blob: bc7ad9072e63bbd58029b1508d52615df1a8a532 [file] [log] [blame] [raw]
/*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.6 (Berkeley) 10/17/95
*/
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#if defined(KERNEL) || defined(_KERNEL)
# undef KERNEL
# undef _KERNEL
# define KERNEL 1
# define _KERNEL 1
#endif
#define __SYS_ATOMIC_OPS_H__
#if !defined(__svr4__) && !defined(__SVR4) && !defined(__osf__) && \
!defined(__hpux) && !defined(__sgi)
#include <sys/cdefs.h>
#endif
#ifndef __P
# ifdef __STDC__
# define __P(x) x
# else
# define __P(x) ()
# endif
#endif
#ifdef __osf__
# define CONST
# define _IPV6_SWTAB_H
# define _PROTO_NET_H_
# define _PROTO_IPV6_H
# include <sys/malloc.h>
#endif
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#else
void panic __P((char *str));
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#endif
#ifdef __hpux
#include <syslog.h>
#else
#include <sys/syslog.h>
#endif
#include <sys/time.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <net/if.h>
#ifdef SOLARIS2
# define _RADIX_H_
#endif
#include "netinet/ip_compat.h"
#include "netinet/ip_fil.h"
#ifdef SOLARIS2
# undef _RADIX_H_
#endif
/* END OF INCLUDES */
#include "radix_ipf.h"
#ifndef min
# define min MIN
#endif
#ifndef max
# define max MAX
#endif
typedef struct radix_softc_s {
int max_keylen;
struct ipf_radix_mask *rn_mkfreelist;
struct ipf_radix_node_head *mask_rnhead;
u_char *addmask_key;
u_char *rn_zeros;
u_char *rn_ones;
#ifdef RN_DEBUG
int rn_nodenum;
struct ipf_radix_node *rn_clist;
int rn_saveinfo;
int rn_debug;
#endif
} radix_softc_t;
static u_char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
#undef bcmp
#define bcmp(a, b, l) (l == 0 ? 0 : bcmp((void *)(a), (void *)(b), (u_long)l))
static int ipf_rn_satisfies_leaf __P((radix_softc_t *, u_char *, struct ipf_radix_node *, int));
static int ipf_rn_lexobetter __P((void *, void *));
static struct ipf_radix_mask *ipf_rn_new_ipf_radix_mask __P((radix_softc_t *, struct ipf_radix_node *,
struct ipf_radix_mask *));
static int ipf_rn_freenode __P((void *, struct ipf_radix_node *, void *));
#if defined(AIX) && !defined(_KERNEL)
struct ipf_radix_node *ipf_rn_match __P((void *, struct ipf_radix_node_head *));
struct ipf_radix_node *ipf_rn_addmask __P((radix_softc_t *, void *, int, int));
#define Bcopy(x, y, z) bcopy(x, y, z)
#endif
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_b at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explicit mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/
struct ipf_radix_node *
ipf_rn_search(v_arg, head)
void *v_arg;
struct ipf_radix_node *head;
{
struct ipf_radix_node *x;
u_char *v;
for (x = head, v = v_arg; x->rn_b >= 0;) {
if (x->rn_bmask & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
}
struct ipf_radix_node *
ipf_rn_search_m(v_arg, head, m_arg)
struct ipf_radix_node *head;
void *v_arg, *m_arg;
{
struct ipf_radix_node *x;
u_char *v = v_arg, *m = m_arg;
for (x = head; x->rn_b >= 0;) {
if ((x->rn_bmask & m[x->rn_off]) &&
(x->rn_bmask & v[x->rn_off]))
x = x->rn_r;
else
x = x->rn_l;
}
return x;
}
int
ipf_rn_refines(m_arg, n_arg)
void *m_arg, *n_arg;
{
u_char *m = m_arg, *n = n_arg;
u_char *lim, *lim2 = lim = n + *(u_char *)n;
int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
int masks_are_equal = 1;
if (longer > 0)
lim -= longer;
while (n < lim) {
if (*n & ~(*m))
return 0;
if (*n++ != *m++)
masks_are_equal = 0;
}
while (n < lim2)
if (*n++)
return 0;
if (masks_are_equal && (longer < 0))
for (lim2 = m - longer; m < lim2; )
if (*m++)
return 1;
return (!masks_are_equal);
}
struct ipf_radix_node *
ipf_rn_lookup(soft, v_arg, m_arg, head)
void *soft, *v_arg, *m_arg;
struct ipf_radix_node_head *head;
{
radix_softc_t *softr = soft;
struct ipf_radix_node *x;
u_char *netmask = 0;
if (m_arg) {
if ((x = ipf_rn_addmask(softr, m_arg, 1,
head->rnh_treetop->rn_off)) == 0)
return (0);
netmask = x->rn_key;
}
x = ipf_rn_match(soft, v_arg, head);
if (x && netmask) {
while (x && x->rn_mask != netmask)
x = x->rn_dupedkey;
}
return x;
}
static int
ipf_rn_satisfies_leaf(softr, trial, leaf, skip)
radix_softc_t *softr;
u_char *trial;
struct ipf_radix_node *leaf;
int skip;
{
u_char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
u_char *cplim;
int length = min(*(u_char *)cp, *(u_char *)cp2);
if (cp3 == 0)
cp3 = softr->rn_ones;
else
length = min(length, *(u_char *)cp3);
cplim = cp + length;
cp3 += skip;
cp2 += skip;
for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
if ((*cp ^ *cp2) & *cp3)
return 0;
return 1;
}
struct ipf_radix_node *
ipf_rn_match(soft, v_arg, head)
void *soft, *v_arg;
struct ipf_radix_node_head *head;
{
radix_softc_t *softr = soft;
u_char *v = v_arg;
struct ipf_radix_node *t = head->rnh_treetop, *x;
u_char *cp = v, *cp2;
u_char *cplim;
struct ipf_radix_node *saved_t, *top = t;
int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
int test, b, rn_b;
/*
* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
for (; t->rn_b >= 0; ) {
if (t->rn_bmask & cp[t->rn_off])
t = t->rn_r;
else
t = t->rn_l;
}
/*
* See if we match exactly as a host destination
* or at least learn how many bits match, for normal mask finesse.
*
* It doesn't hurt us to limit how many bytes to check
* to the length of the mask, since if it matches we had a genuine
* match and the leaf we have is the most specific one anyway;
* if it didn't match with a shorter length it would fail
* with a long one. This wins big for class B&C netmasks which
* are probably the most common case...
*/
if (t->rn_mask)
vlen = *(u_char *)t->rn_mask;
cp += off;
cp2 = t->rn_key + off;
cplim = v + vlen;
for (; cp < cplim; cp++, cp2++)
if (*cp != *cp2)
goto on1;
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*/
if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
t = t->rn_dupedkey;
return t;
on1:
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
for (b = 7; (test >>= 1) > 0;)
b--;
matched_off = cp - v;
b += matched_off << 3;
rn_b = -1 - b;
/*
* If there is a host route in a duped-key chain, it will be first.
*/
if ((saved_t = t)->rn_mask == 0)
t = t->rn_dupedkey;
for (; t; t = t->rn_dupedkey)
/*
* Even if we don't match exactly as a host,
* we may match if the leaf we wound up at is
* a route to a net.
*/
if (t->rn_flags & RNF_NORMAL) {
if (rn_b <= t->rn_b)
return t;
} else if (ipf_rn_satisfies_leaf(softr, v, t, matched_off))
return t;
t = saved_t;
/* start searching up the tree */
do {
struct ipf_radix_mask *m;
t = t->rn_p;
m = t->rn_mklist;
if (m) {
/*
* If non-contiguous masks ever become important
* we can restore the masking and open coding of
* the search and satisfaction test and put the
* calculation of "off" back before the "do".
*/
do {
if (m->rm_flags & RNF_NORMAL) {
if (rn_b <= m->rm_b)
return (m->rm_leaf);
} else {
off = min(t->rn_off, matched_off);
x = ipf_rn_search_m(v, t, m->rm_mask);
while (x && x->rn_mask != m->rm_mask)
x = x->rn_dupedkey;
if (x && ipf_rn_satisfies_leaf(softr, v, x, off))
return x;
}
m = m->rm_mklist;
} while (m);
}
} while (t != top);
return 0;
}
struct ipf_radix_node *
ipf_rn_newpair(v, b, nodes)
void *v;
int b;
struct ipf_radix_node nodes[2];
{
struct ipf_radix_node *tt = nodes, *t = tt + 1;
t->rn_b = b;
t->rn_bmask = 0x80 >> (b & 7);
t->rn_l = tt;
t->rn_off = b >> 3;
tt->rn_b = -1;
tt->rn_key = (void *)v;
tt->rn_p = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
#ifdef RN_DEBUG
tt->rn_info = rn_nodenum++;
t->rn_info = rn_nodenum++;
tt->rn_twin = t;
tt->rn_ybro = rn_clist;
rn_clist = tt;
#endif
return t;
}
struct ipf_radix_node *
ipf_rn_insert(soft, v_arg, head, dupentry, nodes)
void *soft, *v_arg;
struct ipf_radix_node_head *head;
int *dupentry;
struct ipf_radix_node nodes[2];
{
u_char *v = v_arg;
struct ipf_radix_node *top = head->rnh_treetop;
int head_off = top->rn_off, vlen = (int)*((u_char *)v);
struct ipf_radix_node *t = ipf_rn_search(v_arg, top);
u_char *cp = v + head_off;
int b;
struct ipf_radix_node *tt;
#ifdef RN_DEBUG
if (softr->rn_debug)
log(LOG_DEBUG, "rn_insert(%p,%p,%p,%p)\n", v_arg, head, dupentry, nodes);
#endif
/*
* Find first bit at which v and t->rn_key differ
*/
{
u_char *cp2 = t->rn_key + head_off;
int cmp_res;
u_char *cplim = v + vlen;
while (cp < cplim)
if (*cp2++ != *cp++)
goto on1;
*dupentry = 1;
return t;
on1:
*dupentry = 0;
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
for (b = (cp - v) << 3; cmp_res; b--)
cmp_res >>= 1;
}
{
struct ipf_radix_node *p, *x = top;
cp = v;
do {
p = x;
if (cp[x->rn_off] & x->rn_bmask)
x = x->rn_r;
else
x = x->rn_l;
} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
#ifdef RN_DEBUG
if (softr->rn_debug)
log(LOG_DEBUG, "rn_insert: Going In:\n"); // traverse(p);
#endif
t = ipf_rn_newpair(v_arg, b, nodes);
tt = t->rn_l;
if ((cp[p->rn_off] & p->rn_bmask) == 0)
p->rn_l = t;
else
p->rn_r = t;
x->rn_p = t;
t->rn_p = p; /* frees x, p as temp vars below */
if ((cp[t->rn_off] & t->rn_bmask) == 0) {
t->rn_r = x;
} else {
t->rn_r = tt;
t->rn_l = x;
}
#ifdef RN_DEBUG
if (softr->rn_debug)
log(LOG_DEBUG, "rn_insert: Coming Out:\n"); // traverse(p);
#endif
}
return (tt);
}
struct ipf_radix_node *
ipf_rn_addmask(soft, n_arg, search, skip)
int search, skip;
void *soft, *n_arg;
{
radix_softc_t *softr = soft;
u_char *netmask = (u_char *)n_arg;
struct ipf_radix_node *x;
u_char *cp, *cplim;
int b = 0, mlen, j;
int maskduplicated, m0, isnormal;
struct ipf_radix_node *saved_x;
static int last_zeroed = 0;
#ifdef RN_DEBUG
if (softr->rn_debug)
log(LOG_DEBUG, "rn_addmask(%p,%d,%d)\n", n_arg, search, skip);
#endif
mlen = *(u_char *)netmask;
if ((mlen = *(u_char *)netmask) > softr->max_keylen)
mlen = softr->max_keylen;
if (skip == 0)
skip = 1;
if (mlen <= skip)
return (softr->mask_rnhead->rnh_nodes);
if (skip > 1)
Bcopy(softr->rn_ones + 1, softr->addmask_key + 1, skip - 1);
if ((m0 = mlen) > skip)
Bcopy(netmask + skip, softr->addmask_key + skip, mlen - skip);
/*
* Trim trailing zeroes.
*/
for (cp = softr->addmask_key + mlen; (cp > softr->addmask_key) && cp[-1] == 0;)
cp--;
mlen = cp - softr->addmask_key;
if (mlen <= skip) {
if (m0 >= last_zeroed)
last_zeroed = mlen;
return (softr->mask_rnhead->rnh_nodes);
}
if (m0 < last_zeroed)
bzero(softr->addmask_key + m0, last_zeroed - m0);
*softr->addmask_key = last_zeroed = mlen;
x = ipf_rn_search(softr->addmask_key, softr->mask_rnhead->rnh_treetop);
if (bcmp(softr->addmask_key, x->rn_key, mlen) != 0)
x = 0;
if (x || search)
return (x);
KMALLOCS(x, struct ipf_radix_node *, softr->max_keylen + 2 * sizeof (*x));
if ((saved_x = x) == 0)
return (0);
bzero(x, softr->max_keylen + 2 * sizeof (*x));
netmask = cp = (u_char *)(x + 2);
Bcopy(softr->addmask_key, cp, mlen);
x = ipf_rn_insert(soft, cp, softr->mask_rnhead, &maskduplicated, x);
if (maskduplicated) {
#if 0
log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
#endif
KFREE(saved_x);
return (x);
}
/*
* Calculate index of mask, and check for normalcy.
*/
cplim = netmask + mlen;
isnormal = 1;
for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
cp++;
if (cp != cplim) {
for (j = 0x80; (j & *cp) != 0; j >>= 1)
b++;
if (*cp != normal_chars[b] || cp != (cplim - 1))
isnormal = 0;
}
b += (cp - netmask) << 3;
x->rn_b = -1 - b;
if (isnormal)
x->rn_flags |= RNF_NORMAL;
return (x);
}
static int /* XXX: arbitrary ordering for non-contiguous masks */
ipf_rn_lexobetter(m_arg, n_arg)
void *m_arg, *n_arg;
{
u_char *mp = m_arg, *np = n_arg, *lim;
if (*mp > *np)
return 1; /* not really, but need to check longer one first */
if (*mp == *np)
for (lim = mp + *mp; mp < lim;)
if (*mp++ > *np++)
return 1;
return 0;
}
static struct ipf_radix_mask *
ipf_rn_new_ipf_radix_mask(softr, tt, next)
radix_softc_t *softr;
struct ipf_radix_node *tt;
struct ipf_radix_mask *next;
{
struct ipf_radix_mask *m;
MKGet(softr, m);
if (m == 0) {
#if 0
log(LOG_ERR, "Mask for route not entered\n");
#endif
return (0);
}
bzero(m, sizeof *m);
m->rm_b = tt->rn_b;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL)
m->rm_leaf = tt;
else
m->rm_mask = tt->rn_mask;
m->rm_mklist = next;
tt->rn_mklist = m;
return m;
}
struct ipf_radix_node *
ipf_rn_addroute(soft, v_arg, n_arg, head, treenodes)
void *soft, *v_arg, *n_arg;
struct ipf_radix_node_head *head;
struct ipf_radix_node treenodes[2];
{
radix_softc_t *softr = soft;
u_char *v = (u_char *)v_arg, *netmask = (u_char *)n_arg;
struct ipf_radix_node *t, *x = NULL, *tt;
struct ipf_radix_node *saved_tt, *top = head->rnh_treetop;
short b = 0, b_leaf = 0;
int keyduplicated;
u_char *mmask;
struct ipf_radix_mask *m, **mp;
#ifdef RN_DEBUG
if (softr->rn_debug)
log(LOG_DEBUG, "rn_addroute(%p,%p,%p,%p)\n", v_arg, n_arg, head, treenodes);
#endif
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (netmask) {
if ((x = ipf_rn_addmask(softr, netmask, 0, top->rn_off)) == 0)
return (0);
b_leaf = x->rn_b;
b = -1 - x->rn_b;
netmask = x->rn_key;
}
/*
* Deal with duplicated keys: attach node to previous instance
*/
saved_tt = tt = ipf_rn_insert(soft, v, head, &keyduplicated, treenodes);
if (keyduplicated) {
for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
if (tt->rn_mask == netmask)
return (0);
if (netmask == 0 ||
(tt->rn_mask &&
((b_leaf < tt->rn_b) || /* index(netmask) > node */
ipf_rn_refines(netmask, tt->rn_mask) ||
ipf_rn_lexobetter(netmask, tt->rn_mask))))
break;
}
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*
* We also reverse, or doubly link the list through the
* parent pointer.
*/
if (tt == saved_tt) {
struct ipf_radix_node *xx = x;
/* link in at head of list */
(tt = treenodes)->rn_dupedkey = t;
tt->rn_flags = t->rn_flags;
tt->rn_p = x = t->rn_p;
t->rn_p = tt;
if (x->rn_l == t)
x->rn_l = tt;
else
x->rn_r = tt;
saved_tt = tt;
x = xx;
} else {
(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
t->rn_dupedkey = tt;
tt->rn_p = t;
if (tt->rn_dupedkey)
tt->rn_dupedkey->rn_p = tt;
}
#ifdef RN_DEBUG
t=tt+1;
tt->rn_info = rn_nodenum++;
t->rn_info = rn_nodenum++;
tt->rn_twin = t;
tt->rn_ybro = rn_clist;
rn_clist = tt;
#endif
tt->rn_key = (u_char *) v;
tt->rn_b = -1;
tt->rn_flags = RNF_ACTIVE;
}
/*
* Put mask in tree.
*/
if (netmask) {
tt->rn_mask = netmask;
tt->rn_b = x->rn_b;
tt->rn_flags |= x->rn_flags & RNF_NORMAL;
}
t = saved_tt->rn_p;
if (keyduplicated)
goto on2;
b_leaf = -1 - t->rn_b;
if (t->rn_r == saved_tt)
x = t->rn_l;
else
x = t->rn_r;
/* Promote general routes from below */
if (x->rn_b < 0) {
for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
*mp = m = ipf_rn_new_ipf_radix_mask(softr, x, 0);
if (m)
mp = &m->rm_mklist;
}
} else if (x->rn_mklist) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
if (m->rm_b >= b_leaf)
break;
t->rn_mklist = m;
*mp = 0;
}
on2:
/* Add new route to highest possible ancestor's list */
if ((netmask == 0) || (b > t->rn_b ))
return tt; /* can't lift at all */
b_leaf = tt->rn_b;
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
if (m->rm_b < b_leaf)
continue;
if (m->rm_b > b_leaf)
break;
if (m->rm_flags & RNF_NORMAL) {
mmask = m->rm_leaf->rn_mask;
if (tt->rn_flags & RNF_NORMAL) {
#if 0
log(LOG_ERR, "Non-unique normal route,"
" mask not entered\n");
#endif
return tt;
}
} else
mmask = m->rm_mask;
if (mmask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return tt;
}
if (ipf_rn_refines(netmask, mmask)
|| ipf_rn_lexobetter(netmask, mmask))
break;
}
*mp = ipf_rn_new_ipf_radix_mask(softr, tt, *mp);
return tt;
}
struct ipf_radix_node *
ipf_rn_delete(soft, v_arg, netmask_arg, head)
void *soft, *v_arg, *netmask_arg;
struct ipf_radix_node_head *head;
{
radix_softc_t *softr = soft;
struct ipf_radix_node *t, *p, *x, *tt;
struct ipf_radix_mask *m, *saved_m, **mp;
struct ipf_radix_node *dupedkey, *saved_tt, *top;
u_char *v, *netmask;
int b, head_off, vlen;
v = v_arg;
netmask = netmask_arg;
x = head->rnh_treetop;
tt = ipf_rn_search(v, x);
head_off = x->rn_off;
vlen = *(u_char *)v;
saved_tt = tt;
top = x;
if (tt == 0 ||
bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
return (0);
/*
* Delete our route from mask lists.
*/
if (netmask) {
if ((x = ipf_rn_addmask(softr, netmask, 1, head_off)) == 0)
return (0);
netmask = x->rn_key;
while (tt->rn_mask != netmask)
if ((tt = tt->rn_dupedkey) == 0)
return (0);
}
if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
goto on1;
if (tt->rn_flags & RNF_NORMAL) {
if (m->rm_leaf != tt || m->rm_refs > 0) {
#if 0
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
#endif
return 0; /* dangling ref could cause disaster */
}
} else {
if (m->rm_mask != tt->rn_mask) {
#if 0
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
#endif
goto on1;
}
if (--m->rm_refs >= 0)
goto on1;
}
b = -1 - tt->rn_b;
t = saved_tt->rn_p;
if (b > t->rn_b)
goto on1; /* Wasn't lifted at all */
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
if (m == saved_m) {
*mp = m->rm_mklist;
MKFree(softr, m);
break;
}
if (m == 0) {
#if 0
log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
#endif
if (tt->rn_flags & RNF_NORMAL)
return (0); /* Dangling ref to us */
}
on1:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT)
return (0);
#ifdef RN_DEBUG
/* Get us out of the creation list */
for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro)
;
if (t) t->rn_ybro = tt->rn_ybro;
#endif
t = tt->rn_p;
dupedkey = saved_tt->rn_dupedkey;
if (dupedkey) {
/*
* Here, tt is the deletion target and
* saved_tt is the head of the dupedkey chain.
*/
if (tt == saved_tt) {
x = dupedkey;
x->rn_p = t;
if (t->rn_l == tt)
t->rn_l = x;
else
t->rn_r = x;
} else {
/* find node in front of tt on the chain */
for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
p = p->rn_dupedkey;
if (p) {
p->rn_dupedkey = tt->rn_dupedkey;
if (tt->rn_dupedkey)
tt->rn_dupedkey->rn_p = p;
}
#if 0
else
log(LOG_ERR, "rn_delete: couldn't find us\n");
#endif
}
t = tt + 1;
if (t->rn_flags & RNF_ACTIVE) {
#ifndef RN_DEBUG
*++x = *t;
p = t->rn_p;
#else
b = t->rn_info;
*++x = *t;
t->rn_info = b;
p = t->rn_p;
#endif
if (p->rn_l == t)
p->rn_l = x;
else
p->rn_r = x;
x->rn_l->rn_p = x;
x->rn_r->rn_p = x;
}
goto out;
}
if (t->rn_l == tt)
x = t->rn_r;
else
x = t->rn_l;
p = t->rn_p;
if (p->rn_r == t)
p->rn_r = x;
else
p->rn_l = x;
x->rn_p = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist) {
if (x->rn_b >= 0) {
for (mp = &x->rn_mklist; (m = *mp) != NULL;)
mp = &m->rm_mklist;
*mp = t->rn_mklist;
} else {
/* If there are any key,mask pairs in a sibling
duped-key chain, some subset will appear sorted
in the same order attached to our mklist */
for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
if (m == x->rn_mklist) {
struct ipf_radix_mask *mm = m->rm_mklist;
x->rn_mklist = 0;
if (--(m->rm_refs) < 0)
MKFree(softr, m);
m = mm;
}
#if 0
if (m)
log(LOG_ERR, "%s %p at %p\n",
"rn_delete: Orphaned Mask", m, x);
#endif
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
#ifndef RN_DEBUG
*t = *x;
#else
b = t->rn_info;
*t = *x;
t->rn_info = b;
#endif
t->rn_l->rn_p = t;
t->rn_r->rn_p = t;
p = x->rn_p;
if (p->rn_l == x)
p->rn_l = t;
else
p->rn_r = t;
}
out:
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return (tt);
}
int
ipf_rn_walktree(soft, h, f, w)
struct ipf_radix_node_head *h;
int (*f) __P((void *, struct ipf_radix_node *, void *));
void *soft, *w;
{
radix_softc_t *softr = soft;
int error;
struct ipf_radix_node *base, *next;
struct ipf_radix_node *rn = h->rnh_treetop;
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
/* First time through node, go left */
while (rn->rn_b >= 0)
rn = rn->rn_l;
for (;;) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
rn = rn->rn_p;
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
rn = rn->rn_l;
next = rn;
/* Process leaves */
while ((rn = base) != NULL) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT)
&& (error = (*f)(softr, rn, w)))
return (error);
}
rn = next;
if (rn->rn_flags & RNF_ROOT)
return (0);
}
/* NOTREACHED */
}
int
ipf_rn_inithead(soft, head, off)
void *soft, **head;
int off;
{
struct ipf_radix_node_head *rnh;
if (*head)
return (1);
KMALLOCS(rnh, struct ipf_radix_node_head *, sizeof (*rnh));
if (rnh == 0)
return (0);
*head = rnh;
return ipf_rn_inithead0(soft, rnh, off);
}
int
ipf_rn_inithead0(soft, rnh, off)
void *soft;
struct ipf_radix_node_head *rnh;
int off;
{
radix_softc_t *softr = soft;
struct ipf_radix_node *t, *tt, *ttt;
bzero(rnh, sizeof (*rnh));
t = ipf_rn_newpair(softr->rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_r = ttt;
t->rn_p = t;
tt = t->rn_l;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_b = -1 - off;
*ttt = *tt;
ttt->rn_key = softr->rn_ones;
rnh->rnh_addaddr = ipf_rn_addroute;
rnh->rnh_deladdr = ipf_rn_delete;
rnh->rnh_matchaddr = ipf_rn_match;
rnh->rnh_lookup = ipf_rn_lookup;
rnh->rnh_walktree = ipf_rn_walktree;
rnh->rnh_treetop = t;
return (1);
}
void *
ipf_rn_create()
{
radix_softc_t *softr;
KMALLOC(softr, radix_softc_t *);
if (softr == NULL)
return NULL;
bzero((char *)softr, sizeof(*softr));
softr->max_keylen = sizeof(addrfamily_t);
#ifdef RN_DEBUG
softr->rn_debug = 1;
#endif
return softr;
}
void
ipf_rn_init(soft)
void *soft;
{
radix_softc_t *softr = soft;
u_char *cp, *cplim;
if (softr->rn_zeros == NULL) {
KMALLOCS(softr->rn_zeros, u_char *, 3 * softr->max_keylen);
}
if (softr->rn_zeros == NULL)
panic("rn_init");
bzero(softr->rn_zeros, 3 * softr->max_keylen);
softr->rn_ones = cp = softr->rn_zeros + softr->max_keylen;
softr->addmask_key = cplim = softr->rn_ones + softr->max_keylen;
while (cp < cplim)
*cp++ = -1;
if (ipf_rn_inithead(softr, (void *)&softr->mask_rnhead, 0) == 0)
panic("rn_init 2");
}
static int
ipf_rn_freenode(void *soft, struct ipf_radix_node *n, void *p)
{
radix_softc_t *softr = soft;
struct ipf_radix_node_head *rnh = p;
struct ipf_radix_node *d;
d = rnh->rnh_deladdr(softr, n->rn_key, NULL, rnh);
if (d != NULL) {
KFREES(d, softr->max_keylen + 2 * sizeof (*d));
}
return 0;
}
void
ipf_rn_freehead(void *soft, struct ipf_radix_node_head *rnh)
{
(void)ipf_rn_walktree(soft, rnh, ipf_rn_freenode, rnh);
rnh->rnh_addaddr = NULL;
rnh->rnh_deladdr = NULL;
rnh->rnh_matchaddr = NULL;
rnh->rnh_lookup = NULL;
rnh->rnh_walktree = NULL;
KFREE(rnh);
}
void
ipf_rn_destroy(soft)
void *soft;
{
radix_softc_t *softr = soft;
struct ipf_radix_mask *m;
if (softr->rn_zeros != NULL) {
KFREES(softr->rn_zeros, 3 * softr->max_keylen);
softr->rn_zeros = NULL;
}
if (softr->mask_rnhead != NULL) {
ipf_rn_freehead(softr, softr->mask_rnhead);
softr->mask_rnhead = NULL;
}
while ((m = softr->rn_mkfreelist) != NULL) {
softr->rn_mkfreelist = m->rm_mklist;
KFREE(m);
}
KFREE(softr);
}
#ifdef USE_MAIN
typedef struct myst {
addrfamily_t dst;
addrfamily_t mask;
struct ipf_radix_node nodes[2];
} myst_t;
int
main(int argc, char *argv[])
{
struct ipf_radix_node_head *rnh;
struct ipf_radix_node *rn;
addrfamily_t af, mf;
myst_t st1, st2, *stp;
memset(&st1, 0, sizeof(st1));
memset(&st2, 0, sizeof(st2));
memset(&af, 0, sizeof(af));
ipf_rn_init();
rnh = NULL;
ipf_rn_inithead(&rnh, offsetof(addrfamily_t, adf_addr) << 3);
st1.dst.adf_len = sizeof(st1);
st1.mask.adf_len = sizeof(st1);
st1.dst.adf_addr.in4.s_addr = inet_addr("127.0.0.0");
st1.mask.adf_addr.in4.s_addr = inet_addr("255.0.0.0");
rn = rnh->rnh_addaddr(&st1.dst, &st1.mask, rnh, st1.nodes);
printf("add.1 %p\n", rn);
st2.dst.adf_len = sizeof(st2);
st2.mask.adf_len = sizeof(st2);
st2.dst.adf_addr.in4.s_addr = inet_addr("127.0.1.0");
st2.mask.adf_addr.in4.s_addr = inet_addr("255.255.255.0");
rn = rnh->rnh_addaddr(&st2.dst, &st2.mask, rnh, st2.nodes);
printf("add.2 %p\n", rn);
af.adf_len = sizeof(af);
af.adf_addr.in4.s_addr = inet_addr("127.0.1.0");
rn = rnh->rnh_matchaddr(&af, rnh);
if (rn != NULL) {
printf("1.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask);
stp = rn->rn_key;
printf("%s/", inet_ntoa(stp->dst.adf_addr.in4));
stp = rn->rn_mask;
printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4));
}
mf.adf_len = sizeof(mf);
mf.adf_addr.in4.s_addr = inet_addr("255.255.255.0");
rn = rnh->rnh_lookup(&af, &mf, rnh);
if (rn != NULL) {
printf("2.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask);
stp = rn->rn_key;
printf("%s/", inet_ntoa(stp->dst.adf_addr.in4));
stp = rn->rn_mask;
printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4));
}
af.adf_len = sizeof(af);
af.adf_addr.in4.s_addr = inet_addr("126.0.0.1");
rn = rnh->rnh_matchaddr(&af, rnh);
if (rn != NULL) {
printf("3.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask);
stp = rn->rn_key;
printf("%s/", inet_ntoa(stp->dst.adf_addr.in4));
stp = rn->rn_mask;
printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4));
}
return 0;
}
void
log(int level, char *format, ...)
{
va_list ap;
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
}
#endif
#ifndef _KERNEL
void
panic(char *str)
{
fputs(str, stderr);
abort();
}
#endif