
| COPYDATA(m, off, len, buf); |
| |
| for (s = buf; len > 0; ) { |
| opt = *s; |
| if (opt == TCPOPT_EOL) |
| break; |
| else if (opt == TCPOPT_NOP) |
| ol = 1; |
| else { |
| if (len < 2) |
| break; |
| ol = (int)*(s + 1); |
| if (ol < 2 || ol > len) |
| break; |
| |
| /* |
| * Extract the TCP options we are interested in out of |
| * the header and store them in the the tcpdata struct. |
| */ |
| switch (opt) |
| { |
| case TCPOPT_WINDOW : |
| if (ol == TCPOLEN_WINDOW) { |
| i = (int)*(s + 2); |
| if (i > TCP_WSCALE_MAX) |
| i = TCP_WSCALE_MAX; |
| else if (i < 0) |
| i = 0; |
| td->td_winscale = i; |
| td->td_winflags |= TCP_WSCALE_SEEN| |
| TCP_WSCALE_FIRST; |
| } else |
| retval = -1; |
| break; |
| case TCPOPT_MAXSEG : |
| /* |
| * So, if we wanted to set the TCP MAXSEG, |
| * it should be done here... |
| */ |
| if (ol == TCPOLEN_MAXSEG) { |
| i = (int)*(s + 2); |
| i <<= 8; |
| i += (int)*(s + 3); |
| td->td_maxseg = i; |
| } else |
| retval = -1; |
| break; |
| case TCPOPT_SACK_PERMITTED : |
| if (ol == TCPOLEN_SACK_PERMITTED) |
| td->td_winflags |= TCP_SACK_PERMIT; |
| else |
| retval = -1; |
| break; |
| } |
| } |
| len -= ol; |
| s += ol; |
| } |
| if (retval == -1) { |
| ATOMIC_INCL(ipf_state_stats.iss_tcp_badopt); |
| } |
| return retval; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_tcp */ |
| /* Returns: int - 1 == packet matches state entry, 0 == it does not */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* tcp(I) - pointer to TCP packet header */ |
| /* is(I) - pointer to master state structure */ |
| /* */ |
| /* Check to see if a packet with TCP headers fits within the TCP window. */ |
| /* Change timeout depending on whether new packet is a SYN-ACK returning */ |
| /* for a SYN or a RST or FIN which indicate time to close up shop. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_tcp(fin, tcp, is) |
| fr_info_t *fin; |
| tcphdr_t *tcp; |
| ipstate_t *is; |
| { |
| tcpdata_t *fdata, *tdata; |
| int source, ret, flags; |
| |
| source = !fin->fin_rev; |
| if (((is->is_flags & IS_TCPFSM) != 0) && (source == 1) && |
| (ntohs(is->is_sport) != fin->fin_data[0])) |
| source = 0; |
| fdata = &is->is_tcp.ts_data[!source]; |
| tdata = &is->is_tcp.ts_data[source]; |
| |
| MUTEX_ENTER(&is->is_lock); |
| |
| /* |
| * If a SYN packet is received for a connection that is on the way out |
| * but hasn't yet departed then advance this session along the way. |
| */ |
| if ((tcp->th_flags & TH_OPENING) == TH_SYN) { |
| if ((is->is_state[0] > IPF_TCPS_ESTABLISHED) && |
| (is->is_state[1] > IPF_TCPS_ESTABLISHED)) { |
| is->is_state[!source] = IPF_TCPS_CLOSED; |
| ipf_movequeue(&is->is_sti, is->is_sti.tqe_ifq, |
| &ipf_state_deletetq); |
| MUTEX_EXIT(&is->is_lock); |
| ATOMIC_INCL(ipf_state_stats.iss_tcp_closing); |
| return 0; |
| } |
| } |
| |
| ret = ipf_tcpinwindow(fin, fdata, tdata, tcp, is->is_flags); |
| if (ret > 0) { |
| #ifdef IPFILTER_SCAN |
| if (is->is_flags & (IS_SC_CLIENT|IS_SC_SERVER)) { |
| ipf_scan_packet(fin, is); |
| if (FR_ISBLOCK(is->is_pass)) { |
| MUTEX_EXIT(&is->is_lock); |
| ATOMIC_INCL(ipf_state_stats.iss_scan_block); |
| return 1; |
| } |
| } |
| #endif |
| |
| /* |
| * Nearing end of connection, start timeout. |
| */ |
| ret = ipf_tcp_age(&is->is_sti, fin, ipf_state_tcptq, |
| is->is_flags, ret); |
| if (ret == 0) { |
| MUTEX_EXIT(&is->is_lock); |
| ATOMIC_INCL(ipf_state_stats.iss_tcp_fsm); |
| return 0; |
| } |
| |
| if (ipf_state_logging > 4) |
| ipf_state_log(is, ISL_STATECHANGE); |
| |
| /* |
| * set s0's as appropriate. Use syn-ack packet as it |
| * contains both pieces of required information. |
| */ |
| /* |
| * Window scale option is only present in SYN/SYN-ACK packet. |
| * Compare with ~TH_FIN to mask out T/TCP setups. |
| */ |
| flags = tcp->th_flags & ~(TH_FIN|TH_ECNALL); |
| if (flags == (TH_SYN|TH_ACK)) { |
| is->is_s0[source] = ntohl(tcp->th_ack); |
| is->is_s0[!source] = ntohl(tcp->th_seq) + 1; |
| if ((TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) { |
| if (ipf_tcpoptions(fin, tcp, fdata) == -1) |
| fin->fin_flx |= FI_BAD; |
| } |
| if ((fin->fin_out != 0) && (is->is_pass & FR_NEWISN)) |
| ipf_checknewisn(fin, is); |
| } else if (flags == TH_SYN) { |
| is->is_s0[source] = ntohl(tcp->th_seq) + 1; |
| if ((TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) { |
| if (ipf_tcpoptions(fin, tcp, fdata) == -1) |
| fin->fin_flx |= FI_BAD; |
| } |
| |
| if ((fin->fin_out != 0) && (is->is_pass & FR_NEWISN)) |
| ipf_checknewisn(fin, is); |
| |
| } |
| ret = 1; |
| } else { |
| ATOMIC_INCL(ipf_state_stats.iss_tcp_oow); |
| fin->fin_flx |= FI_OOW; |
| ret = 0; |
| } |
| MUTEX_EXIT(&is->is_lock); |
| return ret; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_checknewisn */ |
| /* Returns: Nil */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* is(I) - pointer to master state structure */ |
| /* */ |
| /* Check to see if this TCP connection is expecting and needs a new */ |
| /* sequence number for a particular direction of the connection. */ |
| /* */ |
| /* NOTE: This does not actually change the sequence numbers, only gets new */ |
| /* one ready. */ |
| /* ------------------------------------------------------------------------ */ |
| static void |
| ipf_checknewisn(fin, is) |
| fr_info_t *fin; |
| ipstate_t *is; |
| { |
| u_32_t sumd, old, new; |
| tcphdr_t *tcp; |
| int i; |
| |
| i = fin->fin_rev; |
| tcp = fin->fin_dp; |
| |
| if (((i == 0) && !(is->is_flags & IS_ISNSYN)) || |
| ((i == 1) && !(is->is_flags & IS_ISNACK))) { |
| old = ntohl(tcp->th_seq); |
| new = ipf_newisn(fin); |
| is->is_isninc[i] = new - old; |
| CALC_SUMD(old, new, sumd); |
| is->is_sumd[i] = (sumd & 0xffff) + (sumd >> 16); |
| |
| is->is_flags |= ((i == 0) ? IS_ISNSYN : IS_ISNACK); |
| } |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_tcpinwindow */ |
| /* Returns: int - 1 == packet inside TCP "window", 0 == not inside. */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* fdata(I) - pointer to tcp state informatio (forward) */ |
| /* tdata(I) - pointer to tcp state informatio (reverse) */ |
| /* tcp(I) - pointer to TCP packet header */ |
| /* */ |
| /* Given a packet has matched addresses and ports, check to see if it is */ |
| /* within the TCP data window. In a show of generosity, allow packets that */ |
| /* are within the window space behind the current sequence # as well. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_tcpinwindow(fin, fdata, tdata, tcp, flags) |
| fr_info_t *fin; |
| tcpdata_t *fdata, *tdata; |
| tcphdr_t *tcp; |
| int flags; |
| { |
| tcp_seq seq, ack, end; |
| int ackskew, tcpflags; |
| u_32_t win, maxwin; |
| int dsize, inseq; |
| |
| /* |
| * Find difference between last checked packet and this packet. |
| */ |
| tcpflags = tcp->th_flags; |
| seq = ntohl(tcp->th_seq); |
| ack = ntohl(tcp->th_ack); |
| if (tcpflags & TH_SYN) |
| win = ntohs(tcp->th_win); |
| else |
| win = ntohs(tcp->th_win) << fdata->td_winscale; |
| |
| /* |
| * A window of 0 produces undesirable behaviour from this function. |
| */ |
| if (win == 0) |
| win = 1; |
| |
| dsize = fin->fin_dlen - (TCP_OFF(tcp) << 2) + |
| ((tcpflags & TH_SYN) ? 1 : 0) + ((tcpflags & TH_FIN) ? 1 : 0); |
| |
| /* |
| * if window scaling is present, the scaling is only allowed |
| * for windows not in the first SYN packet. In that packet the |
| * window is 65535 to specify the largest window possible |
| * for receivers not implementing the window scale option. |
| * Currently, we do not assume TTCP here. That means that |
| * if we see a second packet from a host (after the initial |
| * SYN), we can assume that the receiver of the SYN did |
| * already send back the SYN/ACK (and thus that we know if |
| * the receiver also does window scaling) |
| */ |
| if (!(tcpflags & TH_SYN) && (fdata->td_winflags & TCP_WSCALE_FIRST)) { |
| fdata->td_winflags &= ~TCP_WSCALE_FIRST; |
| fdata->td_maxwin = win; |
| } |
| |
| end = seq + dsize; |
| |
| if ((fdata->td_end == 0) && |
| (!(flags & IS_TCPFSM) || |
| ((tcpflags & TH_OPENING) == TH_OPENING))) { |
| /* |
| * Must be a (outgoing) SYN-ACK in reply to a SYN. |
| */ |
| fdata->td_end = end - 1; |
| fdata->td_maxwin = 1; |
| fdata->td_maxend = end + win; |
| } |
| |
| if (!(tcpflags & TH_ACK)) { /* Pretend an ack was sent */ |
| ack = tdata->td_end; |
| } else if (((tcpflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) && |
| (ack == 0)) { |
| /* gross hack to get around certain broken tcp stacks */ |
| ack = tdata->td_end; |
| } |
| |
| maxwin = tdata->td_maxwin; |
| ackskew = tdata->td_end - ack; |
| |
| /* |
| * Strict sequencing only allows in-order delivery. |
| */ |
| if ((flags & IS_STRICT) != 0) { |
| if (seq != fdata->td_end) { |
| ATOMIC_INCL(ipf_state_stats.iss_tcp_strict); |
| return 0; |
| } |
| } |
| |
| #define SEQ_GE(a,b) ((int)((a) - (b)) >= 0) |
| #define SEQ_GT(a,b) ((int)((a) - (b)) > 0) |
| inseq = 0; |
| if ((SEQ_GE(fdata->td_maxend, end)) && |
| (SEQ_GE(seq, fdata->td_end - maxwin)) && |
| /* XXX what about big packets */ |
| #define MAXACKWINDOW 66000 |
| (-ackskew <= (MAXACKWINDOW)) && |
| ( ackskew <= (MAXACKWINDOW << fdata->td_winscale))) { |
| inseq = 1; |
| /* |
| * Microsoft Windows will send the next packet to the right of the |
| * window if SACK is in use. |
| */ |
| } else if ((seq == fdata->td_maxend) && (ackskew == 0) && |
| (fdata->td_winflags & TCP_SACK_PERMIT) && |
| (tdata->td_winflags & TCP_SACK_PERMIT)) { |
| ATOMIC_INCL(ipf_state_stats.iss_winsack); |
| inseq = 1; |
| /* |
| * Sometimes a TCP RST will be generated with only the ACK field |
| * set to non-zero. |
| */ |
| } else if ((seq == 0) && (tcpflags == (TH_RST|TH_ACK)) && |
| (ackskew >= -1) && (ackskew <= 1)) { |
| inseq = 1; |
| } else if (!(flags & IS_TCPFSM)) { |
| int i; |
| |
| i = (fin->fin_rev << 1) + fin->fin_out; |
| |
| #if 0 |
| if (is_pkts[i]0 == 0) { |
| /* |
| * Picking up a connection in the middle, the "next" |
| * packet seen from a direction that is new should be |
| * accepted, even if it appears out of sequence. |
| */ |
| inseq = 1; |
| } else |
| #endif |
| if (!(fdata->td_winflags & |
| (TCP_WSCALE_SEEN|TCP_WSCALE_FIRST))) { |
| /* |
| * No TCPFSM and no window scaling, so make some |
| * extra guesses. |
| */ |
| if ((seq == fdata->td_maxend) && (ackskew == 0)) |
| inseq = 1; |
| else if (SEQ_GE(seq + maxwin, fdata->td_end - maxwin)) |
| inseq = 1; |
| } |
| } |
| |
| /* TRACE(inseq, fdata, tdata, seq, end, ack, ackskew, win, maxwin) */ |
| |
| if (inseq) { |
| /* if ackskew < 0 then this should be due to fragmented |
| * packets. There is no way to know the length of the |
| * total packet in advance. |
| * We do know the total length from the fragment cache though. |
| * Note however that there might be more sessions with |
| * exactly the same source and destination parameters in the |
| * state cache (and source and destination is the only stuff |
| * that is saved in the fragment cache). Note further that |
| * some TCP connections in the state cache are hashed with |
| * sport and dport as well which makes it not worthwhile to |
| * look for them. |
| * Thus, when ackskew is negative but still seems to belong |
| * to this session, we bump up the destinations end value. |
| */ |
| if (ackskew < 0) |
| tdata->td_end = ack; |
| |
| /* update max window seen */ |
| if (fdata->td_maxwin < win) |
| fdata->td_maxwin = win; |
| if (SEQ_GT(end, fdata->td_end)) |
| fdata->td_end = end; |
| if (SEQ_GE(ack + win, tdata->td_maxend)) |
| tdata->td_maxend = ack + win; |
| return 1; |
| } |
| ATOMIC_INCL(ipf_state_stats.iss_oow); |
| fin->fin_flx |= FI_OOW; |
| return 0; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_clone */ |
| /* Returns: ipstate_t* - NULL == cloning failed, */ |
| /* else pointer to new state structure */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* tcp(I) - pointer to TCP/UDP header */ |
| /* is(I) - pointer to master state structure */ |
| /* */ |
| /* Create a "duplcate" state table entry from the master. */ |
| /* ------------------------------------------------------------------------ */ |
| static ipstate_t * |
| ipf_state_clone(fin, tcp, is) |
| fr_info_t *fin; |
| tcphdr_t *tcp; |
| ipstate_t *is; |
| { |
| ipstate_t *clone; |
| u_32_t send; |
| |
| if (ipf_state_stats.iss_active == ipf_state_max) { |
| ATOMIC_INCL(ipf_state_stats.iss_max); |
| ipf_state_doflush = 1; |
| return NULL; |
| } |
| KMALLOC(clone, ipstate_t *); |
| if (clone == NULL) { |
| ATOMIC_INCL(ipf_state_stats.iss_clone_nomem); |
| return NULL; |
| } |
| bcopy((char *)is, (char *)clone, sizeof(*clone)); |
| |
| MUTEX_NUKE(&clone->is_lock); |
| |
| clone->is_die = ONE_DAY + ipf_ticks; |
| clone->is_state[0] = 0; |
| clone->is_state[1] = 0; |
| send = ntohl(tcp->th_seq) + fin->fin_dlen - (TCP_OFF(tcp) << 2) + |
| ((tcp->th_flags & TH_SYN) ? 1 : 0) + |
| ((tcp->th_flags & TH_FIN) ? 1 : 0); |
| |
| if (fin->fin_rev == 1) { |
| clone->is_dend = send; |
| clone->is_maxdend = send; |
| clone->is_send = 0; |
| clone->is_maxswin = 1; |
| clone->is_maxdwin = ntohs(tcp->th_win); |
| if (clone->is_maxdwin == 0) |
| clone->is_maxdwin = 1; |
| } else { |
| clone->is_send = send; |
| clone->is_maxsend = send; |
| clone->is_dend = 0; |
| clone->is_maxdwin = 1; |
| clone->is_maxswin = ntohs(tcp->th_win); |
| if (clone->is_maxswin == 0) |
| clone->is_maxswin = 1; |
| } |
| |
| clone->is_flags &= ~SI_CLONE; |
| clone->is_flags |= SI_CLONED; |
| ipf_state_insert(clone, fin->fin_rev); |
| clone->is_ref = 2; |
| if (clone->is_p == IPPROTO_TCP) { |
| (void) ipf_tcp_age(&clone->is_sti, fin, ipf_state_tcptq, |
| clone->is_flags, 2); |
| } |
| MUTEX_EXIT(&clone->is_lock); |
| #ifdef IPFILTER_SCAN |
| (void) ipf_scan_attachis(is); |
| #endif |
| #ifdef IPFILTER_SYNC |
| if (is->is_flags & IS_STATESYNC) |
| clone->is_sync = ipf_sync_new(SMC_STATE, fin, clone); |
| #endif |
| ATOMIC_INCL(ipf_state_stats.iss_cloned); |
| return clone; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_matchsrcdst */ |
| /* Returns: Nil */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* is(I) - pointer to state structure */ |
| /* src(I) - pointer to source address */ |
| /* dst(I) - pointer to destination address */ |
| /* tcp(I) - pointer to TCP/UDP header */ |
| /* */ |
| /* Match a state table entry against an IP packet. The logic below is that */ |
| /* ret gets set to one if the match succeeds, else remains 0. If it is */ |
| /* still 0 after the test. no match. */ |
| /* ------------------------------------------------------------------------ */ |
| static ipstate_t * |
| ipf_matchsrcdst(fin, is, src, dst, tcp, cmask) |
| fr_info_t *fin; |
| ipstate_t *is; |
| i6addr_t *src, *dst; |
| tcphdr_t *tcp; |
| u_32_t cmask; |
| { |
| int ret = 0, rev, out, flags, flx = 0, idx; |
| u_short sp, dp; |
| u_32_t cflx; |
| void *ifp; |
| |
| rev = IP6_NEQ(&is->is_dst, dst); |
| ifp = fin->fin_ifp; |
| out = fin->fin_out; |
| flags = is->is_flags; |
| sp = 0; |
| dp = 0; |
| |
| if (tcp != NULL) { |
| sp = htons(fin->fin_sport); |
| dp = ntohs(fin->fin_dport); |
| } |
| if (!rev) { |
| if (tcp != NULL) { |
| if (!(flags & SI_W_SPORT) && (sp != is->is_sport)) |
| rev = 1; |
| else if (!(flags & SI_W_DPORT) && (dp != is->is_dport)) |
| rev = 1; |
| } |
| } |
| |
| idx = (out << 1) + rev; |
| |
| /* |
| * If the interface for this 'direction' is set, make sure it matches. |
| * An interface name that is not set matches any, as does a name of *. |
| */ |
| if ((is->is_ifp[idx] == ifp) || (is->is_ifp[idx] == NULL && |
| (*is->is_ifname[idx] == '\0' || *is->is_ifname[idx] == '-' || |
| *is->is_ifname[idx] == '*'))) |
| ret = 1; |
| |
| if (ret == 0) { |
| ATOMIC_INCL(ipf_state_stats.iss_lookup_badifp); |
| /* TRACE is, out, rev, idx */ |
| return NULL; |
| } |
| ret = 0; |
| |
| /* |
| * Match addresses and ports. |
| */ |
| if (rev == 0) { |
| if ((IP6_EQ(&is->is_dst, dst) || (flags & SI_W_DADDR)) && |
| (IP6_EQ(&is->is_src, src) || (flags & SI_W_SADDR))) { |
| if (tcp) { |
| if ((sp == is->is_sport || flags & SI_W_SPORT)&& |
| (dp == is->is_dport || flags & SI_W_DPORT)) |
| ret = 1; |
| } else { |
| ret = 1; |
| } |
| } |
| } else { |
| if ((IP6_EQ(&is->is_dst, src) || (flags & SI_W_DADDR)) && |
| (IP6_EQ(&is->is_src, dst) || (flags & SI_W_SADDR))) { |
| if (tcp) { |
| if ((dp == is->is_sport || flags & SI_W_SPORT)&& |
| (sp == is->is_dport || flags & SI_W_DPORT)) |
| ret = 1; |
| } else { |
| ret = 1; |
| } |
| } |
| } |
| |
| if (ret == 0) { |
| ATOMIC_INCL(ipf_state_stats.iss_lookup_badport); |
| /* TRACE rev, is, sp, dp, src, dst */ |
| return NULL; |
| } |
| |
| /* |
| * Whether or not this should be here, is questionable, but the aim |
| * is to get this out of the main line. |
| */ |
| if (tcp == NULL) |
| flags = is->is_flags & ~(SI_WILDP|SI_NEWFR|SI_CLONE|SI_CLONED); |
| |
| /* |
| * Only one of the source or destination address can be flaged as a |
| * wildcard. Fill in the missing address, if set. |
| * For IPv6, if the address being copied in is multicast, then |
| * don't reset the wild flag - multicast causes it to be set in the |
| * first place! |
| */ |
| if ((flags & (SI_W_SADDR|SI_W_DADDR))) { |
| fr_ip_t *fi = &fin->fin_fi; |
| |
| if ((flags & SI_W_SADDR) != 0) { |
| if (rev == 0) { |
| #ifdef USE_INET6 |
| if (is->is_v == 6 && |
| IN6_IS_ADDR_MULTICAST(&fi->fi_src.in6)) |
| /*EMPTY*/; |
| else |
| #endif |
| { |
| is->is_src = fi->fi_src; |
| is->is_flags &= ~SI_W_SADDR; |
| } |
| } else { |
| #ifdef USE_INET6 |
| if (is->is_v == 6 && |
| IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6)) |
| /*EMPTY*/; |
| else |
| #endif |
| { |
| is->is_src = fi->fi_dst; |
| is->is_flags &= ~SI_W_SADDR; |
| } |
| } |
| } else if ((flags & SI_W_DADDR) != 0) { |
| if (rev == 0) { |
| #ifdef USE_INET6 |
| if (is->is_v == 6 && |
| IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6)) |
| /*EMPTY*/; |
| else |
| #endif |
| { |
| is->is_dst = fi->fi_dst; |
| is->is_flags &= ~SI_W_DADDR; |
| } |
| } else { |
| #ifdef USE_INET6 |
| if (is->is_v == 6 && |
| IN6_IS_ADDR_MULTICAST(&fi->fi_src.in6)) |
| /*EMPTY*/; |
| else |
| #endif |
| { |
| is->is_dst = fi->fi_src; |
| is->is_flags &= ~SI_W_DADDR; |
| } |
| } |
| } |
| if ((is->is_flags & (SI_WILDA|SI_WILDP)) == 0) { |
| ATOMIC_DECL(ipf_state_stats.iss_wild); |
| } |
| } |
| |
| flx = fin->fin_flx & cmask; |
| cflx = is->is_flx[out][rev]; |
| |
| /* |
| * Match up any flags set from IP options. |
| */ |
| if ((cflx && (flx != (cflx & cmask))) || |
| ((fin->fin_optmsk & is->is_optmsk[rev]) != is->is_opt[rev]) || |
| ((fin->fin_secmsk & is->is_secmsk) != is->is_sec) || |
| ((fin->fin_auth & is->is_authmsk) != is->is_auth)) { |
| ATOMIC_INCL(ipf_state_stats.iss_miss_mask); |
| return NULL; |
| } |
| |
| if ((fin->fin_flx & FI_IGNORE) != 0) { |
| fin->fin_rev = rev; |
| return is; |
| } |
| |
| /* |
| * Only one of the source or destination port can be flagged as a |
| * wildcard. When filling it in, fill in a copy of the matched entry |
| * if it has the cloning flag set. |
| */ |
| if ((flags & (SI_W_SPORT|SI_W_DPORT))) { |
| if ((flags & SI_CLONE) != 0) { |
| ipstate_t *clone; |
| |
| clone = ipf_state_clone(fin, tcp, is); |
| if (clone == NULL) |
| return NULL; |
| is = clone; |
| } else { |
| ATOMIC_DECL(ipf_state_stats.iss_wild); |
| } |
| |
| if ((flags & SI_W_SPORT) != 0) { |
| if (rev == 0) { |
| is->is_sport = sp; |
| is->is_send = ntohl(tcp->th_seq); |
| } else { |
| is->is_sport = dp; |
| is->is_send = ntohl(tcp->th_ack); |
| } |
| is->is_maxsend = is->is_send + 1; |
| } else if ((flags & SI_W_DPORT) != 0) { |
| if (rev == 0) { |
| is->is_dport = dp; |
| is->is_dend = ntohl(tcp->th_ack); |
| } else { |
| is->is_dport = sp; |
| is->is_dend = ntohl(tcp->th_seq); |
| } |
| is->is_maxdend = is->is_dend + 1; |
| } |
| is->is_flags &= ~(SI_W_SPORT|SI_W_DPORT); |
| if ((flags & SI_CLONED) && ipf_state_logging) |
| ipf_state_log(is, ISL_CLONE); |
| } |
| |
| ret = -1; |
| |
| if (is->is_flx[out][rev] == 0) { |
| is->is_flx[out][rev] = flx; |
| is->is_opt[rev] = fin->fin_optmsk; |
| if (is->is_v == 6) |
| is->is_opt[rev] &= ~0x8; |
| } |
| |
| /* |
| * Check if the interface name for this "direction" is set and if not, |
| * fill it in. |
| */ |
| if (is->is_ifp[idx] == NULL && |
| (*is->is_ifname[idx] == '\0' || *is->is_ifname[idx] == '*')) { |
| is->is_ifp[idx] = ifp; |
| COPYIFNAME(ifp, is->is_ifname[idx]); |
| } |
| fin->fin_rev = rev; |
| return is; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_checkicmpmatchingstate */ |
| /* Returns: Nil */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* */ |
| /* If we've got an ICMP error message, using the information stored in the */ |
| /* ICMP packet, look for a matching state table entry. */ |
| /* */ |
| /* If we return NULL then no lock on ipf_state is held. */ |
| /* If we return non-null then a read-lock on ipf_state is held. */ |
| /* ------------------------------------------------------------------------ */ |
| static ipstate_t * |
| ipf_checkicmpmatchingstate(fin) |
| fr_info_t *fin; |
| { |
| ipstate_t *is, **isp; |
| u_short sport, dport; |
| i6addr_t dst, src; |
| struct icmp *ic; |
| u_short savelen; |
| icmphdr_t *icmp; |
| fr_info_t ofin; |
| tcphdr_t *tcp; |
| int type, len; |
| u_char pr; |
| ip_t *oip; |
| u_int hv; |
| |
| /* |
| * Does it at least have the return (basic) IP header ? |
| * Is it an actual recognised ICMP error type? |
| * Only a basic IP header (no options) should be with |
| * an ICMP error header. |
| */ |
| if ((fin->fin_v != 4) || (fin->fin_hlen != sizeof(ip_t)) || |
| (fin->fin_plen < ICMPERR_MINPKTLEN) || |
| !(fin->fin_flx & FI_ICMPERR)) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_bad); |
| return NULL; |
| } |
| ic = fin->fin_dp; |
| type = ic->icmp_type; |
| |
| oip = (ip_t *)((char *)ic + ICMPERR_ICMPHLEN); |
| /* |
| * Check if the at least the old IP header (with options) and |
| * 8 bytes of payload is present. |
| */ |
| if (fin->fin_plen < ICMPERR_MAXPKTLEN + ((IP_HL(oip) - 5) << 2)) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_short); |
| return NULL; |
| } |
| |
| /* |
| * Sanity Checks. |
| */ |
| len = fin->fin_dlen - ICMPERR_ICMPHLEN; |
| if ((len <= 0) || ((IP_HL(oip) << 2) > len)) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_short); |
| return NULL; |
| } |
| |
| /* |
| * Is the buffer big enough for all of it ? It's the size of the IP |
| * header claimed in the encapsulated part which is of concern. It |
| * may be too big to be in this buffer but not so big that it's |
| * outside the ICMP packet, leading to TCP deref's causing problems. |
| * This is possible because we don't know how big oip_hl is when we |
| * do the pullup early in ipf_check() and thus can't guarantee it is |
| * all here now. |
| */ |
| #ifdef _KERNEL |
| { |
| mb_t *m; |
| |
| m = fin->fin_m; |
| # if defined(MENTAT) |
| if ((char *)oip + len > (char *)m->b_wptr) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_short); |
| return NULL; |
| } |
| # else |
| if ((char *)oip + len > (char *)fin->fin_ip + m->m_len) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_short); |
| return NULL; |
| } |
| # endif |
| } |
| #endif |
| |
| bcopy((char *)fin, (char *)&ofin, sizeof(*fin)); |
| |
| /* |
| * in the IPv4 case we must zero the i6addr union otherwise |
| * the IP6_EQ and IP6_NEQ macros produce the wrong results because |
| * of the 'junk' in the unused part of the union |
| */ |
| bzero((char *)&src, sizeof(src)); |
| bzero((char *)&dst, sizeof(dst)); |
| |
| /* |
| * we make an fin entry to be able to feed it to |
| * matchsrcdst note that not all fields are encessary |
| * but this is the cleanest way. Note further we fill |
| * in fin_mp such that if someone uses it we'll get |
| * a kernel panic. ipf_matchsrcdst does not use this. |
| * |
| * watch out here, as ip is in host order and oip in network |
| * order. Any change we make must be undone afterwards, like |
| * oip->ip_len. |
| */ |
| savelen = oip->ip_len; |
| oip->ip_len = htons(len); |
| |
| ofin.fin_flx = FI_NOCKSUM; |
| ofin.fin_v = 4; |
| ofin.fin_ip = oip; |
| ofin.fin_m = NULL; /* if dereferenced, panic XXX */ |
| ofin.fin_mp = NULL; /* if dereferenced, panic XXX */ |
| (void) ipf_makefrip(IP_HL(oip) << 2, oip, &ofin); |
| ofin.fin_ifp = fin->fin_ifp; |
| ofin.fin_out = !fin->fin_out; |
| |
| hv = (pr = oip->ip_p); |
| src.in4 = oip->ip_src; |
| hv += src.in4.s_addr; |
| dst.in4 = oip->ip_dst; |
| hv += dst.in4.s_addr; |
| |
| /* |
| * Reset the short and bad flag here because in ipf_matchsrcdst() |
| * the flags for the current packet (fin_flx) are compared against |
| * those for the existing session. |
| */ |
| ofin.fin_flx &= ~(FI_BAD|FI_SHORT); |
| |
| /* |
| * Put old values of ip_len back as we don't know |
| * if we have to forward the packet or process it again. |
| */ |
| oip->ip_len = savelen; |
| |
| switch (oip->ip_p) |
| { |
| case IPPROTO_ICMP : |
| /* |
| * an ICMP error can only be generated as a result of an |
| * ICMP query, not as the response on an ICMP error |
| * |
| * XXX theoretically ICMP_ECHOREP and the other reply's are |
| * ICMP query's as well, but adding them here seems strange XXX |
| */ |
| if ((ofin.fin_flx & FI_ICMPERR) != 0) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_icmperr); |
| return NULL; |
| } |
| |
| /* |
| * perform a lookup of the ICMP packet in the state table |
| */ |
| icmp = (icmphdr_t *)((char *)oip + (IP_HL(oip) << 2)); |
| hv += icmp->icmp_id; |
| hv = DOUBLE_HASH(hv); |
| |
| READ_ENTER(&ipf_state); |
| for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) { |
| isp = &is->is_hnext; |
| if ((is->is_p != pr) || (is->is_v != 4)) |
| continue; |
| if (is->is_pass & FR_NOICMPERR) |
| continue; |
| |
| is = ipf_matchsrcdst(&ofin, is, &src, &dst, |
| NULL, FI_ICMPCMP); |
| if ((is != NULL) && !ipf_allowstateicmp(fin, is, &src)) |
| return is; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_miss); |
| return NULL; |
| case IPPROTO_TCP : |
| case IPPROTO_UDP : |
| break; |
| default : |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_miss); |
| return NULL; |
| } |
| |
| tcp = (tcphdr_t *)((char *)oip + (IP_HL(oip) << 2)); |
| dport = tcp->th_dport; |
| sport = tcp->th_sport; |
| |
| hv += dport; |
| hv += sport; |
| hv = DOUBLE_HASH(hv); |
| |
| READ_ENTER(&ipf_state); |
| for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) { |
| isp = &is->is_hnext; |
| /* |
| * Only allow this icmp though if the |
| * encapsulated packet was allowed through the |
| * other way around. Note that the minimal amount |
| * of info present does not allow for checking against |
| * tcp internals such as seq and ack numbers. Only the |
| * ports are known to be present and can be even if the |
| * short flag is set. |
| */ |
| if ((is->is_p == pr) && (is->is_v == 4) && |
| (is = ipf_matchsrcdst(&ofin, is, &src, &dst, |
| tcp, FI_ICMPCMP))) { |
| if (ipf_allowstateicmp(fin, is, &src) == 0) |
| return is; |
| } |
| } |
| RWLOCK_EXIT(&ipf_state); |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_miss); |
| return NULL; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_allowstateicmp */ |
| /* Returns: int - 1 = packet denied, 0 = packet allowed */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* is(I) - pointer to state table entry */ |
| /* */ |
| /* For an ICMP packet that has so far matched a state table entry, check if */ |
| /* there are any further refinements that might mean we want to block this */ |
| /* packet. This code isn't specific to either IPv4 or IPv6. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_allowstateicmp(fin, is, src) |
| fr_info_t *fin; |
| ipstate_t *is; |
| i6addr_t *src; |
| { |
| frentry_t *savefr; |
| frentry_t *fr; |
| u_32_t ipass; |
| int backward; |
| int oi; |
| int i; |
| |
| fr = is->is_rule; |
| if (fr != NULL && fr->fr_icmpgrp != NULL) { |
| savefr = fin->fin_fr; |
| fin->fin_fr = *fr->fr_icmpgrp; |
| |
| ipass = ipf_scanlist(fin, ipf_pass); |
| fin->fin_fr = savefr; |
| if (FR_ISBLOCK(ipass)) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_headblock); |
| return 1; |
| } |
| } |
| |
| /* |
| * i : the index of this packet (the icmp unreachable) |
| * oi : the index of the original packet found in the |
| * icmp header (i.e. the packet causing this icmp) |
| * backward : original packet was backward compared to |
| * the state |
| */ |
| backward = IP6_NEQ(&is->is_src, src); |
| fin->fin_rev = !backward; |
| i = (!backward << 1) + fin->fin_out; |
| oi = (backward << 1) + !fin->fin_out; |
| |
| if (is->is_pass & FR_NOICMPERR) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_banned); |
| return 1; |
| } |
| if (is->is_icmppkts[i] > is->is_pkts[oi]) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_toomany); |
| return 1; |
| } |
| |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_hits); |
| is->is_icmppkts[i]++; |
| |
| /* |
| * we deliberately do not touch the timeouts |
| * for the accompanying state table entry. |
| * It remains to be seen if that is correct. XXX |
| */ |
| return 0; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_ipsmove */ |
| /* Returns: Nil */ |
| /* Parameters: is(I) - pointer to state table entry */ |
| /* hv(I) - new hash value for state table entry */ |
| /* Write Locks: ipf_state */ |
| /* */ |
| /* Move a state entry from one position in the hash table to another. */ |
| /* ------------------------------------------------------------------------ */ |
| static void |
| ipf_ipsmove(is, hv) |
| ipstate_t *is; |
| u_int hv; |
| { |
| ipstate_t **isp; |
| u_int hvm; |
| |
| hvm = is->is_hv; |
| |
| /* TRACE is, is_hv, hvm */ |
| |
| /* |
| * Remove the hash from the old location... |
| */ |
| isp = is->is_phnext; |
| if (is->is_hnext) |
| is->is_hnext->is_phnext = isp; |
| *isp = is->is_hnext; |
| if (ipf_state_table[hvm] == NULL) |
| ipf_state_stats.iss_inuse--; |
| ipf_state_stats.iss_bucketlen[hvm]--; |
| |
| /* |
| * ...and put the hash in the new one. |
| */ |
| hvm = DOUBLE_HASH(hv); |
| is->is_hv = hvm; |
| |
| /* TRACE is, hv, is_hv, hvm */ |
| |
| isp = &ipf_state_table[hvm]; |
| if (*isp) |
| (*isp)->is_phnext = &is->is_hnext; |
| else |
| ipf_state_stats.iss_inuse++; |
| ipf_state_stats.iss_bucketlen[hvm]++; |
| is->is_phnext = isp; |
| is->is_hnext = *isp; |
| *isp = is; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_lookup */ |
| /* Returns: ipstate_t* - NULL == no matching state found, */ |
| /* else pointer to state information is returned */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* tcp(I) - pointer to TCP/UDP header. */ |
| /* */ |
| /* Search the state table for a matching entry to the packet described by */ |
| /* the contents of *fin. */ |
| /* */ |
| /* If we return NULL then no lock on ipf_state is held. */ |
| /* If we return non-null then a read-lock on ipf_state is held. */ |
| /* ------------------------------------------------------------------------ */ |
| ipstate_t * |
| ipf_state_lookup(fin, tcp, ifqp) |
| fr_info_t *fin; |
| tcphdr_t *tcp; |
| ipftq_t **ifqp; |
| { |
| u_int hv, hvm, pr, v, tryagain; |
| ipstate_t *is, **isp; |
| u_short dport, sport; |
| i6addr_t src, dst; |
| struct icmp *ic; |
| ipftq_t *ifq; |
| int oow; |
| |
| is = NULL; |
| ifq = NULL; |
| tcp = fin->fin_dp; |
| ic = (struct icmp *)tcp; |
| hv = (pr = fin->fin_fi.fi_p); |
| src = fin->fin_fi.fi_src; |
| dst = fin->fin_fi.fi_dst; |
| hv += src.in4.s_addr; |
| hv += dst.in4.s_addr; |
| |
| v = fin->fin_fi.fi_v; |
| #ifdef USE_INET6 |
| if (v == 6) { |
| hv += fin->fin_fi.fi_src.i6[1]; |
| hv += fin->fin_fi.fi_src.i6[2]; |
| hv += fin->fin_fi.fi_src.i6[3]; |
| |
| if ((fin->fin_p == IPPROTO_ICMPV6) && |
| IN6_IS_ADDR_MULTICAST(&fin->fin_fi.fi_dst.in6)) { |
| hv -= dst.in4.s_addr; |
| } else { |
| hv += fin->fin_fi.fi_dst.i6[1]; |
| hv += fin->fin_fi.fi_dst.i6[2]; |
| hv += fin->fin_fi.fi_dst.i6[3]; |
| } |
| } |
| #endif |
| if ((v == 4) && |
| (fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) { |
| if (fin->fin_out == 0) { |
| hv -= src.in4.s_addr; |
| } else { |
| hv -= dst.in4.s_addr; |
| } |
| } |
| |
| /* TRACE fin_saddr, fin_daddr, hv */ |
| |
| /* |
| * Search the hash table for matching packet header info. |
| */ |
| switch (pr) |
| { |
| #ifdef USE_INET6 |
| case IPPROTO_ICMPV6 : |
| tryagain = 0; |
| if (v == 6) { |
| if ((ic->icmp_type == ICMP6_ECHO_REQUEST) || |
| (ic->icmp_type == ICMP6_ECHO_REPLY)) { |
| hv += ic->icmp_id; |
| } |
| } |
| READ_ENTER(&ipf_state); |
| icmp6again: |
| hvm = DOUBLE_HASH(hv); |
| for (isp = &ipf_state_table[hvm]; ((is = *isp) != NULL); ) { |
| isp = &is->is_hnext; |
| /* |
| * If a connection is about to be deleted, no packets |
| * are allowed to match it. |
| */ |
| if (is->is_sti.tqe_ifq == &ipf_state_deletetq) |
| continue; |
| |
| if ((is->is_p != pr) || (is->is_v != v)) |
| continue; |
| is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP); |
| if (is != NULL && |
| ipf_matchicmpqueryreply(v, &is->is_icmp, |
| ic, fin->fin_rev)) { |
| if (fin->fin_rev) |
| ifq = &ipf_state_icmpacktq; |
| else |
| ifq = &ipf_state_icmptq; |
| break; |
| } |
| } |
| |
| if (is != NULL) { |
| if ((tryagain != 0) && !(is->is_flags & SI_W_DADDR)) { |
| hv += fin->fin_fi.fi_src.i6[0]; |
| hv += fin->fin_fi.fi_src.i6[1]; |
| hv += fin->fin_fi.fi_src.i6[2]; |
| hv += fin->fin_fi.fi_src.i6[3]; |
| ipf_ipsmove(is, hv); |
| MUTEX_DOWNGRADE(&ipf_state); |
| } |
| break; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| |
| /* |
| * No matching icmp state entry. Perhaps this is a |
| * response to another state entry. |
| * |
| * XXX With some ICMP6 packets, the "other" address is already |
| * in the packet, after the ICMP6 header, and this could be |
| * used in place of the multicast address. However, taking |
| * advantage of this requires some significant code changes |
| * to handle the specific types where that is the case. |
| */ |
| if ((ipf_state_stats.iss_wild != 0) && |
| (v == 6) && (tryagain == 0) && |
| !IN6_IS_ADDR_MULTICAST(&fin->fin_fi.fi_src.in6)) { |
| hv -= fin->fin_fi.fi_src.i6[0]; |
| hv -= fin->fin_fi.fi_src.i6[1]; |
| hv -= fin->fin_fi.fi_src.i6[2]; |
| hv -= fin->fin_fi.fi_src.i6[3]; |
| tryagain = 1; |
| WRITE_ENTER(&ipf_state); |
| goto icmp6again; |
| } |
| |
| is = ipf_checkicmp6matchingstate(fin); |
| if (is != NULL) |
| return is; |
| break; |
| #endif |
| |
| case IPPROTO_ICMP : |
| if (v == 4) { |
| hv += ic->icmp_id; |
| } |
| hv = DOUBLE_HASH(hv); |
| READ_ENTER(&ipf_state); |
| for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) { |
| isp = &is->is_hnext; |
| if ((is->is_p != pr) || (is->is_v != v)) |
| continue; |
| is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP); |
| if ((is != NULL) && |
| (ic->icmp_id == is->is_icmp.ici_id) && |
| ipf_matchicmpqueryreply(v, &is->is_icmp, |
| ic, fin->fin_rev)) { |
| if (fin->fin_rev) |
| ifq = &ipf_state_icmpacktq; |
| else |
| ifq = &ipf_state_icmptq; |
| break; |
| } |
| } |
| if (is == NULL) { |
| RWLOCK_EXIT(&ipf_state); |
| } |
| break; |
| |
| case IPPROTO_TCP : |
| case IPPROTO_UDP : |
| ifqp = NULL; |
| sport = htons(fin->fin_data[0]); |
| hv += sport; |
| dport = htons(fin->fin_data[1]); |
| hv += dport; |
| oow = 0; |
| tryagain = 0; |
| READ_ENTER(&ipf_state); |
| retry_tcpudp: |
| hvm = DOUBLE_HASH(hv); |
| |
| /* TRACE hv, hvm */ |
| |
| for (isp = &ipf_state_table[hvm]; ((is = *isp) != NULL); ) { |
| isp = &is->is_hnext; |
| if ((is->is_p != pr) || (is->is_v != v)) |
| continue; |
| fin->fin_flx &= ~FI_OOW; |
| is = ipf_matchsrcdst(fin, is, &src, &dst, tcp, FI_CMP); |
| if (is != NULL) { |
| if (pr == IPPROTO_TCP) { |
| if (!ipf_state_tcp(fin, tcp, is)) { |
| oow |= fin->fin_flx & FI_OOW; |
| continue; |
| } |
| } |
| break; |
| } |
| } |
| if (is != NULL) { |
| if (tryagain && |
| !(is->is_flags & (SI_CLONE|SI_WILDP|SI_WILDA))) { |
| hv += dport; |
| hv += sport; |
| ipf_ipsmove(is, hv); |
| MUTEX_DOWNGRADE(&ipf_state); |
| } |
| break; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| |
| if (ipf_state_stats.iss_wild) { |
| if (tryagain == 0) { |
| hv -= dport; |
| hv -= sport; |
| } else if (tryagain == 1) { |
| hv = fin->fin_fi.fi_p; |
| /* |
| * If we try to pretend this is a reply to a |
| * multicast/broadcast packet then we need to |
| * exclude part of the address from the hash |
| * calculation. |
| */ |
| if (fin->fin_out == 0) { |
| hv += src.in4.s_addr; |
| } else { |
| hv += dst.in4.s_addr; |
| } |
| hv += dport; |
| hv += sport; |
| } |
| tryagain++; |
| if (tryagain <= 2) { |
| WRITE_ENTER(&ipf_state); |
| goto retry_tcpudp; |
| } |
| } |
| fin->fin_flx |= oow; |
| break; |
| |
| #if 0 |
| case IPPROTO_GRE : |
| gre = fin->fin_dp; |
| if (GRE_REV(gre->gr_flags) == 1) { |
| hv += gre->gr_call; |
| } |
| /* FALLTHROUGH */ |
| #endif |
| default : |
| ifqp = NULL; |
| hvm = DOUBLE_HASH(hv); |
| READ_ENTER(&ipf_state); |
| for (isp = &ipf_state_table[hvm]; ((is = *isp) != NULL); ) { |
| isp = &is->is_hnext; |
| if ((is->is_p != pr) || (is->is_v != v)) |
| continue; |
| is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP); |
| if (is != NULL) { |
| ifq = &ipf_state_iptq; |
| break; |
| } |
| } |
| if (is == NULL) { |
| RWLOCK_EXIT(&ipf_state); |
| } |
| break; |
| } |
| |
| if (is != NULL) { |
| if (((is->is_sti.tqe_flags & TQE_RULEBASED) != 0) && |
| (is->is_tqehead[fin->fin_rev] != NULL)) |
| ifq = is->is_tqehead[fin->fin_rev]; |
| if (ifq != NULL && ifqp != NULL) |
| *ifqp = ifq; |
| } else { |
| ATOMIC_INCL(ipf_state_stats.iss_lookup_miss); |
| } |
| return is; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_check */ |
| /* Returns: frentry_t* - NULL == search failed, */ |
| /* else pointer to rule for matching state */ |
| /* Parameters: ifp(I) - pointer to interface */ |
| /* passp(I) - pointer to filtering result flags */ |
| /* */ |
| /* Check if a packet is associated with an entry in the state table. */ |
| /* ------------------------------------------------------------------------ */ |
| frentry_t * |
| ipf_state_check(fin, passp) |
| fr_info_t *fin; |
| u_32_t *passp; |
| { |
| ipftqent_t *tqe; |
| ipstate_t *is; |
| frentry_t *fr; |
| tcphdr_t *tcp; |
| ipftq_t *ifq; |
| u_int pass; |
| int inout; |
| |
| if (ipf_state_lock || (ipf_state_list == NULL)) |
| return NULL; |
| |
| if (fin->fin_flx & (FI_SHORT|FI_FRAGBODY|FI_BAD)) { |
| ATOMIC_INCL(ipf_state_stats.iss_check_bad); |
| return NULL; |
| } |
| |
| is = fin->fin_state; |
| if (is != NULL) { |
| READ_ENTER(&ipf_state); |
| fr = is->is_rule; |
| MUTEX_ENTER(&is->is_lock); |
| goto stateheld; |
| } |
| |
| if ((fin->fin_flx & FI_TCPUDP) || |
| (fin->fin_fi.fi_p == IPPROTO_ICMP) |
| #ifdef USE_INET6 |
| || (fin->fin_fi.fi_p == IPPROTO_ICMPV6) |
| #endif |
| ) |
| tcp = fin->fin_dp; |
| else |
| tcp = NULL; |
| |
| ifq = NULL; |
| /* |
| * Search the hash table for matching packet header info. |
| */ |
| is = ipf_state_lookup(fin, tcp, &ifq); |
| |
| switch (fin->fin_p) |
| { |
| #ifdef USE_INET6 |
| case IPPROTO_ICMPV6 : |
| if (is != NULL) |
| break; |
| if (fin->fin_v == 6) { |
| is = ipf_checkicmp6matchingstate(fin); |
| } |
| break; |
| #endif |
| case IPPROTO_ICMP : |
| if (is != NULL) |
| break; |
| /* |
| * No matching icmp state entry. Perhaps this is a |
| * response to another state entry. |
| */ |
| is = ipf_checkicmpmatchingstate(fin); |
| break; |
| |
| case IPPROTO_TCP : |
| if (is == NULL) |
| break; |
| |
| if (is->is_pass & FR_NEWISN) { |
| if (fin->fin_out == 0) |
| ipf_fixinisn(fin, is); |
| else if (fin->fin_out == 1) |
| ipf_fixoutisn(fin, is); |
| } |
| break; |
| default : |
| if (fin->fin_rev) |
| ifq = &ipf_state_udpacktq; |
| else |
| ifq = &ipf_state_udptq; |
| break; |
| } |
| if (is == NULL) { |
| ATOMIC_INCL(ipf_state_stats.iss_check_miss); |
| return NULL; |
| } |
| |
| fr = is->is_rule; |
| if (fr != NULL) { |
| if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { |
| if (fin->fin_nattag == NULL) { |
| RWLOCK_EXIT(&ipf_state); |
| ATOMIC_INCL(ipf_state_stats.iss_check_notag); |
| return NULL; |
| } |
| if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag)!=0) { |
| RWLOCK_EXIT(&ipf_state); |
| ATOMIC_INCL(ipf_state_stats.iss_check_nattag); |
| return NULL; |
| } |
| } |
| (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN); |
| fin->fin_icode = fr->fr_icode; |
| } |
| |
| fin->fin_rule = is->is_rulen; |
| fin->fin_fr = is->is_rule; |
| fin->fin_state = is; |
| is->is_touched = ipf_ticks; |
| |
| /* |
| * If this packet is a fragment and the rule says to track fragments, |
| * then create a new fragment cache entry. |
| */ |
| if ((fin->fin_flx & FI_FRAG) && FR_ISPASS(is->is_pass)) |
| (void) ipf_frag_new(fin, is->is_pass); |
| |
| /* |
| * For TCP packets, ifq == NULL. For all others, check if this new |
| * queue is different to the last one it was on and move it if so. |
| */ |
| tqe = &is->is_sti; |
| if ((tqe->tqe_flags & TQE_RULEBASED) != 0) |
| ifq = is->is_tqehead[fin->fin_rev]; |
| |
| MUTEX_ENTER(&is->is_lock); |
| is->is_ref++; |
| |
| if (ifq != NULL) |
| ipf_movequeue(tqe, tqe->tqe_ifq, ifq); |
| |
| stateheld: |
| inout = (fin->fin_rev << 1) + fin->fin_out; |
| is->is_pkts[inout]++; |
| is->is_bytes[inout] += fin->fin_plen; |
| |
| MUTEX_EXIT(&is->is_lock); |
| |
| pass = is->is_pass; |
| |
| #ifdef IPFILTER_SYNC |
| if (is->is_flags & IS_STATESYNC) |
| ipf_sync_update(SMC_STATE, fin, is->is_sync); |
| #endif |
| |
| RWLOCK_EXIT(&ipf_state); |
| |
| ATOMIC_INCL(ipf_state_stats.iss_hits); |
| |
| fin->fin_flx |= FI_STATE; |
| if ((pass & FR_LOGFIRST) != 0) |
| pass &= ~(FR_LOGFIRST|FR_LOG); |
| *passp = pass; |
| return fr; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_fixoutisn */ |
| /* Returns: Nil */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* is(I) - pointer to master state structure */ |
| /* */ |
| /* Called only for outbound packets, adjusts the sequence number and the */ |
| /* TCP checksum to match that change. */ |
| /* ------------------------------------------------------------------------ */ |
| static void |
| ipf_fixoutisn(fin, is) |
| fr_info_t *fin; |
| ipstate_t *is; |
| { |
| tcphdr_t *tcp; |
| int rev; |
| u_32_t seq; |
| |
| tcp = fin->fin_dp; |
| rev = fin->fin_rev; |
| if ((is->is_flags & IS_ISNSYN) != 0) { |
| if (rev == 0) { |
| seq = ntohl(tcp->th_seq); |
| seq += is->is_isninc[0]; |
| tcp->th_seq = htonl(seq); |
| ipf_fix_outcksum(fin, &tcp->th_sum, is->is_sumd[0]); |
| } |
| } |
| if ((is->is_flags & IS_ISNACK) != 0) { |
| if (rev == 1) { |
| seq = ntohl(tcp->th_seq); |
| seq += is->is_isninc[1]; |
| tcp->th_seq = htonl(seq); |
| ipf_fix_outcksum(fin, &tcp->th_sum, is->is_sumd[1]); |
| } |
| } |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_fixinisn */ |
| /* Returns: Nil */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* is(I) - pointer to master state structure */ |
| /* */ |
| /* Called only for inbound packets, adjusts the acknowledge number and the */ |
| /* TCP checksum to match that change. */ |
| /* ------------------------------------------------------------------------ */ |
| static void |
| ipf_fixinisn(fin, is) |
| fr_info_t *fin; |
| ipstate_t *is; |
| { |
| tcphdr_t *tcp; |
| int rev; |
| u_32_t ack; |
| |
| tcp = fin->fin_dp; |
| rev = fin->fin_rev; |
| if ((is->is_flags & IS_ISNSYN) != 0) { |
| if (rev == 1) { |
| ack = ntohl(tcp->th_ack); |
| ack -= is->is_isninc[0]; |
| tcp->th_ack = htonl(ack); |
| ipf_fix_incksum(fin, &tcp->th_sum, is->is_sumd[0]); |
| } |
| } |
| if ((is->is_flags & IS_ISNACK) != 0) { |
| if (rev == 0) { |
| ack = ntohl(tcp->th_ack); |
| ack -= is->is_isninc[1]; |
| tcp->th_ack = htonl(ack); |
| ipf_fix_incksum(fin, &tcp->th_sum, is->is_sumd[1]); |
| } |
| } |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_sync */ |
| /* Returns: Nil */ |
| /* Parameters: ifp(I) - pointer to interface */ |
| /* */ |
| /* Walk through all state entries and if an interface pointer match is */ |
| /* found then look it up again, based on its name in case the pointer has */ |
| /* changed since last time. */ |
| /* */ |
| /* If ifp is passed in as being non-null then we are only doing updates for */ |
| /* existing, matching, uses of it. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_sync(ifp) |
| void *ifp; |
| { |
| ipstate_t *is; |
| int i; |
| |
| if (ipf_running <= 0) |
| return; |
| |
| WRITE_ENTER(&ipf_state); |
| |
| if (ipf_running <= 0) { |
| RWLOCK_EXIT(&ipf_state); |
| return; |
| } |
| |
| for (is = ipf_state_list; is; is = is->is_next) { |
| /* |
| * Look up all the interface names in the state entry. |
| */ |
| for (i = 0; i < 4; i++) { |
| if (ifp == NULL || ifp == is->is_ifp[i]) |
| is->is_ifp[i] = ipf_resolvenic(is->is_ifname[i], |
| is->is_v); |
| } |
| } |
| RWLOCK_EXIT(&ipf_state); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_del */ |
| /* Returns: int - 0 = deleted, else refernce count on active struct */ |
| /* Parameters: is(I) - pointer to state structure to delete */ |
| /* why(I) - if not 0, log reason why it was deleted */ |
| /* Write Locks: ipf_state */ |
| /* */ |
| /* Deletes a state entry from the enumerated list as well as the hash table */ |
| /* and timeout queue lists. Make adjustments to hash table statistics and */ |
| /* global counters as required. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_del(is, why) |
| ipstate_t *is; |
| int why; |
| { |
| int orphan = 1; |
| frentry_t *fr; |
| frdest_t *fdp; |
| |
| /* |
| * Since we want to delete this, remove it from the state table, |
| * where it can be found & used, first. |
| */ |
| if (is->is_phnext != NULL) { |
| *is->is_phnext = is->is_hnext; |
| if (is->is_hnext != NULL) |
| is->is_hnext->is_phnext = is->is_phnext; |
| if (ipf_state_table[is->is_hv] == NULL) |
| ipf_state_stats.iss_inuse--; |
| ipf_state_stats.iss_bucketlen[is->is_hv]--; |
| |
| is->is_phnext = NULL; |
| is->is_hnext = NULL; |
| orphan = 0; |
| } |
| |
| if (is->is_me != NULL) { |
| *is->is_me = NULL; |
| is->is_me = NULL; |
| } |
| |
| /* |
| * Because ipf_state_stats.iss_wild is a count of entries in the state |
| * table that have wildcard flags set, only decerement it once |
| * and do it here. |
| */ |
| if (is->is_flags & (SI_WILDP|SI_WILDA)) { |
| if (!(is->is_flags & SI_CLONED)) { |
| ATOMIC_DECL(ipf_state_stats.iss_wild); |
| } |
| is->is_flags &= ~(SI_WILDP|SI_WILDA); |
| } |
| |
| /* |
| * Next, remove it from the timeout queue it is in. |
| */ |
| if (is->is_sti.tqe_ifq != NULL) |
| ipf_deletequeueentry(&is->is_sti); |
| |
| if (is->is_me != NULL) { |
| *is->is_me = NULL; |
| is->is_me = NULL; |
| } |
| |
| /* |
| * If it is still in use by something else, do not go any further, |
| * but note that at this point it is now an orphan. How can this |
| * be? ipf_state_flush() calls ipf_delete() directly because it wants |
| * to empty the table out and if something has a hold on a state |
| * entry (such as ipfstat), it'll do the deref path that'll bring |
| * us back here to do the real delete & free. |
| */ |
| MUTEX_ENTER(&is->is_lock); |
| if (is->is_ref > 1) { |
| is->is_ref--; |
| MUTEX_EXIT(&is->is_lock); |
| if (!orphan) |
| ipf_state_stats.iss_orphan++; |
| return is->is_ref; |
| } |
| MUTEX_EXIT(&is->is_lock); |
| |
| fr = is->is_rule; |
| if (fr != NULL) { |
| fdp = &fr->fr_tifs[0]; |
| if (fdp->fd_type == FRD_POOL) |
| ipf_lookup_deref(IPLT_DSTLIST, fdp->fd_ptr); |
| fdp = &fr->fr_tifs[1]; |
| if (fdp->fd_type == FRD_POOL) |
| ipf_lookup_deref(IPLT_DSTLIST, fdp->fd_ptr); |
| fdp = &fr->fr_dif; |
| if (fdp->fd_type == FRD_POOL) |
| ipf_lookup_deref(IPLT_DSTLIST, fdp->fd_ptr); |
| } |
| |
| is->is_ref = 0; |
| |
| if (is->is_tqehead[0] != NULL) { |
| (void) ipf_deletetimeoutqueue(is->is_tqehead[0]); |
| } |
| if (is->is_tqehead[1] != NULL) { |
| (void) ipf_deletetimeoutqueue(is->is_tqehead[1]); |
| } |
| |
| #ifdef IPFILTER_SYNC |
| if (is->is_sync) |
| ipf_sync_del_state(is->is_sync); |
| #endif |
| #ifdef IPFILTER_SCAN |
| (void) ipf_scan_detachis(is); |
| #endif |
| |
| /* |
| * Now remove it from the linked list of known states |
| */ |
| if (is->is_pnext != NULL) { |
| *is->is_pnext = is->is_next; |
| |
| if (is->is_next != NULL) |
| is->is_next->is_pnext = is->is_pnext; |
| |
| is->is_pnext = NULL; |
| is->is_next = NULL; |
| } |
| |
| if (ipf_state_logging != 0 && why != 0) |
| ipf_state_log(is, why); |
| |
| if (is->is_p == IPPROTO_TCP) |
| ipf_state_stats.iss_fin++; |
| else |
| ipf_state_stats.iss_expire++; |
| if (orphan) |
| ipf_state_stats.iss_orphan--; |
| |
| if (is->is_rule != NULL) { |
| is->is_rule->fr_statecnt--; |
| (void) ipf_derefrule(&is->is_rule); |
| } |
| |
| ipf_state_stats.iss_active_proto[is->is_p]--; |
| |
| MUTEX_DESTROY(&is->is_lock); |
| KFREE(is); |
| ipf_state_stats.iss_active--; |
| |
| return 0; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_timeout */ |
| /* Returns: Nil */ |
| /* Parameters: Nil */ |
| /* */ |
| /* Slowly expire held state for thingslike UDP and ICMP. The algorithm */ |
| /* used here is to keep the queue sorted with the oldest things at the top */ |
| /* and the youngest at the bottom. So if the top one doesn't need to be */ |
| /* expired then neither will any under it. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_timeout() |
| { |
| ipftq_t *ifq, *ifqnext; |
| ipftqent_t *tqe, *tqn; |
| ipstate_t *is; |
| SPL_INT(s); |
| |
| SPL_NET(s); |
| WRITE_ENTER(&ipf_state); |
| for (ifq = ipf_state_tcptq; ifq != NULL; ifq = ifq->ifq_next) |
| for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { |
| if (tqe->tqe_die > ipf_ticks) |
| break; |
| tqn = tqe->tqe_next; |
| is = tqe->tqe_parent; |
| ipf_state_del(is, ISL_EXPIRE); |
| } |
| |
| for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifqnext) { |
| ifqnext = ifq->ifq_next; |
| |
| for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { |
| if (tqe->tqe_die > ipf_ticks) |
| break; |
| tqn = tqe->tqe_next; |
| is = tqe->tqe_parent; |
| ipf_state_del(is, ISL_EXPIRE); |
| } |
| } |
| |
| for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifqnext) { |
| ifqnext = ifq->ifq_next; |
| |
| if (((ifq->ifq_flags & IFQF_DELETE) != 0) && |
| (ifq->ifq_ref == 0)) { |
| ipf_freetimeoutqueue(ifq); |
| } |
| } |
| |
| if (ipf_state_doflush) { |
| (void) ipf_state_flush(2, 0); |
| ipf_state_doflush = 0; |
| ipf_state_wm_last = ipf_ticks; |
| } |
| |
| RWLOCK_EXIT(&ipf_state); |
| SPL_X(s); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_flush */ |
| /* Returns: int - 0 == success, -1 == failure */ |
| /* Parameters: Nil */ |
| /* Write Locks: ipf_state */ |
| /* */ |
| /* Flush state tables. Three actions currently defined: */ |
| /* which == 0 : flush all state table entries */ |
| /* which == 1 : flush TCP connections which have started to close but are */ |
| /* stuck for some reason. */ |
| /* which == 2 : flush TCP connections which have been idle for a long time, */ |
| /* starting at > 4 days idle and working back in successive half-*/ |
| /* days to at most 12 hours old. If this fails to free enough */ |
| /* slots then work backwards in half hour slots to 30 minutes. */ |
| /* If that too fails, then work backwards in 30 second intervals */ |
| /* for the last 30 minutes to at worst 30 seconds idle. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_flush(which, proto) |
| int which, proto; |
| { |
| ipftqent_t *tqe, *tqn; |
| ipstate_t *is, **isp; |
| ipftq_t *ifq; |
| int removed; |
| SPL_INT(s); |
| |
| removed = 0; |
| |
| SPL_NET(s); |
| |
| switch (which) |
| { |
| case 0 : |
| ATOMIC_INCL(ipf_state_stats.iss_flush_all); |
| /* |
| * Style 0 flush removes everything... |
| */ |
| for (isp = &ipf_state_list; ((is = *isp) != NULL); ) { |
| if ((proto != 0) && (is->is_v != proto)) { |
| isp = &is->is_next; |
| continue; |
| } |
| if (ipf_state_del(is, ISL_FLUSH) == 0) |
| removed++; |
| else |
| isp = &is->is_next; |
| } |
| break; |
| |
| case 1 : |
| ATOMIC_INCL(ipf_state_stats.iss_flush_closing); |
| /* |
| * Since we're only interested in things that are closing, |
| * we can start with the appropriate timeout queue. |
| */ |
| for (ifq = ipf_state_tcptq + IPF_TCPS_CLOSE_WAIT; ifq != NULL; |
| ifq = ifq->ifq_next) { |
| |
| for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { |
| tqn = tqe->tqe_next; |
| is = tqe->tqe_parent; |
| if (is->is_p != IPPROTO_TCP) |
| break; |
| if (ipf_state_del(is, ISL_FLUSH) == 0) |
| removed++; |
| } |
| } |
| |
| /* |
| * Also need to look through the user defined queues. |
| */ |
| for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifq->ifq_next) { |
| for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { |
| tqn = tqe->tqe_next; |
| is = tqe->tqe_parent; |
| if (is->is_p != IPPROTO_TCP) |
| continue; |
| |
| if ((is->is_state[0] > IPF_TCPS_ESTABLISHED) && |
| (is->is_state[1] > IPF_TCPS_ESTABLISHED)) { |
| if (ipf_state_del(is, ISL_FLUSH) == 0) |
| removed++; |
| } |
| } |
| } |
| break; |
| |
| case 2 : |
| break; |
| |
| /* |
| * Args 5-11 correspond to flushing those particular states |
| * for TCP connections. |
| */ |
| case IPF_TCPS_CLOSE_WAIT : |
| case IPF_TCPS_FIN_WAIT_1 : |
| case IPF_TCPS_CLOSING : |
| case IPF_TCPS_LAST_ACK : |
| case IPF_TCPS_FIN_WAIT_2 : |
| case IPF_TCPS_TIME_WAIT : |
| case IPF_TCPS_CLOSED : |
| ATOMIC_INCL(ipf_state_stats.iss_flush_queue); |
| tqn = ipf_state_tcptq[which].ifq_head; |
| while (tqn != NULL) { |
| tqe = tqn; |
| tqn = tqe->tqe_next; |
| is = tqe->tqe_parent; |
| if (ipf_state_del(is, ISL_FLUSH) == 0) |
| removed++; |
| } |
| break; |
| |
| default : |
| if (which < 30) |
| break; |
| |
| ATOMIC_INCL(ipf_state_stats.iss_flush_state); |
| /* |
| * Take a large arbitrary number to mean the number of seconds |
| * for which which consider to be the maximum value we'll allow |
| * the expiration to be. |
| */ |
| which = IPF_TTLVAL(which); |
| for (isp = &ipf_state_list; ((is = *isp) != NULL); ) { |
| if ((proto == 0) || (is->is_v == proto)) { |
| if (ipf_ticks - is->is_touched > which) { |
| if (ipf_state_del(is, ISL_FLUSH) == 0) { |
| removed++; |
| continue; |
| } |
| } |
| } |
| isp = &is->is_next; |
| } |
| break; |
| } |
| |
| if (which != 2) { |
| SPL_X(s); |
| return removed; |
| } |
| |
| ATOMIC_INCL(ipf_state_stats.iss_flush_timeout); |
| /* |
| * Asked to remove inactive entries because the table is full, try |
| * again, 3 times, if first attempt failed with a different criteria |
| * each time. The order tried in must be in decreasing age. |
| * Another alternative is to implement random drop and drop N entries |
| * at random until N have been freed up. |
| */ |
| if (ipf_ticks - ipf_state_wm_last > ipf_state_wm_freq) { |
| removed = ipf_queueflush(ipf_state_flush_entry, ipf_state_tcptq, |
| ipf_state_usertq, |
| &ipf_state_stats.iss_active, |
| ipf_state_size, ipf_state_wm_low); |
| ipf_state_wm_last = ipf_ticks; |
| } |
| |
| SPL_X(s); |
| return removed; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_flush_entry */ |
| /* Returns: int - 0 = entry deleted, else not deleted */ |
| /* Parameters: entry(I) - pointer to state structure to delete */ |
| /* Write Locks: ipf_state */ |
| /* */ |
| /* This function is a stepping stone between ipf_queueflush() and */ |
| /* ipf_state_del(). It is used so we can provide a uniform interface via */ |
| /* the ipf_queueflush() function. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_flush_entry(entry) |
| void *entry; |
| { |
| return ipf_state_del(entry, ISL_FLUSH); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_tcp_age */ |
| /* Returns: int - 1 == state transition made, 0 == no change (rejected) */ |
| /* Parameters: tq(I) - pointer to timeout queue information */ |
| /* fin(I) - pointer to packet information */ |
| /* tqtab(I) - TCP timeout queue table this is in */ |
| /* flags(I) - flags from state/NAT entry */ |
| /* ok(I) - can we advance state */ |
| /* */ |
| /* Rewritten by Arjan de Vet <Arjan.deVet@adv.iae.nl>, 2000-07-29: */ |
| /* */ |
| /* - (try to) base state transitions on real evidence only, */ |
| /* i.e. packets that are sent and have been received by ipfilter; */ |
| /* diagram 18.12 of TCP/IP volume 1 by W. Richard Stevens was used. */ |
| /* */ |
| /* - deal with half-closed connections correctly; */ |
| /* */ |
| /* - store the state of the source in state[0] such that ipfstat */ |
| /* displays the state as source/dest instead of dest/source; the calls */ |
| /* to ipf_tcp_age have been changed accordingly. */ |
| /* */ |
| /* Internal Parameters: */ |
| /* */ |
| /* state[0] = state of source (host that initiated connection) */ |
| /* state[1] = state of dest (host that accepted the connection) */ |
| /* */ |
| /* dir == 0 : a packet from source to dest */ |
| /* dir == 1 : a packet from dest to source */ |
| /* */ |
| /* A typical procession for a connection is as follows: */ |
| /* */ |
| /* +--------------+-------------------+ */ |
| /* | Side '0' | Side '1' | */ |
| /* +--------------+-------------------+ */ |
| /* | 0 -> 1 (SYN) | | */ |
| /* | | 0 -> 2 (SYN-ACK) | */ |
| /* | 1 -> 3 (ACK) | | */ |
| /* | | 2 -> 4 (ACK-PUSH) | */ |
| /* | 3 -> 4 (ACK) | | */ |
| /* | ... | ... | */ |
| /* | | 4 -> 6 (FIN-ACK) | */ |
| /* | 4 -> 5 (ACK) | | */ |
| /* | | 6 -> 6 (ACK-PUSH) | */ |
| /* | 5 -> 5 (ACK) | | */ |
| /* | 5 -> 8 (FIN) | | */ |
| /* | | 6 -> 10 (ACK) | */ |
| /* +--------------+-------------------+ */ |
| /* */ |
| /* Locking: it is assumed that the parent of the tqe structure is locked. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_tcp_age(tqe, fin, tqtab, flags, ok) |
| ipftqent_t *tqe; |
| fr_info_t *fin; |
| ipftq_t *tqtab; |
| int flags, ok; |
| { |
| int dlen, ostate, nstate, rval, dir; |
| u_char tcpflags; |
| tcphdr_t *tcp; |
| |
| tcp = fin->fin_dp; |
| |
| rval = 0; |
| dir = fin->fin_rev; |
| tcpflags = tcp->th_flags; |
| dlen = fin->fin_dlen - (TCP_OFF(tcp) << 2); |
| |
| if (tcpflags & TH_RST) { |
| if (!(tcpflags & TH_PUSH) && !dlen) |
| nstate = IPF_TCPS_CLOSED; |
| else |
| nstate = IPF_TCPS_CLOSE_WAIT; |
| rval = 1; |
| } else { |
| ostate = tqe->tqe_state[1 - dir]; |
| nstate = tqe->tqe_state[dir]; |
| |
| switch (nstate) |
| { |
| case IPF_TCPS_LISTEN: /* 0 */ |
| if ((tcpflags & TH_OPENING) == TH_OPENING) { |
| /* |
| * 'dir' received an S and sends SA in |
| * response, LISTEN -> SYN_RECEIVED |
| */ |
| nstate = IPF_TCPS_SYN_RECEIVED; |
| rval = 1; |
| } else if ((tcpflags & TH_OPENING) == TH_SYN) { |
| /* 'dir' sent S, LISTEN -> SYN_SENT */ |
| nstate = IPF_TCPS_SYN_SENT; |
| rval = 1; |
| } |
| /* |
| * the next piece of code makes it possible to get |
| * already established connections into the state table |
| * after a restart or reload of the filter rules; this |
| * does not work when a strict 'flags S keep state' is |
| * used for tcp connections of course |
| */ |
| if (((flags & IS_TCPFSM) == 0) && |
| ((tcpflags & TH_ACKMASK) == TH_ACK)) { |
| /* |
| * we saw an A, guess 'dir' is in ESTABLISHED |
| * mode |
| */ |
| switch (ostate) |
| { |
| case IPF_TCPS_LISTEN : |
| case IPF_TCPS_SYN_RECEIVED : |
| nstate = IPF_TCPS_HALF_ESTAB; |
| rval = 1; |
| break; |
| case IPF_TCPS_HALF_ESTAB : |
| case IPF_TCPS_ESTABLISHED : |
| nstate = IPF_TCPS_ESTABLISHED; |
| rval = 1; |
| break; |
| default : |
| break; |
| } |
| } |
| /* |
| * TODO: besides regular ACK packets we can have other |
| * packets as well; it is yet to be determined how we |
| * should initialize the states in those cases |
| */ |
| break; |
| |
| case IPF_TCPS_SYN_SENT: /* 1 */ |
| if ((tcpflags & ~(TH_ECN|TH_CWR)) == TH_SYN) { |
| /* |
| * A retransmitted SYN packet. We do not reset |
| * the timeout here to ipf_tcptimeout because a |
| * connection connect timeout does not renew |
| * after every packet that is sent. We need to |
| * set rval so as to indicate the packet has |
| * passed the check for its flags being valid |
| * in the TCP FSM. Setting rval to 2 has the |
| * result of not resetting the timeout. |
| */ |
| rval = 2; |
| } else if ((tcpflags & (TH_SYN|TH_FIN|TH_ACK)) == |
| TH_ACK) { |
| /* |
| * we see an A from 'dir' which is in SYN_SENT |
| * state: 'dir' sent an A in response to an SA |
| * which it received, SYN_SENT -> ESTABLISHED |
| */ |
| nstate = IPF_TCPS_ESTABLISHED; |
| rval = 1; |
| } else if (tcpflags & TH_FIN) { |
| /* |
| * we see an F from 'dir' which is in SYN_SENT |
| * state and wants to close its side of the |
| * connection; SYN_SENT -> FIN_WAIT_1 |
| */ |
| nstate = IPF_TCPS_FIN_WAIT_1; |
| rval = 1; |
| } else if ((tcpflags & TH_OPENING) == TH_OPENING) { |
| /* |
| * we see an SA from 'dir' which is already in |
| * SYN_SENT state, this means we have a |
| * simultaneous open; SYN_SENT -> SYN_RECEIVED |
| */ |
| nstate = IPF_TCPS_SYN_RECEIVED; |
| rval = 1; |
| } |
| break; |
| |
| case IPF_TCPS_SYN_RECEIVED: /* 2 */ |
| if ((tcpflags & (TH_SYN|TH_FIN|TH_ACK)) == TH_ACK) { |
| /* |
| * we see an A from 'dir' which was in |
| * SYN_RECEIVED state so it must now be in |
| * established state, SYN_RECEIVED -> |
| * ESTABLISHED |
| */ |
| nstate = IPF_TCPS_ESTABLISHED; |
| rval = 1; |
| } else if ((tcpflags & ~(TH_ECN|TH_CWR)) == |
| TH_OPENING) { |
| /* |
| * We see an SA from 'dir' which is already in |
| * SYN_RECEIVED state. |
| */ |
| rval = 2; |
| } else if (tcpflags & TH_FIN) { |
| /* |
| * we see an F from 'dir' which is in |
| * SYN_RECEIVED state and wants to close its |
| * side of the connection; SYN_RECEIVED -> |
| * FIN_WAIT_1 |
| */ |
| nstate = IPF_TCPS_FIN_WAIT_1; |
| rval = 1; |
| } |
| break; |
| |
| case IPF_TCPS_HALF_ESTAB: /* 3 */ |
| if (tcpflags & TH_FIN) { |
| nstate = IPF_TCPS_FIN_WAIT_1; |
| rval = 1; |
| } else if ((tcpflags & TH_ACKMASK) == TH_ACK) { |
| /* |
| * If we've picked up a connection in mid |
| * flight, we could be looking at a follow on |
| * packet from the same direction as the one |
| * that created this state. Recognise it but |
| * do not advance the entire connection's |
| * state. |
| */ |
| switch (ostate) |
| { |
| case IPF_TCPS_LISTEN : |
| case IPF_TCPS_SYN_SENT : |
| case IPF_TCPS_SYN_RECEIVED : |
| rval = 1; |
| break; |
| case IPF_TCPS_HALF_ESTAB : |
| case IPF_TCPS_ESTABLISHED : |
| nstate = IPF_TCPS_ESTABLISHED; |
| rval = 1; |
| break; |
| default : |
| break; |
| } |
| } |
| break; |
| |
| case IPF_TCPS_ESTABLISHED: /* 4 */ |
| rval = 1; |
| if (tcpflags & TH_FIN) { |
| /* |
| * 'dir' closed its side of the connection; |
| * this gives us a half-closed connection; |
| * ESTABLISHED -> FIN_WAIT_1 |
| */ |
| if (ostate == IPF_TCPS_FIN_WAIT_1) { |
| nstate = IPF_TCPS_CLOSING; |
| } else { |
| nstate = IPF_TCPS_FIN_WAIT_1; |
| } |
| } else if (tcpflags & TH_ACK) { |
| /* |
| * an ACK, should we exclude other flags here? |
| */ |
| if (ostate == IPF_TCPS_FIN_WAIT_1) { |
| /* |
| * We know the other side did an active |
| * close, so we are ACKing the recvd |
| * FIN packet (does the window matching |
| * code guarantee this?) and go into |
| * CLOSE_WAIT state; this gives us a |
| * half-closed connection |
| */ |
| nstate = IPF_TCPS_CLOSE_WAIT; |
| } else if (ostate < IPF_TCPS_CLOSE_WAIT) { |
| /* |
| * still a fully established |
| * connection reset timeout |
| */ |
| nstate = IPF_TCPS_ESTABLISHED; |
| } |
| } |
| break; |
| |
| case IPF_TCPS_CLOSE_WAIT: /* 5 */ |
| rval = 1; |
| if (tcpflags & TH_FIN) { |
| /* |
| * application closed and 'dir' sent a FIN, |
| * we're now going into LAST_ACK state |
| */ |
| nstate = IPF_TCPS_LAST_ACK; |
| } else { |
| /* |
| * we remain in CLOSE_WAIT because the other |
| * side has closed already and we did not |
| * close our side yet; reset timeout |
| */ |
| nstate = IPF_TCPS_CLOSE_WAIT; |
| } |
| break; |
| |
| case IPF_TCPS_FIN_WAIT_1: /* 6 */ |
| rval = 1; |
| if ((tcpflags & TH_ACK) && |
| ostate > IPF_TCPS_CLOSE_WAIT) { |
| /* |
| * if the other side is not active anymore |
| * it has sent us a FIN packet that we are |
| * ack'ing now with an ACK; this means both |
| * sides have now closed the connection and |
| * we go into TIME_WAIT |
| */ |
| /* |
| * XXX: how do we know we really are ACKing |
| * the FIN packet here? does the window code |
| * guarantee that? |
| */ |
| nstate = IPF_TCPS_LAST_ACK; |
| } else { |
| /* |
| * we closed our side of the connection |
| * already but the other side is still active |
| * (ESTABLISHED/CLOSE_WAIT); continue with |
| * this half-closed connection |
| */ |
| nstate = IPF_TCPS_FIN_WAIT_1; |
| } |
| break; |
| |
| case IPF_TCPS_CLOSING: /* 7 */ |
| if ((tcpflags & (TH_FIN|TH_ACK)) == TH_ACK) { |
| nstate = IPF_TCPS_TIME_WAIT; |
| } |
| rval = 1; |
| break; |
| |
| case IPF_TCPS_LAST_ACK: /* 8 */ |
| if (tcpflags & TH_ACK) { |
| rval = 1; |
| } |
| /* |
| * we cannot detect when we go out of LAST_ACK state |
| * to CLOSED because that is based on the reception |
| * of ACK packets; ipfilter can only detect that a |
| * packet has been sent by a host |
| */ |
| break; |
| |
| case IPF_TCPS_FIN_WAIT_2: /* 9 */ |
| /* NOT USED */ |
| break; |
| |
| case IPF_TCPS_TIME_WAIT: /* 10 */ |
| /* we're in 2MSL timeout now */ |
| if (ostate == IPF_TCPS_LAST_ACK) { |
| nstate = IPF_TCPS_CLOSED; |
| rval = 1; |
| } else { |
| rval = 2; |
| } |
| break; |
| |
| case IPF_TCPS_CLOSED: /* 11 */ |
| rval = 2; |
| break; |
| |
| default : |
| #if defined(_KERNEL) |
| # if SOLARIS |
| cmn_err(CE_NOTE, |
| "tcp %lx flags %x si %lx nstate %d ostate %d\n", |
| (u_long)tcp, tcpflags, (u_long)tqe, |
| nstate, ostate); |
| # else |
| printf("tcp %lx flags %x si %lx nstate %d ostate %d\n", |
| (u_long)tcp, tcpflags, (u_long)tqe, |
| nstate, ostate); |
| # endif |
| #else |
| abort(); |
| #endif |
| break; |
| } |
| } |
| |
| /* |
| * If rval == 2 then do not update the queue position, but treat the |
| * packet as being ok. |
| */ |
| if (rval == 2) |
| rval = 1; |
| else if (rval == 1) { |
| if (ok) |
| tqe->tqe_state[dir] = nstate; |
| if ((tqe->tqe_flags & TQE_RULEBASED) == 0) |
| ipf_movequeue(tqe, tqe->tqe_ifq, tqtab + nstate); |
| } |
| |
| return rval; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_log */ |
| /* Returns: Nil */ |
| /* Parameters: is(I) - pointer to state structure */ |
| /* type(I) - type of log entry to create */ |
| /* */ |
| /* Creates a state table log entry using the state structure and type info. */ |
| /* passed in. Log packet/byte counts, source/destination address and other */ |
| /* protocol specific information. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_log(is, type) |
| struct ipstate *is; |
| u_int type; |
| { |
| #ifdef IPFILTER_LOG |
| struct ipslog ipsl; |
| size_t sizes[1]; |
| void *items[1]; |
| int types[1]; |
| |
| /* |
| * Copy information out of the ipstate_t structure and into the |
| * structure used for logging. |
| */ |
| ipsl.isl_type = type; |
| ipsl.isl_pkts[0] = is->is_pkts[0] + is->is_icmppkts[0]; |
| ipsl.isl_bytes[0] = is->is_bytes[0]; |
| ipsl.isl_pkts[1] = is->is_pkts[1] + is->is_icmppkts[1]; |
| ipsl.isl_bytes[1] = is->is_bytes[1]; |
| ipsl.isl_pkts[2] = is->is_pkts[2] + is->is_icmppkts[2]; |
| ipsl.isl_bytes[2] = is->is_bytes[2]; |
| ipsl.isl_pkts[3] = is->is_pkts[3] + is->is_icmppkts[3]; |
| ipsl.isl_bytes[3] = is->is_bytes[3]; |
| ipsl.isl_src = is->is_src; |
| ipsl.isl_dst = is->is_dst; |
| ipsl.isl_p = is->is_p; |
| ipsl.isl_v = is->is_v; |
| ipsl.isl_flags = is->is_flags; |
| ipsl.isl_tag = is->is_tag; |
| ipsl.isl_rulen = is->is_rulen; |
| (void) strncpy(ipsl.isl_group, is->is_group, FR_GROUPLEN); |
| |
| if (ipsl.isl_p == IPPROTO_TCP || ipsl.isl_p == IPPROTO_UDP) { |
| ipsl.isl_sport = is->is_sport; |
| ipsl.isl_dport = is->is_dport; |
| if (ipsl.isl_p == IPPROTO_TCP) { |
| ipsl.isl_state[0] = is->is_state[0]; |
| ipsl.isl_state[1] = is->is_state[1]; |
| } |
| } else if (ipsl.isl_p == IPPROTO_ICMP) { |
| ipsl.isl_itype = is->is_icmp.ici_type; |
| } else if (ipsl.isl_p == IPPROTO_ICMPV6) { |
| ipsl.isl_itype = is->is_icmp.ici_type; |
| } else { |
| ipsl.isl_ps.isl_filler[0] = 0; |
| ipsl.isl_ps.isl_filler[1] = 0; |
| } |
| |
| items[0] = &ipsl; |
| sizes[0] = sizeof(ipsl); |
| types[0] = 0; |
| |
| if (ipf_log_items(IPL_LOGSTATE, NULL, items, sizes, types, 1)) { |
| ATOMIC_INCL(ipf_state_stats.iss_log_ok); |
| } else { |
| ATOMIC_INCL(ipf_state_stats.iss_log_fail); |
| } |
| #endif |
| } |
| |
| |
| #ifdef USE_INET6 |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_checkicmp6matchingstate */ |
| /* Returns: ipstate_t* - NULL == no match found, */ |
| /* else pointer to matching state entry */ |
| /* Parameters: fin(I) - pointer to packet information */ |
| /* Locks: NULL == no locks, else Read Lock on ipf_state */ |
| /* */ |
| /* If we've got an ICMPv6 error message, using the information stored in */ |
| /* the ICMPv6 packet, look for a matching state table entry. */ |
| /* ------------------------------------------------------------------------ */ |
| static ipstate_t * |
| ipf_checkicmp6matchingstate(fin) |
| fr_info_t *fin; |
| { |
| struct icmp6_hdr *ic6, *oic; |
| ipstate_t *is, **isp; |
| u_short sport, dport; |
| i6addr_t dst, src; |
| u_short savelen; |
| icmpinfo_t *ic; |
| fr_info_t ofin; |
| tcphdr_t *tcp; |
| ip6_t *oip6; |
| u_char pr; |
| u_int hv; |
| int type; |
| |
| /* |
| * Does it at least have the return (basic) IP header ? |
| * Is it an actual recognised ICMP error type? |
| * Only a basic IP header (no options) should be with |
| * an ICMP error header. |
| */ |
| if ((fin->fin_v != 6) || (fin->fin_plen < ICMP6ERR_MINPKTLEN) || |
| !(fin->fin_flx & FI_ICMPERR)) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_bad); |
| return NULL; |
| } |
| |
| ic6 = fin->fin_dp; |
| type = ic6->icmp6_type; |
| |
| oip6 = (ip6_t *)((char *)ic6 + ICMPERR_ICMPHLEN); |
| if (fin->fin_plen < sizeof(*oip6)) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_short); |
| return NULL; |
| } |
| |
| bcopy((char *)fin, (char *)&ofin, sizeof(*fin)); |
| ofin.fin_v = 6; |
| ofin.fin_ifp = fin->fin_ifp; |
| ofin.fin_out = !fin->fin_out; |
| ofin.fin_m = NULL; /* if dereferenced, panic XXX */ |
| ofin.fin_mp = NULL; /* if dereferenced, panic XXX */ |
| |
| /* |
| * We make a fin entry to be able to feed it to |
| * matchsrcdst. Note that not all fields are necessary |
| * but this is the cleanest way. Note further we fill |
| * in fin_mp such that if someone uses it we'll get |
| * a kernel panic. ipf_matchsrcdst does not use this. |
| * |
| * watch out here, as ip is in host order and oip6 in network |
| * order. Any change we make must be undone afterwards. |
| */ |
| savelen = oip6->ip6_plen; |
| oip6->ip6_plen = fin->fin_dlen - ICMPERR_ICMPHLEN; |
| ofin.fin_flx = FI_NOCKSUM; |
| ofin.fin_ip = (ip_t *)oip6; |
| (void) ipf_makefrip(sizeof(*oip6), (ip_t *)oip6, &ofin); |
| ofin.fin_flx &= ~(FI_BAD|FI_SHORT); |
| oip6->ip6_plen = savelen; |
| pr = ofin.fin_p; |
| |
| /* |
| * an ICMP error can never generate an ICMP error in response. |
| */ |
| if (ofin.fin_flx & FI_ICMPERR) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp6_icmperr); |
| return NULL; |
| } |
| |
| if (oip6->ip6_nxt == IPPROTO_ICMPV6) { |
| oic = ofin.fin_dp; |
| /* |
| * an ICMP error can only be generated as a result of an |
| * ICMP query, not as the response on an ICMP error |
| * |
| * XXX theoretically ICMP_ECHOREP and the other reply's are |
| * ICMP query's as well, but adding them here seems strange XXX |
| */ |
| if (!(oic->icmp6_type & ICMP6_INFOMSG_MASK)) { |
| ATOMIC_INCL(ipf_state_stats.iss_icmp6_notinfo); |
| return NULL; |
| } |
| |
| /* |
| * perform a lookup of the ICMP packet in the state table |
| */ |
| hv = (pr = oip6->ip6_nxt); |
| src.in6 = oip6->ip6_src; |
| hv += src.in4.s_addr; |
| dst.in6 = oip6->ip6_dst; |
| hv += dst.in4.s_addr; |
| hv += oic->icmp6_id; |
| hv += oic->icmp6_seq; |
| hv = DOUBLE_HASH(hv); |
| |
| READ_ENTER(&ipf_state); |
| for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) { |
| ic = &is->is_icmp; |
| isp = &is->is_hnext; |
| if ((is->is_p == pr) && |
| !(is->is_pass & FR_NOICMPERR) && |
| (oic->icmp6_id == ic->ici_id) && |
| (oic->icmp6_seq == ic->ici_seq) && |
| (is = ipf_matchsrcdst(&ofin, is, &src, |
| &dst, NULL, FI_ICMPCMP))) { |
| /* |
| * in the state table ICMP query's are stored |
| * with the type of the corresponding ICMP |
| * response. Correct here |
| */ |
| if (((ic->ici_type == ICMP6_ECHO_REPLY) && |
| (oic->icmp6_type == ICMP6_ECHO_REQUEST)) || |
| (ic->ici_type - 1 == oic->icmp6_type )) { |
| if (!ipf_allowstateicmp(fin, is, &src)) |
| return is; |
| } |
| } |
| } |
| RWLOCK_EXIT(&ipf_state); |
| ATOMIC_INCL(ipf_state_stats.iss_icmp6_miss); |
| return NULL; |
| } |
| |
| hv = (pr = oip6->ip6_nxt); |
| src.in6 = oip6->ip6_src; |
| hv += src.i6[0]; |
| hv += src.i6[1]; |
| hv += src.i6[2]; |
| hv += src.i6[3]; |
| dst.in6 = oip6->ip6_dst; |
| hv += dst.i6[0]; |
| hv += dst.i6[1]; |
| hv += dst.i6[2]; |
| hv += dst.i6[3]; |
| |
| tcp = NULL; |
| |
| switch (oip6->ip6_nxt) |
| { |
| case IPPROTO_TCP : |
| case IPPROTO_UDP : |
| tcp = (tcphdr_t *)(oip6 + 1); |
| dport = tcp->th_dport; |
| sport = tcp->th_sport; |
| hv += dport; |
| hv += sport; |
| break; |
| |
| case IPPROTO_ICMPV6 : |
| oic = (struct icmp6_hdr *)(oip6 + 1); |
| hv += oic->icmp6_id; |
| hv += oic->icmp6_seq; |
| break; |
| |
| default : |
| break; |
| } |
| |
| hv = DOUBLE_HASH(hv); |
| |
| READ_ENTER(&ipf_state); |
| for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) { |
| isp = &is->is_hnext; |
| /* |
| * Only allow this icmp though if the |
| * encapsulated packet was allowed through the |
| * other way around. Note that the minimal amount |
| * of info present does not allow for checking against |
| * tcp internals such as seq and ack numbers. |
| */ |
| if ((is->is_p != pr) || (is->is_v != 6) || |
| (is->is_pass & FR_NOICMPERR)) |
| continue; |
| is = ipf_matchsrcdst(&ofin, is, &src, &dst, tcp, FI_ICMPCMP); |
| if ((is != NULL) && (ipf_allowstateicmp(fin, is, &src) == 0)) |
| return is; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| ATOMIC_INCL(ipf_state_stats.iss_icmp_miss); |
| return NULL; |
| } |
| #endif |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_sttab_init */ |
| /* Returns: Nil */ |
| /* Parameters: tqp(I) - pointer to an array of timeout queues for TCP */ |
| /* */ |
| /* Initialise the array of timeout queues for TCP. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_sttab_init(tqp) |
| ipftq_t *tqp; |
| { |
| int i; |
| |
| for (i = IPF_TCP_NSTATES - 1; i >= 0; i--) { |
| IPFTQ_INIT(&tqp[i], 0, "ipftq tcp tab"); |
| tqp[i].ifq_next = tqp + i + 1; |
| } |
| tqp[IPF_TCP_NSTATES - 1].ifq_next = NULL; |
| tqp[IPF_TCPS_CLOSED].ifq_ttl = ipf_tcpclosed; |
| tqp[IPF_TCPS_LISTEN].ifq_ttl = ipf_tcptimeout; |
| tqp[IPF_TCPS_SYN_SENT].ifq_ttl = ipf_tcpsynsent; |
| tqp[IPF_TCPS_SYN_RECEIVED].ifq_ttl = ipf_tcpsynrecv; |
| tqp[IPF_TCPS_ESTABLISHED].ifq_ttl = ipf_tcpidletimeout; |
| tqp[IPF_TCPS_CLOSE_WAIT].ifq_ttl = ipf_tcphalfclosed; |
| tqp[IPF_TCPS_FIN_WAIT_1].ifq_ttl = ipf_tcphalfclosed; |
| tqp[IPF_TCPS_CLOSING].ifq_ttl = ipf_tcptimeout; |
| tqp[IPF_TCPS_LAST_ACK].ifq_ttl = ipf_tcplastack; |
| tqp[IPF_TCPS_FIN_WAIT_2].ifq_ttl = ipf_tcpclosewait; |
| tqp[IPF_TCPS_TIME_WAIT].ifq_ttl = ipf_tcptimewait; |
| tqp[IPF_TCPS_HALF_ESTAB].ifq_ttl = ipf_tcptimeout; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_sttab_destroy */ |
| /* Returns: Nil */ |
| /* Parameters: tqp(I) - pointer to an array of timeout queues for TCP */ |
| /* */ |
| /* Do whatever is necessary to "destroy" each of the entries in the array */ |
| /* of timeout queues for TCP. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_sttab_destroy(tqp) |
| ipftq_t *tqp; |
| { |
| int i; |
| |
| for (i = IPF_TCP_NSTATES - 1; i >= 0; i--) |
| MUTEX_DESTROY(&tqp[i].ifq_lock); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_deref */ |
| /* Returns: Nil */ |
| /* Parameters: isp(I) - pointer to pointer to state table entry */ |
| /* */ |
| /* Decrement the reference counter for this state table entry and free it */ |
| /* if there are no more things using it. */ |
| /* */ |
| /* This function is only called when cleaning up after increasing is_ref by */ |
| /* one earlier in the 'code path' so if is_ref is 1 when entering, we do */ |
| /* have an orphan, otherwise not. However there is a possible race between */ |
| /* the entry being deleted via flushing with an ioctl call (that calls the */ |
| /* delete function directly) and the tail end of packet processing so we */ |
| /* need to grab is_lock before doing the check to synchronise the two code */ |
| /* paths. */ |
| /* */ |
| /* When operating in userland (ipftest), we have no timers to clear a state */ |
| /* entry. Therefore, we make a few simple tests before deleting an entry */ |
| /* outright. We compare states on each side looking for a combination of */ |
| /* TIME_WAIT (should really be FIN_WAIT_2?) and LAST_ACK. Then we factor */ |
| /* in packet direction with the interface list to make sure we don't */ |
| /* prematurely delete an entry on a final inbound packet that's we're also */ |
| /* supposed to route elsewhere. */ |
| /* */ |
| /* Internal parameters: */ |
| /* state[0] = state of source (host that initiated connection) */ |
| /* state[1] = state of dest (host that accepted the connection) */ |
| /* */ |
| /* dir == 0 : a packet from source to dest */ |
| /* dir == 1 : a packet from dest to source */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_deref(isp) |
| ipstate_t **isp; |
| { |
| ipstate_t *is = *isp; |
| |
| is = *isp; |
| *isp = NULL; |
| |
| MUTEX_ENTER(&is->is_lock); |
| if (is->is_ref > 1) { |
| is->is_ref--; |
| MUTEX_EXIT(&is->is_lock); |
| #ifndef _KERNEL |
| if ((is->is_sti.tqe_state[0] > IPF_TCPS_ESTABLISHED) || |
| (is->is_sti.tqe_state[1] > IPF_TCPS_ESTABLISHED)) { |
| ipf_state_del(is, ISL_EXPIRE); |
| } |
| #endif |
| return; |
| } |
| MUTEX_EXIT(&is->is_lock); |
| |
| WRITE_ENTER(&ipf_state); |
| ipf_state_del(is, ISL_ORPHAN); |
| RWLOCK_EXIT(&ipf_state); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_setqueue */ |
| /* Returns: Nil */ |
| /* Parameters: is(I) - pointer to state structure */ |
| /* rev(I) - forward(0) or reverse(1) direction */ |
| /* Locks: ipf_state (read or write) */ |
| /* */ |
| /* Put the state entry on its default queue entry, using rev as a helped in */ |
| /* determining which queue it should be placed on. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_setqueue(is, rev) |
| ipstate_t *is; |
| int rev; |
| { |
| ipftq_t *oifq, *nifq; |
| |
| if ((is->is_sti.tqe_flags & TQE_RULEBASED) != 0) |
| nifq = is->is_tqehead[rev]; |
| else |
| nifq = NULL; |
| |
| if (nifq == NULL) { |
| switch (is->is_p) |
| { |
| #ifdef USE_INET6 |
| case IPPROTO_ICMPV6 : |
| if (rev == 1) |
| nifq = &ipf_state_icmpacktq; |
| else |
| nifq = &ipf_state_icmptq; |
| break; |
| #endif |
| case IPPROTO_ICMP : |
| if (rev == 1) |
| nifq = &ipf_state_icmpacktq; |
| else |
| nifq = &ipf_state_icmptq; |
| break; |
| case IPPROTO_TCP : |
| nifq = ipf_state_tcptq + is->is_state[rev]; |
| break; |
| |
| case IPPROTO_UDP : |
| if (rev == 1) |
| nifq = &ipf_state_udpacktq; |
| else |
| nifq = &ipf_state_udptq; |
| break; |
| |
| default : |
| nifq = &ipf_state_iptq; |
| break; |
| } |
| } |
| |
| oifq = is->is_sti.tqe_ifq; |
| /* |
| * If it's currently on a timeout queue, move it from one queue to |
| * another, else put it on the end of the newly determined queue. |
| */ |
| if (oifq != NULL) |
| ipf_movequeue(&is->is_sti, oifq, nifq); |
| else |
| ipf_queueappend(&is->is_sti, nifq, is); |
| return; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_stateiter */ |
| /* Returns: int - 0 == success, else error */ |
| /* Parameters: token(I) - pointer to ipftoken structure */ |
| /* itp(I) - pointer to ipfgeniter structure */ |
| /* */ |
| /* This function handles the SIOCGENITER ioctl for the state tables and */ |
| /* walks through the list of entries in the state table list (ipf_state_list.) */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_stateiter(token, itp) |
| ipftoken_t *token; |
| ipfgeniter_t *itp; |
| { |
| ipstate_t *is, *next, zero; |
| int error, count; |
| char *dst; |
| |
| if (itp->igi_data == NULL) { |
| ipf_interror = 100026; |
| return EFAULT; |
| } |
| |
| if (itp->igi_nitems < 1) { |
| ipf_interror = 100027; |
| return ENOSPC; |
| } |
| |
| if (itp->igi_type != IPFGENITER_STATE) { |
| ipf_interror = 100028; |
| return EINVAL; |
| } |
| |
| is = token->ipt_data; |
| if (is == (void *)-1) { |
| ipf_interror = 100029; |
| return ESRCH; |
| } |
| |
| error = 0; |
| dst = itp->igi_data; |
| |
| READ_ENTER(&ipf_state); |
| if (is == NULL) { |
| next = ipf_state_list; |
| } else { |
| next = is->is_next; |
| } |
| |
| count = itp->igi_nitems; |
| for (;;) { |
| if (next != NULL) { |
| /* |
| * If we find a state entry to use, bump its |
| * reference count so that it can be used for |
| * is_next when we come back. |
| */ |
| if (count == 1) { |
| MUTEX_ENTER(&next->is_lock); |
| next->is_ref++; |
| MUTEX_EXIT(&next->is_lock); |
| token->ipt_data = next; |
| } |
| } else { |
| bzero(&zero, sizeof(zero)); |
| next = &zero; |
| count = 1; |
| token->ipt_data = NULL; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| |
| /* |
| * This should arguably be via ipf_outobj() so that the state |
| * structure can (if required) be massaged going out. |
| */ |
| error = COPYOUT(next, dst, sizeof(*next)); |
| if (error != 0) { |
| ipf_interror = 100030; |
| error = EFAULT; |
| } |
| if ((count == 1) || (error != 0)) |
| break; |
| |
| dst += sizeof(*next); |
| count--; |
| |
| READ_ENTER(&ipf_state); |
| next = next->is_next; |
| } |
| |
| if (is != NULL) { |
| ipf_state_deref(&is); |
| } |
| |
| return error; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_stgettable */ |
| /* Returns: int - 0 = success, else error */ |
| /* Parameters: data(I) - pointer to ioctl data */ |
| /* */ |
| /* This function handles ioctl requests for tables of state information. */ |
| /* At present the only table it deals with is the hash bucket statistics. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_stgettable(data) |
| char *data; |
| { |
| ipftable_t table; |
| int error; |
| |
| error = ipf_inobj(data, &table, IPFOBJ_GTABLE); |
| if (error != 0) |
| return error; |
| |
| if (table.ita_type != IPFTABLE_BUCKETS) { |
| ipf_interror = 100031; |
| return EINVAL; |
| } |
| |
| error = COPYOUT(ipf_state_stats.iss_bucketlen, table.ita_table, |
| ipf_state_size * sizeof(u_int)); |
| if (error != 0) { |
| ipf_interror = 100032; |
| error = EFAULT; |
| } |
| return error; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_setpending */ |
| /* Returns: Nil */ |
| /* Parameters: is(I) - pointer to state structure */ |
| /* Locks: ipf_state (read or write) */ |
| /* */ |
| /* Put the state entry on to the pending queue - this queue has a very */ |
| /* short lifetime where items are put that can't be deleted straight away */ |
| /* because of locking issues but we want to delete them ASAP, anyway. */ |
| /* ------------------------------------------------------------------------ */ |
| void |
| ipf_state_setpending(is) |
| ipstate_t *is; |
| { |
| ipftq_t *oifq; |
| |
| oifq = is->is_sti.tqe_ifq; |
| if (oifq != NULL) |
| ipf_movequeue(&is->is_sti, oifq, &ipf_state_pending); |
| else |
| ipf_queueappend(&is->is_sti, &ipf_state_pending, is); |
| |
| if (is->is_me != NULL) { |
| *is->is_me = NULL; |
| is->is_me = NULL; |
| } |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_matchflush */ |
| /* Returns: Nil */ |
| /* Parameters: is(I) - pointer to state structure */ |
| /* Locks: ipf_state (read or write) */ |
| /* */ |
| /* Flush all entries from the list of state entries that match the */ |
| /* properties in the array loaded. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_state_matchflush(data) |
| caddr_t data; |
| { |
| int *array, flushed, error; |
| ipstate_t *state, *statenext; |
| ipfobj_t obj; |
| |
| error = ipf_matcharray_load(data, &obj, &array); |
| if (error != 0) |
| return error; |
| |
| flushed = 0; |
| |
| for (state = ipf_state_list; state != NULL; state = statenext) { |
| statenext = state->is_next; |
| if (ipf_state_matcharray(state, array) == 0) { |
| ipf_state_del(state, ISL_FLUSH); |
| flushed++; |
| } |
| } |
| |
| obj.ipfo_retval = flushed; |
| error = BCOPYOUT(&obj, data, sizeof(obj)); |
| |
| KFREES(array, array[0] * sizeof(*array)); |
| |
| return error; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_matcharray */ |
| /* Returns: int - 0 = no match, 1 = match */ |
| /* Parameters: is(I) - pointer to state structure */ |
| /* Locks: ipf_state (read or write) */ |
| /* */ |
| /* Compare a state entry with the match array passed in and return a value */ |
| /* to indicate whether or not the matching was successful. */ |
| /* ------------------------------------------------------------------------ */ |
| static int |
| ipf_state_matcharray(state, array) |
| ipstate_t *state; |
| int *array; |
| { |
| int i, n, *x, e, p; |
| |
| e = 0; |
| n = array[0]; |
| x = array + 1; |
| |
| for (; n > 0; x += 3 + x[2]) { |
| if (x[0] == IPF_EXP_END) |
| break; |
| |
| n -= x[2] + 3; |
| if (n < 0) |
| break; |
| |
| e = 0; |
| |
| /* |
| * If we need to match the protocol and that doesn't match, |
| * don't even both with the instruction array. |
| */ |
| p = (x[0] >> 16) & 0xff; |
| if (p != 0 && p != state->is_p) |
| break; |
| |
| switch (x[0]) |
| { |
| case IPF_EXP_IP_PR : |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= (state->is_p == x[i + 3]); |
| } |
| break; |
| |
| case IPF_EXP_IP_SRCADDR : |
| if (state->is_v != 4) |
| break; |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= ((state->is_saddr & x[i + 4]) == |
| x[i + 3]); |
| } |
| break; |
| |
| case IPF_EXP_IP_DSTADDR : |
| if (state->is_v != 4) |
| break; |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= ((state->is_daddr & x[i + 4]) == |
| x[i + 3]); |
| } |
| break; |
| |
| case IPF_EXP_IP_ADDR : |
| if (state->is_v != 4) |
| break; |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= ((state->is_saddr & x[i + 4]) == |
| x[i + 3]) || |
| ((state->is_daddr & x[i + 4]) == |
| x[i + 3]); |
| } |
| break; |
| |
| #ifdef USE_INET6 |
| case IPF_EXP_IP6_SRCADDR : |
| if (state->is_v != 6) |
| break; |
| for (i = 0; !e && i < x[3]; i++) { |
| e |= IP6_MASKEQ(&state->is_src.in6, x + i + 7, |
| x + i + 3); |
| } |
| break; |
| |
| case IPF_EXP_IP6_DSTADDR : |
| if (state->is_v != 6) |
| break; |
| for (i = 0; !e && i < x[3]; i++) { |
| e |= IP6_MASKEQ(&state->is_dst.in6, x + i + 7, |
| x + i + 3); |
| } |
| break; |
| |
| case IPF_EXP_IP6_ADDR : |
| if (state->is_v != 6) |
| break; |
| for (i = 0; !e && i < x[3]; i++) { |
| e |= IP6_MASKEQ(&state->is_src.in6, x + i + 7, |
| x + i + 3) || |
| IP6_MASKEQ(&state->is_dst.in6, x + i + 7, |
| x + i + 3); |
| } |
| break; |
| #endif |
| |
| case IPF_EXP_UDP_PORT : |
| case IPF_EXP_TCP_PORT : |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= (state->is_sport == x[i + 3]) || |
| (state->is_dport == x[i + 3]); |
| } |
| break; |
| |
| case IPF_EXP_UDP_SPORT : |
| case IPF_EXP_TCP_SPORT : |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= (state->is_sport == x[i + 3]); |
| } |
| break; |
| |
| case IPF_EXP_UDP_DPORT : |
| case IPF_EXP_TCP_DPORT : |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= (state->is_dport == x[i + 3]); |
| } |
| break; |
| |
| case IPF_EXP_TCP_STATE : |
| for (i = 0; !e && i < x[2]; i++) { |
| e |= (state->is_state[0] == x[i + 3]) || |
| (state->is_state[1] == x[i + 3]); |
| } |
| break; |
| |
| case IPF_EXP_IDLE_GT : |
| e |= (ipf_ticks - state->is_touched > x[3]); |
| break; |
| } |
| |
| /* |
| * Factor in doing a negative match. |
| */ |
| e ^= x[1]; |
| |
| if (!e) |
| break; |
| } |
| |
| return e; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_settimeout */ |
| /* Returns: int 0 = success, else failure */ |
| /* Parameters: t(I) - pointer to tuneable being changed */ |
| /* p(I) - pointer to the new value */ |
| /* */ |
| /* Sets a timeout value for one of the many timeout queues. We find the */ |
| /* correct queue using a somewhat manual process of comparing the timeout */ |
| /* names for each specific value available and calling ipf_apply_timeout on */ |
| /* that queue so that all of the items on it are updated accordingly. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_state_settimeout(t, p) |
| ipftuneable_t *t; |
| ipftuneval_t *p; |
| { |
| |
| /* |
| * In case there is nothing to do... |
| */ |
| if (*t->ipft_pint == p->ipftu_int) |
| return 0; |
| |
| if (!strncmp(t->ipft_name, "tcp_", 4)) |
| return ipf_settimeout_tcp(t, p, ipf_state_tcptq); |
| |
| if (!strcmp(t->ipft_name, "udp_timeout")) { |
| ipf_apply_timeout(&ipf_state_udptq, p->ipftu_int); |
| } else if (!strcmp(t->ipft_name, "udp_ack_timeout")) { |
| ipf_apply_timeout(&ipf_state_udpacktq, p->ipftu_int); |
| } else if (!strcmp(t->ipft_name, "icmp_timeout")) { |
| ipf_apply_timeout(&ipf_state_icmptq, p->ipftu_int); |
| } else if (!strcmp(t->ipft_name, "icmp_ack_timeout")) { |
| ipf_apply_timeout(&ipf_state_icmpacktq, p->ipftu_int); |
| } else if (!strcmp(t->ipft_name, "ip_timeout")) { |
| ipf_apply_timeout(&ipf_state_iptq, p->ipftu_int); |
| } else { |
| ipf_interror = 100034; |
| return ESRCH; |
| } |
| |
| /* |
| * Update the tuneable being set. |
| */ |
| *t->ipft_pint = p->ipftu_int; |
| |
| return 0; |
| } |
| |
| |
| /* ------------------------------------------------------------------------ */ |
| /* Function: ipf_state_rehash */ |
| /* Returns: int 0 = success, else failure */ |
| /* Parameters: t(I) - pointer to tuneable being changed */ |
| /* p(I) - pointer to the new value */ |
| /* */ |
| /* To change the size of the state hash table at runtime, a new table has */ |
| /* to be allocated and then all of the existing entries put in it, bumping */ |
| /* up the bucketlength for it as we go along. */ |
| /* ------------------------------------------------------------------------ */ |
| int |
| ipf_state_rehash(t, p) |
| ipftuneable_t *t; |
| ipftuneval_t *p; |
| { |
| ipstate_t **newtab, *is; |
| u_int *bucketlens; |
| u_int maxbucket; |
| u_int newsize; |
| u_int hv; |
| int i; |
| |
| newsize = p->ipftu_int; |
| /* |
| * In case there is nothing to do... |
| */ |
| if (newsize == ipf_state_size) |
| return 0; |
| |
| KMALLOCS(newtab, ipstate_t **, newsize * sizeof(ipstate_t *)); |
| if (newtab == NULL) { |
| ipf_interror = 100035; |
| return ENOMEM; |
| } |
| |
| KMALLOCS(bucketlens, u_int *, newsize * sizeof(u_int)); |
| if (bucketlens == NULL) { |
| KFREES(newtab, newsize * sizeof(*ipf_state_table)); |
| ipf_interror = 100036; |
| return ENOMEM; |
| } |
| |
| for (maxbucket = 0, i = newsize; i > 0; i >>= 1) |
| maxbucket++; |
| maxbucket *= 2; |
| |
| bzero((char *)newtab, newsize * sizeof(ipstate_t *)); |
| bzero((char *)bucketlens, newsize * sizeof(u_int)); |
| |
| WRITE_ENTER(&ipf_state); |
| |
| if (ipf_state_table != NULL) { |
| KFREES(ipf_state_table, |
| ipf_state_size * sizeof(*ipf_state_table)); |
| } |
| ipf_state_table = newtab; |
| |
| if (ipf_state_stats.iss_bucketlen != NULL) { |
| KFREES(ipf_state_stats.iss_bucketlen, |
| ipf_state_size * sizeof(u_int)); |
| } |
| ipf_state_stats.iss_bucketlen = bucketlens; |
| ipf_state_maxbucket = maxbucket; |
| ipf_state_size = newsize; |
| |
| /* |
| * Walk through the entire list of state table entries and put them |
| * in the new state table, somewhere. Because we have a new table, |
| * we need to restart the counter of how many chains are in use. |
| */ |
| ipf_state_stats.iss_inuse = 0; |
| for (is = ipf_state_list; is != NULL; is = is->is_next) { |
| is->is_hnext = NULL; |
| is->is_phnext = NULL; |
| hv = is->is_hv % ipf_state_size; |
| |
| if (ipf_state_table[hv] != NULL) |
| ipf_state_table[hv]->is_phnext = &is->is_hnext; |
| else |
| ipf_state_stats.iss_inuse++; |
| is->is_phnext = ipf_state_table + hv; |
| is->is_hnext = ipf_state_table[hv]; |
| ipf_state_table[hv] = is; |
| ipf_state_stats.iss_bucketlen[hv]++; |
| } |
| RWLOCK_EXIT(&ipf_state); |
| |
| return 0; |
| } |