blob: 3188ee9c09449d6ec0cd0ef47b1f70a6f5b1cac7 [file] [log] [blame] [raw]
/*
* Copyright (C) 1993-2001, 2003 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*/
#if !defined(lint)
static const char sccsid[] = "%W% %G% (C) 1993-2000 Darren Reed";
static const char rcsid[] = "@(#)$Id$";
#endif
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/param.h>
#include <sys/cpuvar.h>
#include <sys/open.h>
#include <sys/ioctl.h>
#include <sys/filio.h>
#include <sys/systm.h>
#if SOLARIS2 >= 10
# include <sys/cred_impl.h>
#else
# include <sys/cred.h>
#endif
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ksynch.h>
#include <sys/kmem.h>
#include <sys/mkdev.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/dditypes.h>
#include <sys/cmn_err.h>
#include <net/if.h>
#include <net/af.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/tcpip.h>
#include <netinet/ip_icmp.h>
#include "netinet/ip_compat.h"
#ifdef USE_INET6
# include <netinet/icmp6.h>
#endif
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_state.h"
#include "netinet/ip_auth.h"
#include "netinet/ip_proxy.h"
#ifdef IPFILTER_LOOKUP
# include "netinet/ip_lookup.h"
#endif
#include <inet/ip_ire.h>
#include "md5.h"
extern int fr_flags, fr_active;
static int fr_send_ip __P((fr_info_t *fin, mblk_t *m, mblk_t **mp));
static void ipf_fixl4sum __P((fr_info_t *));
#if defined(_INET_IP_STACK_H)
static int pfil_sendbuf __P((void *, mblk_t *, ip_t *, void *));
static void *qif_illrouteto __P((int, void *));
#endif
ipfmutex_t ipl_mutex, ipf_authmx, ipf_rw, ipf_stinsert;
ipfmutex_t ipf_nat_new, ipf_natio, ipf_timeoutlock;
ipfrwlock_t ipf_mutex, ipf_global, ipf_ipidfrag, ipf_frcache, ipf_tokens;
ipfrwlock_t ipf_frag, ipf_state, ipf_nat, ipf_natfrag, ipf_auth;
kcondvar_t iplwait, ipfauthwait;
#if SOLARIS2 >= 7
timeout_id_t fr_timer_id;
u_int *ip_ttl_ptr = NULL;
u_int *ip_mtudisc = NULL;
# if SOLARIS2 >= 8
int *ip_forwarding = NULL;
u_int *ip6_forwarding = NULL;
# else
u_int *ip_forwarding = NULL;
# endif
#else
int fr_timer_id;
u_long *ip_ttl_ptr = NULL;
u_long *ip_mtudisc = NULL;
u_long *ip_forwarding = NULL;
#endif
int ipf_locks_done = 0;
/* ------------------------------------------------------------------------ */
/* Function: ipfdetach */
/* Returns: int - 0 == success, else error. */
/* Parameters: Nil */
/* */
/* This function is responsible for undoing anything that might have been */
/* done in a call to ipfattach(). It must be able to clean up from a call */
/* to ipfattach() that did not succeed. Why might that happen? Someone */
/* configures a table to be so large that we cannot allocate enough memory */
/* for it. */
/* ------------------------------------------------------------------------ */
int ipfdetach()
{
ASSERT(rw_read_locked(&ipf_global.ipf_lk) == 0);
if (fr_control_forwarding & 2) {
if (ip_forwarding != NULL)
*ip_forwarding = 0;
#if SOLARIS2 >= 8
if (ip6_forwarding != NULL)
*ip6_forwarding = 0;
#endif
}
#ifdef IPFDEBUG
cmn_err(CE_CONT, "ipfdetach()\n");
#endif
fr_deinitialise();
(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE);
if (ipf_locks_done == 1) {
MUTEX_DESTROY(&ipf_timeoutlock);
MUTEX_DESTROY(&ipf_rw);
RW_DESTROY(&ipf_tokens);
RW_DESTROY(&ipf_ipidfrag);
ipf_locks_done = 0;
}
return 0;
}
int ipfattach __P((void))
{
int i;
#ifdef IPFDEBUG
cmn_err(CE_CONT, "ipfattach()\n");
#endif
ASSERT(rw_read_locked(&ipf_global.ipf_lk) == 0);
bzero((char *)frcache, sizeof(frcache));
MUTEX_INIT(&ipf_rw, "ipf rw mutex");
MUTEX_INIT(&ipf_timeoutlock, "ipf timeout lock mutex");
RWLOCK_INIT(&ipf_ipidfrag, "ipf IP NAT-Frag rwlock");
RWLOCK_INIT(&ipf_tokens, "ipf token rwlock");
ipf_locks_done = 1;
if (fr_initialise() < 0)
return -1;
#if !defined(_INET_IP_STACK_H)
# if SOLARIS2 >= 8
ip_forwarding = &ip_g_forward;
# endif
/*
* XXX - There is no terminator for this array, so it is not possible
* to tell if what we are looking for is missing and go off the end
* of the array.
*/
# if SOLARIS2 <= 8
for (i = 0; ; i++) {
if (!strcmp(ip_param_arr[i].ip_param_name, "ip_def_ttl")) {
ip_ttl_ptr = &ip_param_arr[i].ip_param_value;
} else if (!strcmp(ip_param_arr[i].ip_param_name,
"ip_path_mtu_discovery")) {
ip_mtudisc = &ip_param_arr[i].ip_param_value;
}
# if SOLARIS2 < 8
else if (!strcmp(ip_param_arr[i].ip_param_name,
"ip_forwarding")) {
ip_forwarding = &ip_param_arr[i].ip_param_value;
}
# else
else if (!strcmp(ip_param_arr[i].ip_param_name,
"ip6_forwarding")) {
ip6_forwarding = &ip_param_arr[i].ip_param_value;
}
# endif
if (ip_mtudisc != NULL && ip_ttl_ptr != NULL &&
# if SOLARIS2 >= 8
ip6_forwarding != NULL &&
# endif
ip_forwarding != NULL)
break;
}
# endif
if (fr_control_forwarding & 1) {
if (ip_forwarding != NULL)
*ip_forwarding = 1;
# if SOLARIS2 >= 8
if (ip6_forwarding != NULL)
*ip6_forwarding = 1;
# endif
;
}
#endif /* !defined(_INET_IP_STACK_H) */
return 0;
}
/*
* Filter ioctl interface.
*/
/*ARGSUSED*/
int iplioctl(dev, cmd, data, mode, cp, rp)
dev_t dev;
int cmd;
#if SOLARIS2 >= 7
intptr_t data;
#else
int *data;
#endif
int mode;
cred_t *cp;
int *rp;
{
int error = 0;
minor_t unit;
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplioctl(%x,%x,%x,%d,%x,%d)\n",
dev, cmd, data, mode, cp, rp);
#endif
unit = getminor(dev);
if (IPL_LOGMAX < unit)
return ENXIO;
if (fr_running <= 0) {
if (unit != IPL_LOGIPF)
return EIO;
if (cmd != SIOCIPFGETNEXT && cmd != SIOCIPFGET &&
cmd != SIOCIPFSET && cmd != SIOCFRENB &&
cmd != SIOCGETFS && cmd != SIOCGETFF)
return EIO;
}
READ_ENTER(&ipf_global);
error = fr_ioctlswitch(unit, (caddr_t)data, cmd, mode,
cp->cr_uid, curproc);
if (error != -1) {
RWLOCK_EXIT(&ipf_global);
return error;
}
RWLOCK_EXIT(&ipf_global);
return error;
}
void *get_unit(name, v)
char *name;
int v;
{
void *ifp;
#if !defined(_INET_IP_STACK_H)
qif_t *qf;
int sap;
if (v == 4)
sap = 0x0800;
else if (v == 6)
sap = 0x86dd;
else
return NULL;
rw_enter(&pfil_rw, RW_READER);
qf = qif_iflookup(name, sap);
rw_exit(&pfil_rw);
return qf;
#else
if (v == 6)
return (void *)net_phylookup(ipfipv6, name);
return (void *)net_phylookup(ipfipv4, name);
#endif
}
/*
* routines below for saving IP headers to buffer
*/
/*ARGSUSED*/
int iplopen(devp, flags, otype, cred)
dev_t *devp;
int flags, otype;
cred_t *cred;
{
minor_t min = getminor(*devp);
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplopen(%x,%x,%x,%x)\n", devp, flags, otype, cred);
#endif
if (!(otype & OTYP_CHR))
return ENXIO;
min = (IPL_LOGMAX < min) ? ENXIO : 0;
return min;
}
/*ARGSUSED*/
int iplclose(dev, flags, otype, cred)
dev_t dev;
int flags, otype;
cred_t *cred;
{
minor_t min = getminor(dev);
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplclose(%x,%x,%x,%x)\n", dev, flags, otype, cred);
#endif
min = (IPL_LOGMAX < min) ? ENXIO : 0;
return min;
}
#ifdef IPFILTER_LOG
/*
* iplread/ipllog
* both of these must operate with at least splnet() lest they be
* called during packet processing and cause an inconsistancy to appear in
* the filter lists.
*/
/*ARGSUSED*/
int iplread(dev, uio, cp)
dev_t dev;
register struct uio *uio;
cred_t *cp;
{
# ifdef IPFDEBUG
cmn_err(CE_CONT, "iplread(%x,%x,%x)\n", dev, uio, cp);
# endif
if (fr_running < 1)
return EIO;
# ifdef IPFILTER_SYNC
if (getminor(dev) == IPL_LOGSYNC)
return ipfsync_read(uio);
# endif
return ipflog_read(getminor(dev), uio);
}
#endif /* IPFILTER_LOG */
/*
* iplread/ipllog
* both of these must operate with at least splnet() lest they be
* called during packet processing and cause an inconsistancy to appear in
* the filter lists.
*/
int iplwrite(dev, uio, cp)
dev_t dev;
register struct uio *uio;
cred_t *cp;
{
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplwrite(%x,%x,%x)\n", dev, uio, cp);
#endif
if (fr_running < 1)
return EIO;
#ifdef IPFILTER_SYNC
if (getminor(dev) == IPL_LOGSYNC)
return ipfsync_write(uio);
#endif /* IPFILTER_SYNC */
return ENXIO;
}
/*
* fr_send_reset - this could conceivably be a call to tcp_respond(), but that
* requires a large amount of setting up and isn't any more efficient.
*/
int fr_send_reset(fin)
fr_info_t *fin;
{
tcphdr_t *tcp, *tcp2;
int tlen, hlen;
mblk_t *m;
#ifdef USE_INET6
ip6_t *ip6;
#endif
ip_t *ip;
tcp = fin->fin_dp;
if (tcp->th_flags & TH_RST)
return -1;
if (fr_checkl4sum(fin) == -1)
return -1;
tlen = (tcp->th_flags & (TH_SYN|TH_FIN)) ? 1 : 0;
#ifdef USE_INET6
if (fin->fin_v == 6)
hlen = sizeof(ip6_t);
else
#endif
hlen = sizeof(ip_t);
hlen += sizeof(*tcp2);
if ((m = (mblk_t *)allocb(hlen + 64, BPRI_HI)) == NULL)
return -1;
m->b_rptr += 64;
MTYPE(m) = M_DATA;
m->b_wptr = m->b_rptr + hlen;
ip = (ip_t *)m->b_rptr;
bzero((char *)ip, hlen);
tcp2 = (struct tcphdr *)(m->b_rptr + hlen - sizeof(*tcp2));
tcp2->th_dport = tcp->th_sport;
tcp2->th_sport = tcp->th_dport;
if (tcp->th_flags & TH_ACK) {
tcp2->th_seq = tcp->th_ack;
tcp2->th_flags = TH_RST;
} else {
tcp2->th_ack = ntohl(tcp->th_seq);
tcp2->th_ack += tlen;
tcp2->th_ack = htonl(tcp2->th_ack);
tcp2->th_flags = TH_RST|TH_ACK;
}
tcp2->th_off = sizeof(struct tcphdr) >> 2;
ip->ip_v = fin->fin_v;
#ifdef USE_INET6
if (fin->fin_v == 6) {
ip6 = (ip6_t *)m->b_rptr;
ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow;
ip6->ip6_src = fin->fin_dst6;
ip6->ip6_dst = fin->fin_src6;
ip6->ip6_plen = htons(sizeof(*tcp));
ip6->ip6_nxt = IPPROTO_TCP;
} else
#endif
{
ip->ip_src.s_addr = fin->fin_daddr;
ip->ip_dst.s_addr = fin->fin_saddr;
ip->ip_id = fr_nextipid(fin);
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_p = IPPROTO_TCP;
ip->ip_len = sizeof(*ip) + sizeof(*tcp);
ip->ip_tos = fin->fin_ip->ip_tos;
tcp2->th_sum = fr_cksum(m, ip, IPPROTO_TCP, tcp2, ip->ip_len);
}
return fr_send_ip(fin, m, &m);
}
/*ARGSUSED*/
static int fr_send_ip(fin, m, mpp)
fr_info_t *fin;
mblk_t *m, **mpp;
{
#if !defined(_INET_IP_STACK_H)
qif_t *qif;
#endif
qpktinfo_t qpi, *qpip;
fr_info_t fnew;
ip_t *ip;
int i, hlen;
ip = (ip_t *)m->b_rptr;
bzero((char *)&fnew, sizeof(fnew));
#ifdef USE_INET6
if (fin->fin_v == 6) {
ip6_t *ip6;
ip6 = (ip6_t *)ip;
ip6->ip6_vfc = 0x60;
ip6->ip6_hlim = 127;
fnew.fin_v = 6;
hlen = sizeof(*ip6);
} else
#endif
{
fnew.fin_v = 4;
#if !defined(_INET_IP_STACK_H)
if (ip_ttl_ptr != NULL)
ip->ip_ttl = (u_char)(*ip_ttl_ptr);
else
#endif
ip->ip_ttl = 63;
#if !defined(_INET_IP_STACK_H)
if ((ip_mtudisc != NULL) && (*ip_mtudisc == 0))
#else
if (!net_getpmtuenabled(ipfipv4))
#endif
ip->ip_off = 0;
else
ip->ip_off = htons(IP_DF);
/*
* The dance with byte order and ip_len/ip_off is because in
* fr_fastroute, it expects them to be in host byte order but
* ipf_cksum expects them to be in network byte order.
*/
ip->ip_len = htons(ip->ip_len);
ip->ip_sum = ipf_cksum((u_short *)ip, sizeof(*ip));
ip->ip_len = ntohs(ip->ip_len);
ip->ip_off = ntohs(ip->ip_off);
hlen = sizeof(*ip);
}
qpip = fin->fin_qpi;
qpi.qpi_off = 0;
#if !defined(_INET_IP_STACK_H)
qpi.qpi_q = qpip->qpi_q;
qpi.qpi_name = qpip->qpi_name;
qif = qpip->qpi_real;
qpi.qpi_real = qif;
qpi.qpi_ill = qif->qf_ill;
qpi.qpi_hl = qif->qf_hl;
qpi.qpi_ppa = qif->qf_ppa;
qpi.qpi_num = qif->qf_num;
qpi.qpi_flags = qif->qf_flags;
qpi.qpi_max_frag = qif->qf_max_frag;
#else
#endif
qpi.qpi_m = m;
qpi.qpi_data = ip;
fnew.fin_qpi = &qpi;
fnew.fin_ifp = fin->fin_ifp;
fnew.fin_flx = FI_NOCKSUM;
fnew.fin_m = m;
fnew.fin_ip = ip;
fnew.fin_mp = mpp;
fnew.fin_hlen = hlen;
fnew.fin_dp = (char *)ip + hlen;
(void) fr_makefrip(hlen, ip, &fnew);
i = fr_fastroute(m, mpp, &fnew, NULL);
return i;
}
int fr_send_icmp_err(type, fin, dst)
int type;
fr_info_t *fin;
int dst;
{
#ifdef USE_INET6
mblk_t *mb;
ip6_t *ip6;
#endif
struct in_addr dst4;
struct icmp *icmp;
qpktinfo_t *qpi;
int hlen, code;
u_short sz;
mblk_t *m;
ip_t *ip;
if ((type < 0) || (type > ICMP_MAXTYPE))
return -1;
code = fin->fin_icode;
#ifdef USE_INET6
if ((code < 0) || (code > sizeof(icmptoicmp6unreach)/sizeof(int)))
return -1;
#endif
if (fr_checkl4sum(fin) == -1)
return -1;
qpi = fin->fin_qpi;
#ifdef USE_INET6
mb = fin->fin_qfm;
if (fin->fin_v == 6) {
sz = sizeof(ip6_t);
sz += MIN(mb->b_wptr - mb->b_rptr, 512);
hlen = sizeof(ip6_t);
type = icmptoicmp6types[type];
if (type == ICMP6_DST_UNREACH)
code = icmptoicmp6unreach[code];
} else
#endif
{
if ((fin->fin_p == IPPROTO_ICMP) &&
!(fin->fin_flx & FI_SHORT))
switch (ntohs(fin->fin_data[0]) >> 8)
{
case ICMP_ECHO :
case ICMP_TSTAMP :
case ICMP_IREQ :
case ICMP_MASKREQ :
break;
default :
return 0;
}
sz = sizeof(ip_t) * 2;
sz += 8; /* 64 bits of data */
hlen = sizeof(ip_t);
}
sz += offsetof(struct icmp, icmp_ip);
if ((m = (mblk_t *)allocb((size_t)sz + 64, BPRI_HI)) == NULL)
return -1;
MTYPE(m) = M_DATA;
m->b_rptr += 64;
m->b_wptr = m->b_rptr + sz;
bzero((char *)m->b_rptr, (size_t)sz);
ip = (ip_t *)m->b_rptr;
ip->ip_v = fin->fin_v;
icmp = (struct icmp *)(m->b_rptr + hlen);
icmp->icmp_type = type & 0xff;
icmp->icmp_code = code & 0xff;
#ifdef icmp_nextmtu
if (type == ICMP_UNREACH && fin->fin_icode == ICMP_UNREACH_NEEDFRAG) {
int mtu = 0;
# if !defined(_INET_IP_STACK_H)
mtu = qpi->qpi_max_frag;
# else
mtu = net_getmtu(ipfipv4, qpi->qpi_real, 0);
# endif
icmp->icmp_nextmtu = htons(mtu);
}
#endif
#ifdef USE_INET6
if (fin->fin_v == 6) {
struct in6_addr dst6;
int csz;
if (dst == 0) {
if (fr_ifpaddr(6, FRI_NORMAL, (void *)qpi->qpi_real,
(struct in_addr *)&dst6, NULL) == -1) {
FREE_MB_T(m);
return -1;
}
} else
dst6 = fin->fin_dst6;
csz = sz;
sz -= sizeof(ip6_t);
ip6 = (ip6_t *)m->b_rptr;
ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow;
ip6->ip6_plen = htons((u_short)sz);
ip6->ip6_nxt = IPPROTO_ICMPV6;
ip6->ip6_src = dst6;
ip6->ip6_dst = fin->fin_src6;
sz -= offsetof(struct icmp, icmp_ip);
bcopy((char *)mb->b_rptr, (char *)&icmp->icmp_ip, sz);
icmp->icmp_cksum = csz - sizeof(ip6_t);
} else
#endif
{
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_p = IPPROTO_ICMP;
ip->ip_id = fin->fin_ip->ip_id;
ip->ip_tos = fin->fin_ip->ip_tos;
ip->ip_len = (u_short)sz;
if (dst == 0) {
if (fr_ifpaddr(4, FRI_NORMAL, (void *)qpi->qpi_real,
&dst4, NULL) == -1) {
FREE_MB_T(m);
return -1;
}
} else
dst4 = fin->fin_dst;
ip->ip_src = dst4;
ip->ip_dst = fin->fin_src;
bcopy((char *)fin->fin_ip, (char *)&icmp->icmp_ip,
sizeof(*fin->fin_ip));
bcopy((char *)fin->fin_ip + fin->fin_hlen,
(char *)&icmp->icmp_ip + sizeof(*fin->fin_ip), 8);
icmp->icmp_ip.ip_len = htons(icmp->icmp_ip.ip_len);
icmp->icmp_ip.ip_off = htons(icmp->icmp_ip.ip_off);
icmp->icmp_cksum = ipf_cksum((u_short *)icmp,
sz - sizeof(ip_t));
}
/*
* Need to exit out of these so we don't recursively call rw_enter
* from fr_qout.
*/
return fr_send_ip(fin, m, &m);
}
/*
* return the first IP Address associated with an interface
*/
/*ARGSUSED*/
int fr_ifpaddr(v, atype, qifptr, inp, inpmask)
int v, atype;
void *qifptr;
struct in_addr *inp, *inpmask;
{
#if !defined(_INET_IP_STACK_H)
# ifdef USE_INET6
struct sockaddr_in6 sin6, mask6;
# endif
struct sockaddr_in sin, mask;
qif_t *qif;
if ((qifptr == NULL) || (qifptr == (void *)-1))
return -1;
qif = qifptr;
if (qif->qf_ill == NULL)
return -1;
# ifdef USE_INET6
if (v == 6) {
in6_addr_t *inp6;
ipif_t *ipif;
ill_t *ill;
ill = qif->qf_ill;
/*
* First is always link local.
*/
for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) {
inp6 = &ipif->ipif_v6lcl_addr;
if (!IN6_IS_ADDR_LINKLOCAL(inp6) &&
!IN6_IS_ADDR_LOOPBACK(inp6))
break;
}
if (ipif == NULL)
return -1;
mask6.sin6_addr = ipif->ipif_v6net_mask;
if (atype == FRI_BROADCAST)
sin6.sin6_addr = ipif->ipif_v6brd_addr;
else if (atype == FRI_PEERADDR)
sin6.sin6_addr = ipif->ipif_v6pp_dst_addr;
else
sin6.sin6_addr = *inp6;
return fr_ifpfillv6addr(atype, &sin6, &mask6, inp, inpmask);
}
# endif
if (((ill_t *)qif->qf_ill)->ill_ipif == NULL)
return -1;
switch (atype)
{
case FRI_BROADCAST :
sin.sin_addr.s_addr = QF_V4_BROADCAST(qif);
break;
case FRI_PEERADDR :
sin.sin_addr.s_addr = QF_V4_PEERADDR(qif);
break;
default :
sin.sin_addr.s_addr = QF_V4_ADDR(qif);
break;
}
mask.sin_addr.s_addr = QF_V4_NETMASK(qif);
return fr_ifpfillv4addr(atype, &sin, &mask, inp, inpmask);
#else
net_ifaddr_t types[2];
if ((qifptr == NULL) || (qifptr == (void *)-1))
return -1;
switch (atype)
{
case FRI_BROADCAST :
types[0] = NA_BROADCAST;
break;
case FRI_PEERADDR :
types[0] = NA_PEER;
break;
default :
types[0] = NA_ADDRESS;
break;
}
types[1] = NA_NETMASK;
if (v == 4) {
struct sockaddr_in sins[2];
if (net_getlifaddr(ipfipv4, (uintptr_t)qifptr, 0,
2, types, sins) == 0) {
return fr_ifpfillv4addr(atype, &sins[0], &sins[1],
inp, inpmask);
}
} else {
struct sockaddr_in6 sin6s[2];
if (net_getlifaddr(ipfipv6, (uintptr_t)qifptr, 0,
2, types, sin6s) == 0) {
return fr_ifpfillv6addr(atype, &sin6s[0], &sin6s[1],
inp, inpmask);
}
}
return -1;
#endif
}
u_32_t fr_newisn(fin)
fr_info_t *fin;
{
static int iss_seq_off = 0;
u_char hash[16];
u_32_t newiss;
MD5_CTX ctx;
/*
* Compute the base value of the ISS. It is a hash
* of (saddr, sport, daddr, dport, secret).
*/
MD5Init(&ctx);
MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_src,
sizeof(fin->fin_fi.fi_src));
MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_dst,
sizeof(fin->fin_fi.fi_dst));
MD5Update(&ctx, (u_char *) &fin->fin_dat, sizeof(fin->fin_dat));
MD5Update(&ctx, ipf_iss_secret, sizeof(ipf_iss_secret));
MD5Final(hash, &ctx);
bcopy(hash, &newiss, sizeof(newiss));
/*
* Now increment our "timer", and add it in to
* the computed value.
*
* XXX Use `addin'?
* XXX TCP_ISSINCR too large to use?
*/
iss_seq_off += 0x00010000;
newiss += iss_seq_off;
return newiss;
}
/* ------------------------------------------------------------------------ */
/* Function: fr_nextipid */
/* Returns: int - 0 == success, -1 == error (packet should be droppped) */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Returns the next IPv4 ID to use for this packet. */
/* ------------------------------------------------------------------------ */
u_short fr_nextipid(fin)
fr_info_t *fin;
{
static u_short ipid = 0;
ipstate_t *is;
nat_t *nat;
u_short id;
MUTEX_ENTER(&ipf_rw);
if (fin->fin_state != NULL) {
is = fin->fin_state;
id = (u_short)(is->is_pkts[(fin->fin_rev << 1) + 1] & 0xffff);
} else if (fin->fin_nat != NULL) {
nat = fin->fin_nat;
id = (u_short)(nat->nat_pkts[fin->fin_out] & 0xffff);
} else
id = ipid++;
MUTEX_EXIT(&ipf_rw);
return id;
}
#ifndef IPFILTER_CKSUM
/* ARGSUSED */
#endif
INLINE void fr_checkv4sum(fin)
fr_info_t *fin;
{
#ifdef IPFILTER_CKSUM
if (fr_checkl4sum(fin) == -1)
fin->fin_flx |= FI_BAD;
#endif
}
#ifdef USE_INET6
# ifndef IPFILTER_CKSUM
/* ARGSUSED */
# endif
INLINE void fr_checkv6sum(fin)
fr_info_t *fin;
{
# ifdef IPFILTER_CKSUM
if (fr_checkl4sum(fin) == -1)
fin->fin_flx |= FI_BAD;
# endif
}
#endif /* USE_INET6 */
/*
* Function: fr_verifysrc
* Returns: int (really boolean)
* Parameters: fin - packet information
*
* Check whether the packet has a valid source address for the interface on
* which the packet arrived, implementing the "fr_chksrc" feature.
* Returns true iff the packet's source address is valid.
* Pre-Solaris 10, we call into the routing code to make the determination.
* On Solaris 10 and later, we have a valid address set from pfild to check
* against.
*/
int fr_verifysrc(fin)
fr_info_t *fin;
{
ire_t *dir;
int result;
#if !defined(_INET_IP_STACK_H)
# if SOLARIS2 >= 6
dir = ire_route_lookup(fin->fin_saddr, 0xffffffff, 0, 0, NULL,
NULL, NULL,
# ifdef IP_ULP_OUT_LABELED
NULL,
# endif
MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|
MATCH_IRE_RECURSIVE);
# else
dir = ire_lookup(fin->fin_saddr);
# endif
if (!dir)
return 0;
result = (ire_to_ill(dir) == fin->fin_ifp);
# if SOLARIS2 >= 8
ire_refrele(dir);
# endif
#else
result = (qif_illrouteto(fin->fin_v, &fin->fin_dst) == fin->fin_ifp);
#endif
return result;
}
#if (SOLARIS2 < 7)
void fr_slowtimer()
#else
/*ARGSUSED*/
void fr_slowtimer __P((void *ptr))
#endif
{
WRITE_ENTER(&ipf_global);
if (fr_running <= 0) {
if (fr_running >= -1) {
fr_timer_id = timeout(fr_slowtimer, NULL,
drv_usectohz(500000));
} else {
fr_timer_id = NULL;
}
RWLOCK_EXIT(&ipf_global);
return;
}
MUTEX_DOWNGRADE(&ipf_global);
ipf_expiretokens();
fr_fragexpire();
fr_timeoutstate();
fr_natexpire();
fr_authexpire();
fr_ticks++;
fr_timer_id = timeout(fr_slowtimer, NULL, drv_usectohz(500000));
RWLOCK_EXIT(&ipf_global);
}
/*
* Function: fr_fastroute
* Returns: 0: success;
* -1: failed
* Parameters:
* mb: the message block where ip head starts
* mpp: the pointer to the pointer of the orignal
* packet message
* fin: packet information
* fdp: destination interface information
* if it is NULL, no interface information provided.
*
* This function is for fastroute/to/dup-to rules. It calls
* pfil_make_lay2_packet to search route, make lay-2 header
* ,and identify output queue for the IP packet.
* The destination address depends on the following conditions:
* 1: for fastroute rule, fdp is passed in as NULL, so the
* destination address is the IP Packet's destination address
* 2: for to/dup-to rule, if an ip address is specified after
* the interface name, this address is the as destination
* address. Otherwise IP Packet's destination address is used
*/
int fr_fastroute(mb, mpp, fin, fdp)
mblk_t *mb, **mpp;
fr_info_t *fin;
frdest_t *fdp;
{
struct in_addr dst;
qpktinfo_t *qpi;
frentry_t *fr;
frdest_t fd;
#if !defined(_INET_IP_STACK_H)
qif_t *ifp;
#else
void *ifp;
#endif
void *dstp;
void *sifp;
ip_t *ip;
#ifndef sparc
u_short __iplen, __ipoff;
#endif
#ifdef USE_INET6
ip6_t *ip6 = (ip6_t *)fin->fin_ip;
struct in6_addr dst6;
#endif
fr = fin->fin_fr;
ip = fin->fin_ip;
qpi = fin->fin_qpi;
/*
* If this is a duplicate mblk then we want ip to point at that
* data, not the original, if and only if it is already pointing at
* the current mblk data.
*/
if (ip == (ip_t *)qpi->qpi_m->b_rptr && qpi->qpi_m != mb)
ip = (ip_t *)mb->b_rptr;
/*
* If there is another M_PROTO, we don't want it
*/
if (*mpp != mb) {
mblk_t *mp;
mp = unlinkb(*mpp);
freeb(*mpp);
*mpp = mp;
}
if (fdp == NULL) {
fdp = &fd;
fdp->fd_ip.s_addr = 0;
fdp->fd_ifp = NULL;
fdp->fd_ifname[0] = '\0';
}
if (fin->fin_v == 4) {
if (fdp->fd_ip.s_addr != 0)
dst.s_addr = fdp->fd_ip.s_addr;
else
dst.s_addr = fin->fin_fi.fi_daddr;
dstp = &dst;
}
#ifdef USE_INET6
else if (fin->fin_v == 6) {
if (IP6_NOTZERO(&fdp->fd_ip))
dst6 = fdp->fd_ip6.in6;
else
dst6 = fin->fin_dst6;
dstp = &dst6;
}
#endif
ifp = fdp->fd_ifp;
if (ifp == NULL)
ifp = qif_illrouteto(fin->fin_v, dstp);
if (ifp == NULL || ifp == (void *)-1)
goto bad_fastroute;
/*
* For input packets which are being "fastrouted", they won't
* go back through output filtering and miss their chance to get
* NAT'd and counted. Duplicated packets aren't considered to be
* part of the normal packet stream, so do not NAT them or pass
* them through stateful checking, etc.
*/
if ((fdp != &fr->fr_dif) && (fin->fin_out == 0)) {
sifp = fin->fin_ifp;
fin->fin_ifp = ifp;
fin->fin_out = 1;
(void) fr_acctpkt(fin, NULL);
fin->fin_fr = NULL;
if (!fr || !(fr->fr_flags & FR_RETMASK)) {
u_32_t pass;
if (fr_checkstate(fin, &pass) != NULL)
fr_statederef((ipstate_t **)&fin->fin_state);
}
switch (fr_checknatout(fin, NULL))
{
case 0 :
break;
case 1 :
fr_natderef((nat_t **)&fin->fin_nat);
ip->ip_sum = 0;
break;
case -1 :
goto bad_fastroute;
break;
}
fin->fin_out = 0;
fin->fin_ifp = sifp;
} else if (fin->fin_out == 1) {
#if SOLARIS2 >= 6
/*
* We're taking a packet from an interface and putting it on
* another interface. There's no guarantee that the other
* interface will have the same capabilities, so disable
* any flags that are set and do things manually for both
* IP and TCP/UDP
*/
if (mb->b_datap->db_struioflag) {
mb->b_datap->db_struioflag = 0;
if (fin->fin_v == 4) {
ip->ip_sum = 0;
ip->ip_sum = ipf_cksum((u_short *)ip,
sizeof(*ip));
}
ipf_fixl4sum(fin);
}
#endif
}
#ifndef sparc
if (fin->fin_v == 4) {
__iplen = (u_short)ip->ip_len,
__ipoff = (u_short)ip->ip_off;
ip->ip_len = htons(__iplen);
ip->ip_off = htons(__ipoff);
}
#endif
if (pfil_sendbuf(ifp, mb, ip, dstp) == 0) {
ATOMIC_INCL(fr_frouteok[0]);
} else {
ATOMIC_INCL(fr_frouteok[1]);
}
return 0;
bad_fastroute:
ATOMIC_INCL(fr_frouteok[1]);
freemsg(mb);
return -1;
}
/* ------------------------------------------------------------------------ */
/* Function: fr_pullup */
/* Returns: NULL == pullup failed, else pointer to protocol header */
/* Parameters: m(I) - pointer to buffer where data packet starts */
/* fin(I) - pointer to packet information */
/* len(I) - number of bytes to pullup */
/* */
/* Attempt to move at least len bytes (from the start of the buffer) into a */
/* single buffer for ease of access. Operating system native functions are */
/* used to manage buffers - if necessary. If the entire packet ends up in */
/* a single buffer, set the FI_COALESCE flag even though fr_coalesce() has */
/* not been called. Both fin_ip and fin_dp are updated before exiting _IF_ */
/* and ONLY if the pullup succeeds. */
/* */
/* We assume that 'min' is a pointer to a buffer that is part of the chain */
/* of buffers that starts at *fin->fin_mp. */
/* ------------------------------------------------------------------------ */
void *fr_pullup(min, fin, len)
mb_t *min;
fr_info_t *fin;
int len;
{
qpktinfo_t *qpi = fin->fin_qpi;
int out = fin->fin_out, dpoff, ipoff;
mb_t *m = min;
char *ip;
if (m == NULL)
return NULL;
ip = (char *)fin->fin_ip;
if ((fin->fin_flx & FI_COALESCE) != 0)
return ip;
ipoff = fin->fin_ipoff;
if (fin->fin_dp != NULL)
dpoff = (char *)fin->fin_dp - (char *)ip;
else
dpoff = 0;
if (M_LEN(m) < len) {
/*
* pfil_precheck ensures the IP header is on a 32bit
* aligned address so simply fail if that isn't currently
* the case (should never happen).
*/
if (((ipoff & 3) != 0) || (pullupmsg(m, len + ipoff) == 0)) {
ATOMIC_INCL(frstats[out].fr_pull[1]);
FREE_MB_T(*fin->fin_mp);
*fin->fin_mp = NULL;
fin->fin_m = NULL;
fin->fin_ip = NULL;
fin->fin_dp = NULL;
qpi->qpi_data = NULL;
return NULL;
}
fin->fin_m = m;
ip = MTOD(m, char *) + ipoff;
qpi->qpi_data = ip;
}
ATOMIC_INCL(frstats[out].fr_pull[0]);
fin->fin_ip = (ip_t *)ip;
if (fin->fin_dp != NULL)
fin->fin_dp = (char *)fin->fin_ip + dpoff;
if (len == fin->fin_plen)
fin->fin_flx |= FI_COALESCE;
return ip;
}
int ipf_inject(fr_info_t *fin, mb_t *m)
{
#if !defined(_INET_IP_STACK_H)
qifpkt_t *qp;
qp = kmem_alloc(sizeof(*qp), KM_NOSLEEP);
if (qp == NULL) {
freemsg(*fin->fin_mp);
return ENOMEM;
}
qp->qp_mb = *fin->fin_mp;
if (fin->fin_v == 4)
qp->qp_sap = 0x800;
else if (fin->fin_v == 6)
qp->qp_sap = 0x86dd;
qp->qp_inout = fin->fin_out;
strncpy(qp->qp_ifname, fin->fin_ifname, LIFNAMSIZ);
qif_addinject(qp);
return 0;
#else
struct sockaddr_in6 *sin6;
struct sockaddr_in *sin;
net_inject_t inject;
inject.ni_physical = (phy_if_t)fin->fin_ifp;
inject.ni_packet = *fin->fin_mp;
if (fin->fin_v == 4) {
sin = (struct sockaddr_in *)&inject.ni_addr;
sin->sin_family = AF_INET;
sin->sin_addr = fin->fin_dst;
if (fin->fin_out == 0)
return net_inject(ipfipv4, NI_QUEUE_IN, &inject);
return net_inject(ipfipv4, NI_QUEUE_OUT, &inject);
}
sin6 = (struct sockaddr_in6 *)&inject.ni_addr;
sin6->sin6_family = AF_INET6;
memcpy(&sin6->sin6_addr, &fin->fin_dst6, sizeof(fin->fin_dst6));
if (fin->fin_out == 0)
return net_inject(ipfipv6, NI_QUEUE_IN, &inject);
return net_inject(ipfipv6, NI_QUEUE_OUT, &inject);
#endif
}
static void ipf_fixl4sum(fin)
fr_info_t *fin;
{
u_short *csump;
udphdr_t *udp;
csump = NULL;
switch (fin->fin_p)
{
case IPPROTO_TCP :
csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
break;
case IPPROTO_UDP :
udp = fin->fin_dp;
if (udp->uh_sum != 0)
csump = &udp->uh_sum;
break;
default :
break;
}
if (csump != NULL) {
*csump = 0;
*csump = fr_cksum(fin->fin_m, fin->fin_ip, fin->fin_p,
fin->fin_dp, fin->fin_plen);
}
}
#if defined(_INET_IP_STACK_H)
static void *qif_illrouteto(int v, void *dst)
{
struct sockaddr_in sin;
# ifdef USE_INET6
if (v == 6) {
struct sockaddr_in6 sin6;
sin6.sin6_family = AF_INET6;
memcpy(&sin6.sin6_addr, dst, sizeof(sin6.sin6_addr));
return (void *)net_routeto(ipfipv6, (struct sockaddr *)&sin6);
}
# endif
sin.sin_family = AF_INET;
sin.sin_addr = *(struct in_addr *)dst;
return (void *)net_routeto(ipfipv4, (struct sockaddr *)&sin);
}
static int pfil_sendbuf(void *ifp, mblk_t *mb, ip_t *ip, void *dstp)
{
struct sockaddr_in *sin;
net_inject_t inject;
inject.ni_physical = (phy_if_t)ifp;
inject.ni_packet = mb;
# ifdef USE_INET6
if (ip->ip_v == 6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&inject.ni_addr;
sin6->sin6_family = AF_INET6;
memcpy(&sin6->sin6_addr, dstp, sizeof(sin6->sin6_addr));
return net_inject(ipfipv6, NI_DIRECT_OUT, &inject);
}
# endif
sin = (struct sockaddr_in *)&inject.ni_addr;
sin->sin_family = AF_INET;
sin->sin_addr = *(struct in_addr *)dstp;
return net_inject(ipfipv4, NI_DIRECT_OUT, &inject);
}
void mb_copydata(min, off, len, buf)
mblk_t *min;
size_t off, len;
char *buf;
{
u_char *s, *bp = (u_char *)buf;
size_t mlen, olen, clen;
mblk_t *m;
for (m = min; (m != NULL) && (len > 0); m = m->b_cont) {
if (MTYPE(m) != M_DATA)
continue;
s = m->b_rptr;
mlen = m->b_wptr - s;
olen = MIN(off, mlen);
if ((olen == mlen) || (olen < off)) {
off -= olen;
continue;
} else if (olen) {
off -= olen;
s += olen;
mlen -= olen;
}
clen = MIN(mlen, len);
bcopy(s, bp, clen);
len -= clen;
bp += clen;
}
}
void mb_copyback(min, off, len, buf)
mblk_t *min;
size_t off, len;
char *buf;
{
u_char *s, *bp = (u_char *)buf;
size_t mlen, olen, clen;
mblk_t *m, *mp;
for (m = min, mp = NULL; (m != NULL) && (len > 0); m = m->b_cont) {
mp = m;
if (MTYPE(m) != M_DATA)
continue;
s = m->b_rptr;
mlen = m->b_wptr - s;
olen = MIN(off, mlen);
if ((olen == mlen) || (olen < off)) {
off -= olen;
continue;
} else if (olen) {
off -= olen;
s += olen;
mlen -= olen;
}
clen = MIN(mlen, len);
bcopy(bp, s, clen);
len -= clen;
bp += clen;
}
if ((m == NULL) && (mp != NULL)) {
if (len > 0) {
mlen = mp->b_datap->db_lim - mp->b_wptr;
if (mlen > 0) {
if (mlen > len)
mlen = len;
bcopy((char *)bp, (char *)mp->b_wptr, mlen);
bp += mlen;
len -= mlen;
mp->b_wptr += mlen;
#ifdef STRUIO_IP
# if SOLARIS2 < 10
mp->b_datap->db_struiolim = mp->b_wptr;
# endif
mp->b_datap->db_struioflag &= ~STRUIO_IP;
#endif
}
}
if (len > 0) {
m = allocb(len, BPRI_MED);
if (m != NULL) {
bcopy((char *)bp, (char *)m->b_wptr, len);
m->b_band = mp->b_band;
m->b_wptr += len;
linkb(mp, m);
}
}
}
}
#endif