blob: 84d07aa5ed6a8a971e209ba59211a31d5946de0f [file] [log] [blame] [raw]
/*
* Copyright (C) 1995-1998 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*/
#if defined(KERNEL) || defined(_KERNEL)
# undef KERNEL
# undef _KERNEL
# define KERNEL 1
# define _KERNEL 1
#endif
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/file.h>
#if !defined(_KERNEL) && !defined(__KERNEL__)
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# define _KERNEL
# define KERNEL
# ifdef __OpenBSD__
struct file;
# endif
# include <sys/uio.h>
# undef _KERNEL
# undef KERNEL
#else
# include <sys/systm.h>
# if !defined(__SVR4) && !defined(__svr4__)
# include <sys/mbuf.h>
# endif
# include <sys/select.h>
# if __FreeBSD_version >= 500000
# include <sys/selinfo.h>
# endif
#endif
#if defined(__NetBSD__) && (__NetBSD_Version__ >= 104000000)
# include <sys/proc.h>
#endif
#if defined(_KERNEL) && (__FreeBSD_version >= 220000)
# include <sys/filio.h>
# include <sys/fcntl.h>
#else
# include <sys/ioctl.h>
#endif
#include <sys/time.h>
#if !defined(linux)
# include <sys/protosw.h>
#endif
#include <sys/socket.h>
#if defined(__SVR4) || defined(__svr4__)
# include <sys/filio.h>
# include <sys/byteorder.h>
# ifdef _KERNEL
# include <sys/dditypes.h>
# endif
# include <sys/stream.h>
# include <sys/kmem.h>
#endif
#include <net/if.h>
#ifdef sun
# include <net/af.h>
#endif
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#if !defined(linux)
# include <netinet/ip_var.h>
#endif
#if !defined(__hpux) && !defined(linux)
# include <netinet/tcp_fsm.h>
#endif
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include "netinet/ip_compat.h"
#include <netinet/tcpip.h>
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_state.h"
#include "netinet/ip_proxy.h"
#include "netinet/ip_sync.h"
#ifdef USE_INET6
#include <netinet/icmp6.h>
#endif
#if (__FreeBSD_version >= 300000)
# include <sys/malloc.h>
# if defined(_KERNEL) && !defined(IPFILTER_LKM)
# include <sys/libkern.h>
# include <sys/systm.h>
# endif
#endif
/* END OF INCLUDES */
#if !defined(lint)
static const char rcsid[] = "@(#)$Id$";
#endif
#define SYNC_STATETABSZ 256
#define SYNC_NATTABSZ 256
#ifdef IPFILTER_SYNC
# if SOLARIS && defined(_KERNEL)
extern struct pollhead ipf_poll_head[IPL_LOGSIZE];
# endif
ipfmutex_t ipf_syncadd, ipsl_mutex;
ipfrwlock_t ipf_syncstate, ipf_syncnat;
#if SOLARIS && defined(_KERNEL)
kcondvar_t ipslwait;
#endif
synclist_t **syncstatetab;
synclist_t **syncnattab;
synclogent_t *synclog;
syncupdent_t *syncupd;
u_int ipf_sync_num;
u_int ipf_sync_wrap;
u_int sl_idx; /* next available sync log entry */
u_int su_idx; /* next available sync update entry */
u_int sl_tail; /* next sync log entry to read */
u_int su_tail; /* next sync update entry to read */
int ipf_sync_log_sz = SYNCLOG_SZ;
int ipf_sync_nat_tab_sz = SYNC_STATETABSZ;
int ipf_sync_state_tab_sz = SYNC_STATETABSZ;
int ipf_sync_debug = 0;
int ipf_sync_events;
u_32_t ipf_sync_lastwakeup;
int ipf_sync_wake_interval = 0;
int ipf_sync_event_high_wm = SYNCLOG_SZ * 100 / 90; /* 90% */
int ipf_sync_queue_high_wm = SYNCLOG_SZ * 100 / 90; /* 90% */
int ipf_sync_inited = 0;
static int ipf_sync_flush_table __P((int, synclist_t **));
static void ipf_sync_wakeup __P((void));
static void ipf_sync_del __P((synclist_t *));
static void ipf_sync_poll_wakeup __P((void));
# if !defined(sparc) && !defined(__hppa)
void ipf_sync_tcporder __P((int, struct tcpdata *));
void ipf_sync_natorder __P((int, struct nat *));
void ipf_sync_storder __P((int, struct ipstate *));
# endif
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_init */
/* Returns: int - 0 == success, -1 == failure */
/* Parameters: Nil */
/* */
/* Initialise all of the locks required for the sync code and initialise */
/* any data structures, as required. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_init()
{
# if SOLARIS && defined(_KERNEL)
cv_init(&ipslwait, "ipsl condvar", CV_DRIVER, NULL);
# endif
KMALLOCS(synclog, synclogent_t *, ipf_sync_log_sz * sizeof(*synclog));
if (synclog == NULL)
return -1;
KMALLOCS(syncupd, syncupdent_t *, ipf_sync_log_sz * sizeof(*syncupd));
if (syncupd == NULL)
return -2;
KMALLOCS(syncstatetab, synclist_t **,
ipf_sync_state_tab_sz * sizeof(*syncstatetab));
if (syncstatetab == NULL)
return -3;
bzero((char *)syncstatetab,
ipf_sync_state_tab_sz * sizeof(*syncstatetab));
KMALLOCS(syncnattab, synclist_t **,
ipf_sync_nat_tab_sz * sizeof(*syncnattab));
if (syncnattab == NULL)
return -3;
bzero((char *)syncnattab, ipf_sync_nat_tab_sz * sizeof(*syncnattab));
ipf_sync_num = 1;
ipf_sync_wrap = 0;
sl_idx = 0;
su_idx = 0;
sl_tail = 0;
su_tail = 0;
ipf_sync_events = 0;
ipf_sync_lastwakeup = 0;
RWLOCK_INIT(&ipf_syncstate, "add things to state sync table");
RWLOCK_INIT(&ipf_syncnat, "add things to nat sync table");
MUTEX_INIT(&ipf_syncadd, "add things to sync table");
MUTEX_INIT(&ipsl_mutex, "read ring lock");
ipf_sync_inited = 1;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_unload */
/* Returns: int - 0 == success, -1 == failure */
/* Parameters: Nil */
/* */
/* Destroy the locks created when initialising and free any memory in use */
/* with the synchronisation tables. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_unload()
{
if (syncnattab != NULL) {
ipf_sync_flush_table(ipf_sync_nat_tab_sz, syncnattab);
KFREES(syncnattab, ipf_sync_nat_tab_sz * sizeof(*syncnattab));
syncnattab = NULL;
}
if (syncstatetab != NULL) {
ipf_sync_flush_table(ipf_sync_state_tab_sz, syncstatetab);
KFREES(syncstatetab,
ipf_sync_state_tab_sz * sizeof(*syncstatetab));
syncstatetab = NULL;
}
if (syncupd != NULL) {
KFREES(syncupd, ipf_sync_log_sz * sizeof(*syncupd));
syncupd = NULL;
}
if (synclog != NULL) {
KFREES(synclog, ipf_sync_log_sz * sizeof(*synclog));
synclog = NULL;
}
if (ipf_sync_inited == 1) {
MUTEX_DESTROY(&ipsl_mutex);
MUTEX_DESTROY(&ipf_syncadd);
RW_DESTROY(&ipf_syncnat);
RW_DESTROY(&ipf_syncstate);
ipf_sync_inited = 0;
}
return 0;
}
# if !defined(sparc) && !defined(__hppa)
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_tcporder */
/* Returns: Nil */
/* Parameters: way(I) - direction of byte order conversion. */
/* td(IO) - pointer to data to be converted. */
/* */
/* Do byte swapping on values in the TCP state information structure that */
/* need to be used at both ends by the host in their native byte order. */
/* ------------------------------------------------------------------------ */
void
ipf_sync_tcporder(way, td)
int way;
tcpdata_t *td;
{
if (way) {
td->td_maxwin = htons(td->td_maxwin);
td->td_end = htonl(td->td_end);
td->td_maxend = htonl(td->td_maxend);
} else {
td->td_maxwin = ntohs(td->td_maxwin);
td->td_end = ntohl(td->td_end);
td->td_maxend = ntohl(td->td_maxend);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_natorder */
/* Returns: Nil */
/* Parameters: way(I) - direction of byte order conversion. */
/* nat(IO) - pointer to data to be converted. */
/* */
/* Do byte swapping on values in the NAT data structure that need to be */
/* used at both ends by the host in their native byte order. */
/* ------------------------------------------------------------------------ */
void
ipf_sync_natorder(way, n)
int way;
nat_t *n;
{
if (way) {
n->nat_age = htonl(n->nat_age);
n->nat_flags = htonl(n->nat_flags);
n->nat_ipsumd = htonl(n->nat_ipsumd);
n->nat_use = htonl(n->nat_use);
n->nat_dir = htonl(n->nat_dir);
} else {
n->nat_age = ntohl(n->nat_age);
n->nat_flags = ntohl(n->nat_flags);
n->nat_ipsumd = ntohl(n->nat_ipsumd);
n->nat_use = ntohl(n->nat_use);
n->nat_dir = ntohl(n->nat_dir);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_storder */
/* Returns: Nil */
/* Parameters: way(I) - direction of byte order conversion. */
/* ips(IO) - pointer to data to be converted. */
/* */
/* Do byte swapping on values in the IP state data structure that need to */
/* be used at both ends by the host in their native byte order. */
/* ------------------------------------------------------------------------ */
void
ipf_sync_storder(way, ips)
int way;
ipstate_t *ips;
{
ipf_sync_tcporder(way, &ips->is_tcp.ts_data[0]);
ipf_sync_tcporder(way, &ips->is_tcp.ts_data[1]);
if (way) {
ips->is_hv = htonl(ips->is_hv);
ips->is_die = htonl(ips->is_die);
ips->is_pass = htonl(ips->is_pass);
ips->is_flags = htonl(ips->is_flags);
ips->is_opt[0] = htonl(ips->is_opt[0]);
ips->is_opt[1] = htonl(ips->is_opt[1]);
ips->is_optmsk[0] = htonl(ips->is_optmsk[0]);
ips->is_optmsk[1] = htonl(ips->is_optmsk[1]);
ips->is_sec = htons(ips->is_sec);
ips->is_secmsk = htons(ips->is_secmsk);
ips->is_auth = htons(ips->is_auth);
ips->is_authmsk = htons(ips->is_authmsk);
ips->is_s0[0] = htonl(ips->is_s0[0]);
ips->is_s0[1] = htonl(ips->is_s0[1]);
ips->is_smsk[0] = htons(ips->is_smsk[0]);
ips->is_smsk[1] = htons(ips->is_smsk[1]);
} else {
ips->is_hv = ntohl(ips->is_hv);
ips->is_die = ntohl(ips->is_die);
ips->is_pass = ntohl(ips->is_pass);
ips->is_flags = ntohl(ips->is_flags);
ips->is_opt[0] = ntohl(ips->is_opt[0]);
ips->is_opt[1] = ntohl(ips->is_opt[1]);
ips->is_optmsk[0] = ntohl(ips->is_optmsk[0]);
ips->is_optmsk[1] = ntohl(ips->is_optmsk[1]);
ips->is_sec = ntohs(ips->is_sec);
ips->is_secmsk = ntohs(ips->is_secmsk);
ips->is_auth = ntohs(ips->is_auth);
ips->is_authmsk = ntohs(ips->is_authmsk);
ips->is_s0[0] = ntohl(ips->is_s0[0]);
ips->is_s0[1] = ntohl(ips->is_s0[1]);
ips->is_smsk[0] = ntohl(ips->is_smsk[0]);
ips->is_smsk[1] = ntohl(ips->is_smsk[1]);
}
}
# else /* !defined(sparc) && !defined(__hppa) */
# define ipf_sync_tcporder(x,y)
# define ipf_sync_natorder(x,y)
# define ipf_sync_storder(x,y)
# endif /* !defined(sparc) && !defined(__hppa) */
# ifdef _KERNEL
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_write */
/* Returns: int - 0 == success, else error value. */
/* Parameters: uio(I) - pointer to information about data to write */
/* */
/* Moves data from user space into the kernel and uses it for updating data */
/* structures in the state/NAT tables. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_write(uio)
struct uio *uio;
{
synchdr_t sh;
/*
* THIS MUST BE SUFFICIENT LARGE TO STORE
* ANY POSSIBLE DATA TYPE
*/
char data[2048];
int err = 0;
# if (BSD >= 199306) || defined(__FreeBSD__) || defined(__osf__)
uio->uio_rw = UIO_WRITE;
# endif
/* Try to get bytes */
while (uio->uio_resid > 0) {
if (uio->uio_resid >= sizeof(sh)) {
err = UIOMOVE(&sh, sizeof(sh), UIO_WRITE, uio);
if (err) {
if (ipf_sync_debug > 2)
printf("uiomove(header) failed: %d\n",
err);
return err;
}
/* convert to host order */
sh.sm_magic = ntohl(sh.sm_magic);
sh.sm_len = ntohl(sh.sm_len);
sh.sm_num = ntohl(sh.sm_num);
if (ipf_sync_debug > 8)
printf("[%d] Read v:%d p:%d cmd:%d table:%d rev:%d len:%d magic:%x\n",
sh.sm_num, sh.sm_v, sh.sm_p, sh.sm_cmd,
sh.sm_table, sh.sm_rev, sh.sm_len,
sh.sm_magic);
if (sh.sm_magic != SYNHDRMAGIC) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalid %s\n",
"magic");
ipf_interror = 110001;
return EINVAL;
}
if (sh.sm_v != 4 && sh.sm_v != 6) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalid %s\n",
"protocol");
ipf_interror = 110002;
return EINVAL;
}
if (sh.sm_cmd > SMC_MAXCMD) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalid %s\n",
"command");
ipf_interror = 110003;
return EINVAL;
}
if (sh.sm_table > SMC_MAXTBL) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalid %s\n",
"table");
ipf_interror = 110004;
return EINVAL;
}
} else {
/* unsufficient data, wait until next call */
if (ipf_sync_debug > 2)
printf("uiomove(header) insufficient data");
ipf_interror = 110005;
return EAGAIN;
}
/*
* We have a header, so try to read the amount of data
* needed for the request
*/
/* not supported */
if (sh.sm_len == 0) {
if (ipf_sync_debug > 2)
printf("uiomove(data zero length %s\n",
"not supported");
ipf_interror = 110006;
return EINVAL;
}
if (uio->uio_resid >= sh.sm_len) {
err = UIOMOVE(data, sh.sm_len, UIO_WRITE, uio);
if (err) {
if (ipf_sync_debug > 2)
printf("uiomove(data) failed: %d\n",
err);
return err;
}
if (ipf_sync_debug > 7)
printf("uiomove(data) %d bytes read\n",
sh.sm_len);
if (sh.sm_table == SMC_STATE)
err = ipf_sync_state(&sh, data);
else if (sh.sm_table == SMC_NAT)
err = ipf_sync_nat(&sh, data);
if (ipf_sync_debug > 7)
printf("[%d] Finished with error %d\n",
sh.sm_num, err);
} else {
/* insufficient data, wait until next call */
if (ipf_sync_debug > 2)
printf("uiomove(data) %s %d bytes, got %d\n",
"insufficient data, need",
sh.sm_len, uio->uio_resid);
ipf_interror = 110007;
return EAGAIN;
}
}
/* no more data */
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_read */
/* Returns: int - 0 == success, else error value. */
/* Parameters: uio(O) - pointer to information about where to store data */
/* */
/* This function is called when a user program wants to read some data */
/* for pending state/NAT updates. If no data is available, the caller is */
/* put to sleep, pending a wakeup from the "lower half" of this code. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_read(uio)
struct uio *uio;
{
syncupdent_t *su;
synclogent_t *sl;
int err = 0;
if ((uio->uio_resid & 3) || (uio->uio_resid < 8)) {
ipf_interror = 110008;
return EINVAL;
}
# if (BSD >= 199306) || defined(__FreeBSD__) || defined(__osf__)
uio->uio_rw = UIO_READ;
# endif
MUTEX_ENTER(&ipsl_mutex);
while ((sl_tail == sl_idx) && (su_tail == su_idx)) {
# if SOLARIS && defined(_KERNEL)
if (!cv_wait_sig(&ipslwait, &ipsl_mutex)) {
MUTEX_EXIT(&ipsl_mutex);
ipf_interror = 110009;
return EINTR;
}
# else
# ifdef __hpux
{
lock_t *l;
l = get_sleep_lock(&sl_tail);
err = sleep(&sl_tail, PZERO+1);
if (err) {
MUTEX_EXIT(&ipsl_mutex);
ipf_interror = 110010;
return EINTR;
}
spinunlock(l);
}
# else /* __hpux */
# ifdef __osf__
err = mpsleep(&sl_tail, PSUSP|PCATCH, "ipl sleep", 0,
&ipsl_mutex, MS_LOCK_SIMPLE);
if (err) {
ipf_interror = 110011;
return EINTR;
}
# else
MUTEX_EXIT(&ipsl_mutex);
err = SLEEP(&sl_tail, "ipl sleep");
if (err) {
ipf_interror = 110012;
return EINTR;
}
MUTEX_ENTER(&ipsl_mutex);
# endif /* __osf__ */
# endif /* __hpux */
# endif /* SOLARIS */
}
while ((sl_tail < sl_idx) && (uio->uio_resid > sizeof(*sl))) {
sl = synclog + sl_tail++;
MUTEX_EXIT(&ipsl_mutex);
err = UIOMOVE(sl, sizeof(*sl), UIO_READ, uio);
if (err != 0)
goto goterror;
MUTEX_ENTER(&ipsl_mutex);
}
while ((su_tail < su_idx) && (uio->uio_resid > sizeof(*su))) {
su = syncupd + su_tail;
su_tail++;
MUTEX_EXIT(&ipsl_mutex);
err = UIOMOVE(su, sizeof(*su), UIO_READ, uio);
if (err != 0)
goto goterror;
MUTEX_ENTER(&ipsl_mutex);
if (su->sup_hdr.sm_sl != NULL)
su->sup_hdr.sm_sl->sl_idx = -1;
}
if (sl_tail == sl_idx)
sl_tail = sl_idx = 0;
if (su_tail == su_idx)
su_tail = su_idx = 0;
MUTEX_EXIT(&ipsl_mutex);
goterror:
return err;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_state */
/* Returns: int - 0 == success, else error value. */
/* Parameters: sp(I) - pointer to sync packet data header */
/* uio(I) - pointer to user data for further information */
/* */
/* Updates the state table according to information passed in the sync */
/* header. As required, more data is fetched from the uio structure but */
/* varies depending on the contents of the sync header. This function can */
/* create a new state entry or update one. Deletion is left to the state */
/* structures being timed out correctly. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_state(sp, data)
synchdr_t *sp;
void *data;
{
synctcp_update_t su;
ipstate_t *is, sn;
synclist_t *sl;
frentry_t *fr;
u_int hv;
int err = 0;
hv = sp->sm_num & (ipf_sync_state_tab_sz - 1);
switch (sp->sm_cmd)
{
case SMC_CREATE :
bcopy(data, &sn, sizeof(sn));
KMALLOC(is, ipstate_t *);
if (is == NULL) {
ipf_interror = 110013;
err = ENOMEM;
break;
}
KMALLOC(sl, synclist_t *);
if (sl == NULL) {
ipf_interror = 110014;
err = ENOMEM;
KFREE(is);
break;
}
bzero((char *)is, offsetof(ipstate_t, is_die));
bcopy((char *)&sn.is_die, (char *)&is->is_die,
sizeof(*is) - offsetof(ipstate_t, is_die));
ipf_sync_storder(0, is);
/*
* We need to find the same rule on the slave as was used on
* the master to create this state entry.
*/
READ_ENTER(&ipf_mutex);
fr = ipf_getrulen(IPL_LOGIPF, sn.is_group, sn.is_rulen);
if (fr != NULL) {
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
fr->fr_statecnt++;
MUTEX_EXIT(&fr->fr_lock);
}
RWLOCK_EXIT(&ipf_mutex);
if (ipf_sync_debug > 4)
printf("[%d] Filter rules = %p\n", sp->sm_num, fr);
is->is_rule = fr;
is->is_sync = sl;
sl->sl_idx = -1;
sl->sl_ips = is;
bcopy(sp, &sl->sl_hdr, sizeof(struct synchdr));
WRITE_ENTER(&ipf_syncstate);
WRITE_ENTER(&ipf_state);
sl->sl_pnext = syncstatetab + hv;
sl->sl_next = syncstatetab[hv];
if (syncstatetab[hv] != NULL)
syncstatetab[hv]->sl_pnext = &sl->sl_next;
syncstatetab[hv] = sl;
MUTEX_DOWNGRADE(&ipf_syncstate);
ipf_state_insert(is, sp->sm_rev);
/*
* Do not initialise the interface pointers for the state
* entry as the full complement of interface names may not
* be present.
*
* Put this state entry on its timeout queue.
*/
/*fr_setstatequeue(is, sp->sm_rev);*/
break;
case SMC_UPDATE :
bcopy(data, &su, sizeof(su));
if (ipf_sync_debug > 4)
printf("[%d] Update age %lu state %d/%d \n",
sp->sm_num, su.stu_age, su.stu_state[0],
su.stu_state[1]);
READ_ENTER(&ipf_syncstate);
for (sl = syncstatetab[hv]; (sl != NULL); sl = sl->sl_next)
if (sl->sl_hdr.sm_num == sp->sm_num)
break;
if (sl == NULL) {
if (ipf_sync_debug > 1)
printf("[%d] State not found - can't update\n",
sp->sm_num);
RWLOCK_EXIT(&ipf_syncstate);
ipf_interror = 110015;
err = ENOENT;
break;
}
READ_ENTER(&ipf_state);
if (ipf_sync_debug > 6)
printf("[%d] Data from state v:%d p:%d cmd:%d table:%d rev:%d\n",
sp->sm_num, sl->sl_hdr.sm_v, sl->sl_hdr.sm_p,
sl->sl_hdr.sm_cmd, sl->sl_hdr.sm_table,
sl->sl_hdr.sm_rev);
is = sl->sl_ips;
MUTEX_ENTER(&is->is_lock);
switch (sp->sm_p)
{
case IPPROTO_TCP :
/* XXX FV --- shouldn't we do ntohl/htonl???? XXX */
is->is_send = su.stu_data[0].td_end;
is->is_maxsend = su.stu_data[0].td_maxend;
is->is_maxswin = su.stu_data[0].td_maxwin;
is->is_state[0] = su.stu_state[0];
is->is_dend = su.stu_data[1].td_end;
is->is_maxdend = su.stu_data[1].td_maxend;
is->is_maxdwin = su.stu_data[1].td_maxwin;
is->is_state[1] = su.stu_state[1];
break;
default :
break;
}
if (ipf_sync_debug > 6)
printf("[%d] Setting timers for state\n", sp->sm_num);
ipf_state_setqueue(is, sp->sm_rev);
MUTEX_EXIT(&is->is_lock);
break;
default :
ipf_interror = 110016;
err = EINVAL;
break;
}
if (err == 0) {
RWLOCK_EXIT(&ipf_state);
RWLOCK_EXIT(&ipf_syncstate);
}
if (ipf_sync_debug > 6)
printf("[%d] Update completed with error %d\n",
sp->sm_num, err);
return err;
}
# endif /* _KERNEL */
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_del */
/* Returns: Nil */
/* Parameters: sl(I) - pointer to synclist object to delete */
/* */
/* Deletes an object from the synclist. */
/* ------------------------------------------------------------------------ */
static void
ipf_sync_del(sl)
synclist_t *sl;
{
*sl->sl_pnext = sl->sl_next;
if (sl->sl_next != NULL)
sl->sl_next->sl_pnext = sl->sl_pnext;
if (sl->sl_idx != -1)
syncupd[sl->sl_idx].sup_hdr.sm_sl = NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_del_state */
/* Returns: Nil */
/* Parameters: sl(I) - pointer to synclist object to delete */
/* */
/* Deletes an object from the synclist state table and free's its memory. */
/* ------------------------------------------------------------------------ */
void
ipf_sync_del_state(sl)
synclist_t *sl;
{
WRITE_ENTER(&ipf_syncstate);
ipf_sync_del(sl);
RWLOCK_EXIT(&ipf_syncstate);
KFREE(sl);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_del_nat */
/* Returns: Nil */
/* Parameters: sl(I) - pointer to synclist object to delete */
/* */
/* Deletes an object from the synclist nat table and free's its memory. */
/* ------------------------------------------------------------------------ */
void
ipf_sync_del_nat(sl)
synclist_t *sl;
{
WRITE_ENTER(&ipf_syncnat);
ipf_sync_del(sl);
RWLOCK_EXIT(&ipf_syncnat);
KFREE(sl);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_nat */
/* Returns: int - 0 == success, else error value. */
/* Parameters: sp(I) - pointer to sync packet data header */
/* uio(I) - pointer to user data for further information */
/* */
/* Updates the NAT table according to information passed in the sync */
/* header. As required, more data is fetched from the uio structure but */
/* varies depending on the contents of the sync header. This function can */
/* create a new NAT entry or update one. Deletion is left to the NAT */
/* structures being timed out correctly. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_nat(sp, data)
synchdr_t *sp;
void *data;
{
syncupdent_t su;
nat_t *n, *nat;
synclist_t *sl;
u_int hv = 0;
int err;
READ_ENTER(&ipf_syncnat);
switch (sp->sm_cmd)
{
case SMC_CREATE :
KMALLOC(n, nat_t *);
if (n == NULL) {
ipf_interror = 110017;
err = ENOMEM;
break;
}
KMALLOC(sl, synclist_t *);
if (sl == NULL) {
ipf_interror = 110018;
err = ENOMEM;
KFREE(n);
break;
}
nat = (nat_t *)data;
bzero((char *)n, offsetof(nat_t, nat_age));
bcopy((char *)&nat->nat_age, (char *)&n->nat_age,
sizeof(*n) - offsetof(nat_t, nat_age));
ipf_sync_natorder(0, n);
n->nat_sync = sl;
sl->sl_idx = -1;
sl->sl_ipn = n;
sl->sl_num = ntohl(sp->sm_num);
WRITE_ENTER(&ipf_nat);
sl->sl_pnext = syncnattab + hv;
sl->sl_next = syncnattab[hv];
if (syncnattab[hv] != NULL)
syncnattab[hv]->sl_pnext = &sl->sl_next;
syncnattab[hv] = sl;
ipf_nat_insert(n, sl->sl_rev);
RWLOCK_EXIT(&ipf_nat);
break;
case SMC_UPDATE :
bcopy(data, &su, sizeof(su));
READ_ENTER(&ipf_syncnat);
for (sl = syncnattab[hv]; (sl != NULL); sl = sl->sl_next)
if (sl->sl_hdr.sm_num == sp->sm_num)
break;
if (sl == NULL) {
ipf_interror = 110019;
err = ENOENT;
break;
}
READ_ENTER(&ipf_nat);
nat = sl->sl_ipn;
MUTEX_ENTER(&nat->nat_lock);
ipf_nat_setqueue(nat, sl->sl_rev);
MUTEX_EXIT(&nat->nat_lock);
RWLOCK_EXIT(&ipf_nat);
break;
default :
ipf_interror = 110020;
err = EINVAL;
break;
}
RWLOCK_EXIT(&ipf_syncnat);
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_new */
/* Returns: synclist_t* - NULL == failure, else pointer to new synclist */
/* data structure. */
/* Parameters: tab(I) - type of synclist_t to create */
/* fin(I) - pointer to packet information */
/* ptr(I) - pointer to owning object */
/* */
/* Creates a new sync table entry and notifies any sleepers that it's there */
/* waiting to be processed. */
/* ------------------------------------------------------------------------ */
synclist_t *
ipf_sync_new(tab, fin, ptr)
int tab;
fr_info_t *fin;
void *ptr;
{
synclist_t *sl, *ss;
synclogent_t *sle;
u_int hv, sz;
if (sl_idx == ipf_sync_log_sz)
return NULL;
KMALLOC(sl, synclist_t *);
if (sl == NULL)
return NULL;
MUTEX_ENTER(&ipf_syncadd);
/*
* Get a unique number for this synclist_t. The number is only meant
* to be unique for the lifetime of the structure and may be reused
* later.
*/
ipf_sync_num++;
if (ipf_sync_num == 0) {
ipf_sync_num = 1;
ipf_sync_wrap++;
}
/*
* Use the synch number of the object as the hash key. Should end up
* with relatively even distribution over time.
* XXX - an attacker could lunch an DoS attack, of sorts, if they are
* the only one causing new table entries by only keeping open every
* nth connection they make, where n is a value in the interval
* [0, SYNC_STATETABSZ-1].
*/
switch (tab)
{
case SMC_STATE :
hv = ipf_sync_num & (ipf_sync_state_tab_sz - 1);
while (ipf_sync_wrap != 0) {
for (ss = syncstatetab[hv]; ss; ss = ss->sl_next)
if (ss->sl_hdr.sm_num == ipf_sync_num)
break;
if (ss == NULL)
break;
ipf_sync_num++;
hv = ipf_sync_num & (ipf_sync_state_tab_sz - 1);
}
sl->sl_pnext = syncstatetab + hv;
sl->sl_next = syncstatetab[hv];
syncstatetab[hv] = sl;
break;
case SMC_NAT :
hv = ipf_sync_num & (ipf_sync_nat_tab_sz - 1);
while (ipf_sync_wrap != 0) {
for (ss = syncnattab[hv]; ss; ss = ss->sl_next)
if (ss->sl_hdr.sm_num == ipf_sync_num)
break;
if (ss == NULL)
break;
ipf_sync_num++;
hv = ipf_sync_num & (ipf_sync_nat_tab_sz - 1);
}
sl->sl_pnext = syncnattab + hv;
sl->sl_next = syncnattab[hv];
syncnattab[hv] = sl;
break;
default :
break;
}
sl->sl_num = ipf_sync_num;
MUTEX_EXIT(&ipf_syncadd);
sl->sl_magic = htonl(SYNHDRMAGIC);
sl->sl_v = fin->fin_v;
sl->sl_p = fin->fin_p;
sl->sl_cmd = SMC_CREATE;
sl->sl_idx = -1;
sl->sl_table = tab;
sl->sl_rev = fin->fin_rev;
if (tab == SMC_STATE) {
sl->sl_ips = ptr;
sz = sizeof(*sl->sl_ips);
} else if (tab == SMC_NAT) {
sl->sl_ipn = ptr;
sz = sizeof(*sl->sl_ipn);
} else {
ptr = NULL;
sz = 0;
}
sl->sl_len = sz;
/*
* Create the log entry to be read by a user daemon. When it has been
* finished and put on the queue, send a signal to wakeup any waiters.
*/
MUTEX_ENTER(&ipf_syncadd);
sle = synclog + sl_idx++;
bcopy((char *)&sl->sl_hdr, (char *)&sle->sle_hdr,
sizeof(sle->sle_hdr));
sle->sle_hdr.sm_num = htonl(sle->sle_hdr.sm_num);
sle->sle_hdr.sm_len = htonl(sle->sle_hdr.sm_len);
if (ptr != NULL) {
bcopy((char *)ptr, (char *)&sle->sle_un, sz);
if (tab == SMC_STATE) {
ipf_sync_storder(1, &sle->sle_un.sleu_ips);
} else if (tab == SMC_NAT) {
ipf_sync_natorder(1, &sle->sle_un.sleu_ipn);
}
}
MUTEX_EXIT(&ipf_syncadd);
ipf_sync_wakeup();
return sl;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_update */
/* Returns: Nil */
/* Parameters: tab(I) - type of synclist_t to create */
/* fin(I) - pointer to packet information */
/* sl(I) - pointer to synchronisation object */
/* */
/* For outbound packets, only, create an sync update record for the user */
/* process to read. */
/* ------------------------------------------------------------------------ */
void
ipf_sync_update(tab, fin, sl)
int tab;
fr_info_t *fin;
synclist_t *sl;
{
synctcp_update_t *st;
syncupdent_t *slu;
ipstate_t *ips;
nat_t *nat;
ipfrwlock_t *lock;
if (fin->fin_out == 0 || sl == NULL)
return;
if (tab == SMC_STATE) {
lock = &ipf_syncstate;
} else {
lock = &ipf_syncnat;
}
READ_ENTER(lock);
if (sl->sl_idx == -1) {
MUTEX_ENTER(&ipf_syncadd);
slu = syncupd + su_idx;
sl->sl_idx = su_idx++;
MUTEX_EXIT(&ipf_syncadd);
bcopy((char *)&sl->sl_hdr, (char *)&slu->sup_hdr,
sizeof(slu->sup_hdr));
slu->sup_hdr.sm_magic = htonl(SYNHDRMAGIC);
slu->sup_hdr.sm_sl = sl;
slu->sup_hdr.sm_cmd = SMC_UPDATE;
slu->sup_hdr.sm_table = tab;
slu->sup_hdr.sm_num = htonl(sl->sl_num);
slu->sup_hdr.sm_len = htonl(sizeof(struct synctcp_update));
slu->sup_hdr.sm_rev = fin->fin_rev;
# if 0
if (fin->fin_p == IPPROTO_TCP) {
st->stu_len[0] = 0;
st->stu_len[1] = 0;
}
# endif
} else
slu = syncupd + sl->sl_idx;
/*
* Only TCP has complex timeouts, others just use default timeouts.
* For TCP, we only need to track the connection state and window.
*/
if (fin->fin_p == IPPROTO_TCP) {
st = &slu->sup_tcp;
if (tab == SMC_STATE) {
ips = sl->sl_ips;
st->stu_age = htonl(ips->is_die);
st->stu_data[0].td_end = ips->is_send;
st->stu_data[0].td_maxend = ips->is_maxsend;
st->stu_data[0].td_maxwin = ips->is_maxswin;
st->stu_state[0] = ips->is_state[0];
st->stu_data[1].td_end = ips->is_dend;
st->stu_data[1].td_maxend = ips->is_maxdend;
st->stu_data[1].td_maxwin = ips->is_maxdwin;
st->stu_state[1] = ips->is_state[1];
} else if (tab == SMC_NAT) {
nat = sl->sl_ipn;
st->stu_age = htonl(nat->nat_age);
}
}
RWLOCK_EXIT(lock);
ipf_sync_wakeup();
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_flush_table */
/* Returns: int - number of entries freed by flushing table */
/* Parameters: tabsize(I) - size of the array pointed to by table */
/* table(I) - pointer to sync table to empty */
/* */
/* Walk through a table of sync entries and free each one. It is assumed */
/* that some lock is held so that nobody else tries to access the table */
/* during this cleanup. */
/* ------------------------------------------------------------------------ */
static int
ipf_sync_flush_table(tabsize, table)
int tabsize;
synclist_t **table;
{
synclist_t *sl;
int i, items;
items = 0;
for (i = 0; i < tabsize; i++) {
while ((sl = table[i]) != NULL) {
if (sl->sl_next != NULL)
sl->sl_next->sl_pnext = sl->sl_pnext;
table[i] = sl->sl_next;
if (sl->sl_idx != -1)
syncupd[sl->sl_idx].sup_hdr.sm_sl = NULL;
KFREE(sl);
items++;
}
}
return items;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_ioctl */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: data(I) - pointer to ioctl data */
/* cmd(I) - ioctl command integer */
/* mode(I) - file mode bits used with open */
/* */
/* This function currently does not handle any ioctls and so just returns */
/* EINVAL on all occasions. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_ioctl(data, cmd, mode, uid, ctx)
caddr_t data;
ioctlcmd_t cmd;
int mode, uid;
void *ctx;
{
int error, i;
SPL_INT(s);
switch (cmd)
{
case SIOCIPFFL:
error = BCOPYIN(data, &i, sizeof(i));
if (error != 0) {
ipf_interror = 110023;
error = EFAULT;
break;
}
switch (i)
{
case SMC_RLOG :
SPL_NET(s);
MUTEX_ENTER(&ipsl_mutex);
i = (sl_tail - sl_idx) + (su_tail - su_idx);
sl_idx = 0;
su_idx = 0;
sl_tail = 0;
su_tail = 0;
MUTEX_EXIT(&ipsl_mutex);
SPL_X(s);
break;
case SMC_NAT :
SPL_NET(s);
WRITE_ENTER(&ipf_syncnat);
i = ipf_sync_flush_table(SYNC_NATTABSZ, syncnattab);
RWLOCK_EXIT(&ipf_syncnat);
SPL_X(s);
break;
case SMC_STATE :
SPL_NET(s);
WRITE_ENTER(&ipf_syncstate);
i = ipf_sync_flush_table(SYNC_STATETABSZ, syncstatetab);
RWLOCK_EXIT(&ipf_syncstate);
SPL_X(s);
break;
}
error = BCOPYOUT(&i, data, sizeof(i));
if (error != 0) {
ipf_interror = 110022;
error = EFAULT;
}
break;
default :
ipf_interror = 110021;
error = EINVAL;
break;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_canread */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: Nil */
/* */
/* This function provides input to the poll handler about whether or not */
/* there is data waiting to be read from the /dev/ipsync device. */
/* ------------------------------------------------------------------------ */
int
ipf_sync_canread()
{
return !((sl_tail == sl_idx) && (su_tail == su_idx));
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_canwrite */
/* Returns: int - 1 == can always write */
/* Parameters: Nil */
/* */
/* This function lets the poll handler know that it is always ready willing */
/* to accept write events. */
/* XXX Maybe this should return false if the sync table is full? */
/* ------------------------------------------------------------------------ */
int
ipf_sync_canwrite()
{
return 1;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_wakeup */
/* Parameters: Nil */
/* Returns: Nil */
/* */
/* This function implements the heuristics that decide how often to */
/* generate a poll wakeup for programs that are waiting for information */
/* about when they can do a read on /dev/ipsync. */
/* */
/* There are three different considerations here: */
/* - do not keep a program waiting too long: ipf_sync_wake_interval is the */
/* maximum number of ipf ticks to let pass by; */
/* - do not let the queue of ouststanding things to generate notifies for */
/* get too full (ipf_sync_queue_high_wm is the high water mark); */
/* - do not let too many events get collapsed in before deciding that the */
/* other host(s) need an update (ipf_sync_event_high_wm is the high water */
/* mark for this counter.) */
/* ------------------------------------------------------------------------ */
static void
ipf_sync_wakeup()
{
ipf_sync_events++;
if ((ipf_ticks > ipf_sync_lastwakeup + ipf_sync_wake_interval) ||
(ipf_sync_events > ipf_sync_event_high_wm) ||
((sl_tail - sl_idx) > ipf_sync_queue_high_wm) ||
((su_tail - su_idx) > ipf_sync_queue_high_wm)) {
ipf_sync_poll_wakeup();
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_poll_wakeup */
/* Parameters: Nil */
/* Returns: Nil */
/* */
/* Deliver a poll wakeup and reset counters for two of the three heuristics */
/* ------------------------------------------------------------------------ */
static void
ipf_sync_poll_wakeup()
{
ipf_sync_events = 0;
ipf_sync_lastwakeup = ipf_ticks;
# ifdef _KERNEL
# if SOLARIS
MUTEX_ENTER(&ipsl_mutex);
cv_signal(&ipslwait);
MUTEX_EXIT(&ipsl_mutex);
pollwakeup(&ipf_poll_head[IPL_LOGSYNC], POLLIN|POLLRDNORM);
# else
wakeup(&sl_tail);
POLLWAKEUP(IPL_LOGSYNC);
# endif
# endif
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sync_expire */
/* Parameters: Nil */
/* Returns: Nil */
/* */
/* This is the function called even ipf_tick. It implements one of the */
/* three heuristics above *IF* there are events waiting. */
/* ------------------------------------------------------------------------ */
void
ipf_sync_expire()
{
if ((ipf_sync_events > 0) &&
(ipf_ticks > ipf_sync_lastwakeup + ipf_sync_wake_interval)) {
ipf_sync_poll_wakeup();
}
}
#endif /* IPFILTER_SYNC */