blob: 7c63c2a9abb610a4517b68987d45f37aad9f0021 [file] [log] [blame] [raw]
/*
* Copyright (c) 2016 Seth J. Morabito <web@loomcom.com>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
package com.loomcom.symon;
import com.loomcom.symon.util.Utils;
/**
* This class provides a simulation of the MOS 6502 CPU's state machine.
* A simple interface allows this 6502 to read and write to a simulated bus,
* and exposes some of the internal state for inspection and debugging.
*/
public class Cpu implements InstructionTable {
/* Process status register mnemonics */
public static final int P_CARRY = 0x01;
public static final int P_ZERO = 0x02;
public static final int P_IRQ_DISABLE = 0x04;
public static final int P_DECIMAL = 0x08;
public static final int P_BREAK = 0x10;
// Bit 5 is always '1'
public static final int P_OVERFLOW = 0x40;
public static final int P_NEGATIVE = 0x80;
// NMI vector
public static final int NMI_VECTOR_L = 0xfffa;
public static final int NMI_VECTOR_H = 0xfffb;
// Reset vector
public static final int RST_VECTOR_L = 0xfffc;
public static final int RST_VECTOR_H = 0xfffd;
// IRQ vector
public static final int IRQ_VECTOR_L = 0xfffe;
public static final int IRQ_VECTOR_H = 0xffff;
/* The Bus */
private Bus bus;
/* The CPU state */
private final CpuState state = new CpuState();
/* CPU Cycles available */
private int cycles = 0;
/**
* Set the bus reference for this CPU.
*/
public void setBus(Bus bus) {
this.bus = bus;
}
/**
* Return the Bus that this CPU is associated with.
*/
public Bus getBus() {
return bus;
}
/**
* Reset the CPU to known initial values.
*/
public void reset() {
/* TODO: In reality, the stack pointer could be anywhere
on the stack after reset. This non-deterministic behavior might be
worth while to simulate. */
state.sp = 0xff;
// Set the PC to the address stored in the reset vector
state.pc = Utils.address(bus.read(RST_VECTOR_L), bus.read(RST_VECTOR_H));
// Clear instruction register.
state.ir = 0;
// Clear status register bits.
state.carryFlag = false;
state.zeroFlag = false;
state.irqDisableFlag = false;
state.decimalModeFlag = false;
state.breakFlag = false;
state.overflowFlag = false;
state.negativeFlag = false;
state.irqAsserted = false;
// Clear illegal opcode trap.
state.opTrap = false;
// Reset KIL lockup
state.dead = false;
// Reset registers.
state.a = 0;
state.x = 0;
state.y = 0;
}
public void step(int num) {
for (int i = 0; i < num; i++) {
step();
}
}
public int getCycles() {
return cycles;
}
public void addCycles(int count) {
cycles += count;
}
/**
* Performs an individual instruction cycle.
*/
public void step() {
// Store the address from which the IR was read, for debugging
state.lastPc = state.pc;
if (state.dead) {
cycles = 0;
return;
}
// Check for Interrupts before doing anything else.
// This will set the PC and jump to the interrupt vector.
if (state.nmiAsserted) {
handleNmi();
} else if (state.irqAsserted && !getIrqDisableFlag()) {
handleIrq(state.pc);
}
// Fetch memory location for this instruction.
state.ir = bus.read(state.pc);
int irAddressMode = (state.ir >> 2) & 0x07; // Bits 3-5 of IR: [ | | |X|X|X| | ]
int irOpMode = state.ir & 0x03; // Bits 6-7 of IR: [ | | | | | |X|X]
cycles -= Cpu.instructionClocks[state.ir];
incrementPC();
clearOpTrap();
// Decode the instruction and operands
state.instSize = Cpu.instructionSizes[state.ir];
for (int i = 0; i < state.instSize - 1; i++) {
state.args[i] = bus.read(state.pc);
// Increment PC after reading
incrementPC();
}
// Get the data from the effective address (if any)
int effectiveAddress = 0;
int tmp; // Temporary storage
switch (irOpMode) {
case 0:
case 2:
switch (irAddressMode) {
case 0: // #Immediate
break;
case 1: // Zero Page
effectiveAddress = state.args[0];
break;
case 2: // Accumulator - ignored
break;
case 3: // Absolute
effectiveAddress = Utils.address(state.args[0], state.args[1]);
break;
case 5: // Zero Page,X / Zero Page,Y
if (state.ir == 0x96 || state.ir == 0xb6) {
effectiveAddress = zpyAddress(state.args[0]);
} else {
effectiveAddress = zpxAddress(state.args[0]);
}
break;
case 7: // Absolute,X / Absolute,Y
if (state.ir == 0xbe) {
effectiveAddress = yAddress(state.args[0], state.args[1]);
} else {
effectiveAddress = xAddress(state.args[0], state.args[1]);
}
break;
}
break;
case 1:
switch (irAddressMode) {
case 0: // (Zero Page,X)
tmp = (state.args[0] + state.x) & 0xff;
effectiveAddress = Utils.address(bus.read(tmp), bus.read(tmp + 1));
break;
case 1: // Zero Page
effectiveAddress = state.args[0];
break;
case 2: // #Immediate
effectiveAddress = -1;
break;
case 3: // Absolute
effectiveAddress = Utils.address(state.args[0], state.args[1]);
break;
case 4: // (Zero Page),Y
tmp = Utils.address(bus.read(state.args[0]), bus.read((state.args[0] + 1) & 0xff));
effectiveAddress = (tmp + state.y) & 0xffff;
break;
case 5: // Zero Page,X
effectiveAddress = zpxAddress(state.args[0]);
break;
case 6: // Absolute, Y
effectiveAddress = yAddress(state.args[0], state.args[1]);
break;
case 7: // Absolute, X
effectiveAddress = xAddress(state.args[0], state.args[1]);
break;
}
break;
}
// Execute
switch (state.ir) {
/** Single Byte Instructions; Implied and Relative **/
case 0x00: // BRK - Force Interrupt - Implied
if (!getIrqDisableFlag()) {
handleIrq(state.pc + 1);
}
break;
case 0x08: // PHP - Push Processor Status - Implied
// Break flag is always set in the stack value.
stackPush(state.getStatusFlag() | 0x10);
break;
case 0x10: // BPL - Branch if Positive - Relative
if (!getNegativeFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0x18: // CLC - Clear Carry Flag - Implied
clearCarryFlag();
break;
case 0x20: // JSR - Jump to Subroutine - Implied
stackPush((state.pc - 1 >> 8) & 0xff); // PC high byte
stackPush(state.pc - 1 & 0xff); // PC low byte
state.pc = Utils.address(state.args[0], state.args[1]);
break;
case 0x28: // PLP - Pull Processor Status - Implied
setProcessorStatus(stackPop());
break;
case 0x30: // BMI - Branch if Minus - Relative
if (getNegativeFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0x38: // SEC - Set Carry Flag - Implied
setCarryFlag();
break;
case 0x40: // RTI - Return from Interrupt - Implied
setProcessorStatus(stackPop());
int lo = stackPop();
int hi = stackPop();
setProgramCounter(Utils.address(lo, hi));
break;
case 0x48: // PHA - Push Accumulator - Implied
stackPush(state.a);
break;
case 0x50: // BVC - Branch if Overflow Clear - Relative
if (!getOverflowFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0x58: // CLI - Clear Interrupt Disable - Implied
clearIrqDisableFlag();
break;
case 0x60: // RTS - Return from Subroutine - Implied
lo = stackPop();
hi = stackPop();
setProgramCounter((Utils.address(lo, hi) + 1) & 0xffff);
break;
case 0x68: // PLA - Pull Accumulator - Implied
state.a = stackPop();
setArithmeticFlags(state.a);
break;
case 0x70: // BVS - Branch if Overflow Set - Relative
if (getOverflowFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0x78: // SEI - Set Interrupt Disable - Implied
setIrqDisableFlag();
break;
case 0x88: // DEY - Decrement Y Register - Implied
state.y = --state.y & 0xff;
setArithmeticFlags(state.y);
break;
case 0x8a: // TXA - Transfer X to Accumulator - Implied
state.a = state.x;
setArithmeticFlags(state.a);
break;
case 0x90: // BCC - Branch if Carry Clear - Relative
if (!getCarryFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0x98: // TYA - Transfer Y to Accumulator - Implied
state.a = state.y;
setArithmeticFlags(state.a);
break;
case 0x9a: // TXS - Transfer X to Stack Pointer - Implied
setStackPointer(state.x);
break;
case 0xa8: // TAY - Transfer Accumulator to Y - Implied
state.y = state.a;
setArithmeticFlags(state.y);
break;
case 0xaa: // TAX - Transfer Accumulator to X - Implied
state.x = state.a;
setArithmeticFlags(state.x);
break;
case 0xb0: // BCS - Branch if Carry Set - Relative
if (getCarryFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0xb8: // CLV - Clear Overflow Flag - Implied
clearOverflowFlag();
break;
case 0xba: // TSX - Transfer Stack Pointer to X - Implied
state.x = getStackPointer();
setArithmeticFlags(state.x);
break;
case 0xc8: // INY - Increment Y Register - Implied
state.y = ++state.y & 0xff;
setArithmeticFlags(state.y);
break;
case 0xca: // DEX - Decrement X Register - Implied
state.x = --state.x & 0xff;
setArithmeticFlags(state.x);
break;
case 0xd0: // BNE - Branch if Not Equal to Zero - Relative
if (!getZeroFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0xd8: // CLD - Clear Decimal Mode - Implied
clearDecimalModeFlag();
break;
case 0xe8: // INX - Increment X Register - Implied
state.x = ++state.x & 0xff;
setArithmeticFlags(state.x);
break;
case 0xea: // NOP
// Do nothing.
break;
case 0xf0: // BEQ - Branch if Equal to Zero - Relative
if (getZeroFlag()) {
state.pc = relAddress(state.args[0]);
}
break;
case 0xf8: // SED - Set Decimal Flag - Implied
setDecimalModeFlag();
break;
/** JMP *****************************************************************/
case 0x4c: // JMP - Absolute
state.pc = Utils.address(state.args[0], state.args[1]);
break;
case 0x6c: // JMP - Indirect
lo = Utils.address(state.args[0], state.args[1]); // Address of low byte
if (state.args[0] == 0xff) {
hi = Utils.address(0x00, state.args[1]);
} else {
hi = lo + 1;
}
state.pc = Utils.address(bus.read(lo), bus.read(hi));
break;
/** ORA - Logical Inclusive Or ******************************************/
case 0x09: // #Immediate
state.a |= state.args[0];
setArithmeticFlags(state.a);
break;
case 0x01: // (Zero Page,X)
case 0x05: // Zero Page
case 0x0d: // Absolute
case 0x11: // (Zero Page),Y
case 0x15: // Zero Page,X
case 0x19: // Absolute,Y
case 0x1d: // Absolute,X
state.a |= bus.read(effectiveAddress);
setArithmeticFlags(state.a);
break;
/** ASL - Arithmetic Shift Left *****************************************/
case 0x0a: // Accumulator
state.a = asl(state.a);
setArithmeticFlags(state.a);
break;
case 0x06: // Zero Page
case 0x0e: // Absolute
case 0x16: // Zero Page,X
case 0x1e: // Absolute,X
tmp = asl(bus.read(effectiveAddress));
bus.write(effectiveAddress, tmp);
setArithmeticFlags(tmp);
break;
/** BIT - Bit Test ******************************************************/
case 0x24: // Zero Page
case 0x2c: // Absolute
tmp = bus.read(effectiveAddress);
setZeroFlag((state.a & tmp) == 0);
setNegativeFlag((tmp & 0x80) != 0);
setOverflowFlag((tmp & 0x40) != 0);
break;
/** AND - Logical AND ***************************************************/
case 0x29: // #Immediate
state.a &= state.args[0];
setArithmeticFlags(state.a);
break;
case 0x21: // (Zero Page,X)
case 0x25: // Zero Page
case 0x2d: // Absolute
case 0x31: // (Zero Page),Y
case 0x35: // Zero Page,X
case 0x39: // Absolute,Y
case 0x3d: // Absolute,X
state.a &= bus.read(effectiveAddress);
setArithmeticFlags(state.a);
break;
/** ROL - Rotate Left ***************************************************/
case 0x2a: // Accumulator
state.a = rol(state.a);
setArithmeticFlags(state.a);
break;
case 0x26: // Zero Page
case 0x2e: // Absolute
case 0x36: // Zero Page,X
case 0x3e: // Absolute,X
tmp = rol(bus.read(effectiveAddress));
bus.write(effectiveAddress, tmp);
setArithmeticFlags(tmp);
break;
/** EOR - Exclusive OR **************************************************/
case 0x49: // #Immediate
state.a ^= state.args[0];
setArithmeticFlags(state.a);
break;
case 0x41: // (Zero Page,X)
case 0x45: // Zero Page
case 0x4d: // Absolute
case 0x51: // (Zero Page,Y)
case 0x55: // Zero Page,X
case 0x59: // Absolute,Y
case 0x5d: // Absolute,X
state.a ^= bus.read(effectiveAddress);
setArithmeticFlags(state.a);
break;
/** LSR - Logical Shift Right *******************************************/
case 0x4a: // Accumulator
state.a = lsr(state.a);
setArithmeticFlags(state.a);
break;
case 0x46: // Zero Page
case 0x4e: // Absolute
case 0x56: // Zero Page,X
case 0x5e: // Absolute,X
tmp = lsr(bus.read(effectiveAddress));
bus.write(effectiveAddress, tmp);
setArithmeticFlags(tmp);
break;
/** ADC - Add with Carry ************************************************/
case 0x69: // #Immediate
if (state.decimalModeFlag) {
state.a = adcDecimal(state.a, state.args[0]);
} else {
state.a = adc(state.a, state.args[0]);
}
break;
case 0x61: // (Zero Page,X)
case 0x65: // Zero Page
case 0x6d: // Absolute
case 0x71: // (Zero Page),Y
case 0x75: // Zero Page,X
case 0x79: // Absolute,Y
case 0x7d: // Absolute,X
if (state.decimalModeFlag) {
state.a = adcDecimal(state.a, bus.read(effectiveAddress));
} else {
state.a = adc(state.a, bus.read(effectiveAddress));
}
break;
/** ROR - Rotate Right **************************************************/
case 0x6a: // Accumulator
state.a = ror(state.a);
setArithmeticFlags(state.a);
break;
case 0x66: // Zero Page
case 0x6e: // Absolute
case 0x76: // Zero Page,X
case 0x7e: // Absolute,X
tmp = ror(bus.read(effectiveAddress));
bus.write(effectiveAddress, tmp);
setArithmeticFlags(tmp);
break;
/** STA - Store Accumulator *********************************************/
case 0x81: // (Zero Page,X)
case 0x85: // Zero Page
case 0x8d: // Absolute
case 0x91: // (Zero Page),Y
case 0x95: // Zero Page,X
case 0x99: // Absolute,Y
case 0x9d: // Absolute,X
bus.write(effectiveAddress, state.a);
break;
/** STY - Store Y Register **********************************************/
case 0x84: // Zero Page
case 0x8c: // Absolute
case 0x94: // Zero Page,X
bus.write(effectiveAddress, state.y);
break;
/** STX - Store X Register **********************************************/
case 0x86: // Zero Page
case 0x8e: // Absolute
case 0x96: // Zero Page,Y
bus.write(effectiveAddress, state.x);
break;
/** LDY - Load Y Register ***********************************************/
case 0xa0: // #Immediate
state.y = state.args[0];
setArithmeticFlags(state.y);
break;
case 0xa4: // Zero Page
case 0xac: // Absolute
case 0xb4: // Zero Page,X
case 0xbc: // Absolute,X
state.y = bus.read(effectiveAddress);
setArithmeticFlags(state.y);
break;
/** LDX - Load X Register ***********************************************/
case 0xa2: // #Immediate
state.x = state.args[0];
setArithmeticFlags(state.x);
break;
case 0xa6: // Zero Page
case 0xae: // Absolute
case 0xb6: // Zero Page,Y
case 0xbe: // Absolute,Y
state.x = bus.read(effectiveAddress);
setArithmeticFlags(state.x);
break;
/** LDA - Load Accumulator **********************************************/
case 0xa9: // #Immediate
state.a = state.args[0];
setArithmeticFlags(state.a);
break;
case 0xa1: // (Zero Page,X)
case 0xa5: // Zero Page
case 0xad: // Absolute
case 0xb1: // (Zero Page),Y
case 0xb5: // Zero Page,X
case 0xb9: // Absolute,Y
case 0xbd: // Absolute,X
state.a = bus.read(effectiveAddress);
setArithmeticFlags(state.a);
break;
/** CPY - Compare Y Register ********************************************/
case 0xc0: // #Immediate
cmp(state.y, state.args[0]);
break;
case 0xc4: // Zero Page
case 0xcc: // Absolute
cmp(state.y, bus.read(effectiveAddress));
break;
/** CMP - Compare Accumulator *******************************************/
case 0xc9: // #Immediate
cmp(state.a, state.args[0]);
break;
case 0xc1: // (Zero Page,X)
case 0xc5: // Zero Page
case 0xcd: // Absolute
case 0xd1: // (Zero Page),Y
case 0xd5: // Zero Page,X
case 0xd9: // Absolute,Y
case 0xdd: // Absolute,X
cmp(state.a, bus.read(effectiveAddress));
break;
/** DEC - Decrement Memory **********************************************/
case 0xc6: // Zero Page
case 0xce: // Absolute
case 0xd6: // Zero Page,X
case 0xde: // Absolute,X
tmp = (bus.read(effectiveAddress) - 1) & 0xff;
bus.write(effectiveAddress, tmp);
setArithmeticFlags(tmp);
break;
/** CPX - Compare X Register ********************************************/
case 0xe0: // #Immediate
cmp(state.x, state.args[0]);
break;
case 0xe4: // Zero Page
case 0xec: // Absolute
cmp(state.x, bus.read(effectiveAddress));
break;
/** SBC - Subtract with Carry (Borrow) **********************************/
case 0xe9: // #Immediate
if (state.decimalModeFlag) {
state.a = sbcDecimal(state.a, state.args[0]);
} else {
state.a = sbc(state.a, state.args[0]);
}
break;
case 0xe1: // (Zero Page,X)
case 0xe5: // Zero Page
case 0xed: // Absolute
case 0xf1: // (Zero Page),Y
case 0xf5: // Zero Page,X
case 0xf9: // Absolute,Y
case 0xfd: // Absolute,X
if (state.decimalModeFlag) {
state.a = sbcDecimal(state.a, bus.read(effectiveAddress));
} else {
state.a = sbc(state.a, bus.read(effectiveAddress));
}
break;
/** INC - Increment Memory **********************************************/
case 0xe6: // Zero Page
case 0xee: // Absolute
case 0xf6: // Zero Page,X
case 0xfe: // Absolute,X
tmp = (bus.read(effectiveAddress) + 1) & 0xff;
bus.write(effectiveAddress, tmp);
setArithmeticFlags(tmp);
break;
/** KIL - Processor Lockup **********************************************/
case 0x02:
case 0x12:
case 0x22:
case 0x32:
case 0x42:
case 0x52:
case 0x62:
case 0x72:
case 0x92:
case 0xb2:
case 0xd2:
case 0xf2:
case 0xff:
state.dead = true;
break;
/** Unimplemented Instructions ****************************************/
// TODO: Create a flag to enable highly-accurate emulation of unimplemented instructions.
default:
setOpTrap();
break;
}
}
private void handleIrq(int returnPc) {
handleInterrupt(returnPc, IRQ_VECTOR_L, IRQ_VECTOR_H);
clearIrq();
}
private void handleNmi() {
handleInterrupt(state.pc, NMI_VECTOR_L, NMI_VECTOR_H);
clearNmi();
}
/**
* Handle the common behavior of BRK, /IRQ, and /NMI
*
* @throws MemoryAccessException
*/
private void handleInterrupt(int returnPc, int vectorLow, int vectorHigh) {
// Set the break flag before pushing.
setBreakFlag();
// Push program counter + 1 onto the stack
stackPush((returnPc >> 8) & 0xff); // PC high byte
stackPush(returnPc & 0xff); // PC low byte
stackPush(state.getStatusFlag());
// Set the Interrupt Disabled flag. RTI will clear it.
setIrqDisableFlag();
// Load interrupt vector address into PC
state.pc = Utils.address(bus.read(vectorLow), bus.read(vectorHigh));
}
/**
* Add with Carry, used by all addressing mode implementations of ADC.
* As a side effect, this will set the overflow and carry flags as
* needed.
*
* @param acc The current value of the accumulator
* @param operand The operand
* @return The sum of the accumulator and the operand
*/
private int adc(int acc, int operand) {
int result = (operand & 0xff) + (acc & 0xff) + getCarryBit();
int carry6 = (operand & 0x7f) + (acc & 0x7f) + getCarryBit();
setCarryFlag((result & 0x100) != 0);
setOverflowFlag(state.carryFlag ^ ((carry6 & 0x80) != 0));
result &= 0xff;
setArithmeticFlags(result);
return result;
}
/**
* Add with Carry (BCD).
*/
private int adcDecimal(int acc, int operand) {
int l, h, result;
l = (acc & 0x0f) + (operand & 0x0f) + getCarryBit();
if ((l & 0xff) > 9)
l += 6;
h = (acc >> 4) + (operand >> 4) + (l > 15 ? 1 : 0);
if ((h & 0xff) > 9)
h += 6;
result = (l & 0x0f) | (h << 4);
result &= 0xff;
setCarryFlag(h > 15);
setZeroFlag(result == 0);
setNegativeFlag(false); // BCD is never negative
setOverflowFlag(false); // BCD never sets overflow flag
this.cycles--;
return result;
}
/**
* Common code for Subtract with Carry. Just calls ADC of the
* one's complement of the operand. This lets the N, V, C, and Z
* flags work out nicely without any additional logic.
*/
private int sbc(int acc, int operand) {
int result;
result = adc(acc, ~operand);
setArithmeticFlags(result);
return result;
}
/**
* Subtract with Carry, BCD mode.
*/
private int sbcDecimal(int acc, int operand) {
int l, h, result;
l = (acc & 0x0f) - (operand & 0x0f) - (state.carryFlag ? 0 : 1);
if ((l & 0x10) != 0)
l -= 6;
h = (acc >> 4) - (operand >> 4) - ((l & 0x10) != 0 ? 1 : 0);
if ((h & 0x10) != 0)
h -= 6;
result = (l & 0x0f) | (h << 4);
setCarryFlag((h & 0xff) < 15);
setZeroFlag(result == 0);
setNegativeFlag(false); // BCD is never negative
setOverflowFlag(false); // BCD never sets overflow flag
this.cycles--;
return (result & 0xff);
}
/**
* Compare two values, and set carry, zero, and negative flags
* appropriately.
*/
private void cmp(int reg, int operand) {
int tmp = (reg - operand) & 0xff;
setCarryFlag(reg >= operand);
setZeroFlag(tmp == 0);
setNegativeFlag((tmp & 0x80) != 0); // Negative bit set
}
/**
* Set the Negative and Zero flags based on the current value of the
* register operand.
*/
private void setArithmeticFlags(int reg) {
state.zeroFlag = (reg == 0);
state.negativeFlag = (reg & 0x80) != 0;
}
/**
* Shifts the given value left by one bit, and sets the carry
* flag to the high bit of the initial value.
*
* @param m The value to shift left.
* @return the left shifted value (m * 2).
*/
private int asl(int m) {
setCarryFlag((m & 0x80) != 0);
return (m << 1) & 0xff;
}
/**
* Shifts the given value right by one bit, filling with zeros,
* and sets the carry flag to the low bit of the initial value.
*/
private int lsr(int m) {
setCarryFlag((m & 0x01) != 0);
return (m & 0xff) >>> 1;
}
/**
* Rotates the given value left by one bit, setting bit 0 to the value
* of the carry flag, and setting the carry flag to the original value
* of bit 7.
*/
private int rol(int m) {
int result = ((m << 1) | getCarryBit()) & 0xff;
setCarryFlag((m & 0x80) != 0);
return result;
}
/**
* Rotates the given value right by one bit, setting bit 7 to the value
* of the carry flag, and setting the carry flag to the original value
* of bit 1.
*/
private int ror(int m) {
int result = ((m >>> 1) | (getCarryBit() << 7)) & 0xff;
setCarryFlag((m & 0x01) != 0);
return result;
}
/**
* Return the current Cpu State.
*
* @return the current Cpu State.
*/
public CpuState getCpuState() {
return state;
}
/**
* @return the negative flag
*/
public boolean getNegativeFlag() {
return state.negativeFlag;
}
/**
* @param negativeFlag the negative flag to set
*/
public void setNegativeFlag(boolean negativeFlag) {
state.negativeFlag = negativeFlag;
}
public void setNegativeFlag() {
state.negativeFlag = true;
}
public void clearNegativeFlag() {
state.negativeFlag = false;
}
/**
* @return the carry flag
*/
public boolean getCarryFlag() {
return state.carryFlag;
}
/**
* @return 1 if the carry flag is set, 0 if it is clear.
*/
public int getCarryBit() {
return (state.carryFlag ? 1 : 0);
}
/**
* @param carryFlag the carry flag to set
*/
public void setCarryFlag(boolean carryFlag) {
state.carryFlag = carryFlag;
}
/**
* Sets the Carry Flag
*/
public void setCarryFlag() {
state.carryFlag = true;
}
/**
* Clears the Carry Flag
*/
public void clearCarryFlag() {
state.carryFlag = false;
}
/**
* @return the zero flag
*/
public boolean getZeroFlag() {
return state.zeroFlag;
}
/**
* @param zeroFlag the zero flag to set
*/
public void setZeroFlag(boolean zeroFlag) {
state.zeroFlag = zeroFlag;
}
/**
* Sets the Zero Flag
*/
public void setZeroFlag() {
state.zeroFlag = true;
}
/**
* Clears the Zero Flag
*/
public void clearZeroFlag() {
state.zeroFlag = false;
}
/**
* @return the irq disable flag
*/
public boolean getIrqDisableFlag() {
return state.irqDisableFlag;
}
public void setIrqDisableFlag() {
state.irqDisableFlag = true;
}
public void clearIrqDisableFlag() {
state.irqDisableFlag = false;
}
/**
* @return the decimal mode flag
*/
public boolean getDecimalModeFlag() {
return state.decimalModeFlag;
}
/**
* Sets the Decimal Mode Flag to true.
*/
public void setDecimalModeFlag() {
state.decimalModeFlag = true;
}
/**
* Clears the Decimal Mode Flag.
*/
public void clearDecimalModeFlag() {
state.decimalModeFlag = false;
}
/**
* @return the break flag
*/
public boolean getBreakFlag() {
return state.breakFlag;
}
/**
* Sets the Break Flag
*/
public void setBreakFlag() {
state.breakFlag = true;
}
/**
* Clears the Break Flag
*/
public void clearBreakFlag() {
state.breakFlag = false;
}
/**
* @return the overflow flag
*/
public boolean getOverflowFlag() {
return state.overflowFlag;
}
/**
* @param overflowFlag the overflow flag to set
*/
public void setOverflowFlag(boolean overflowFlag) {
state.overflowFlag = overflowFlag;
}
/**
* Sets the Overflow Flag
*/
public void setOverflowFlag() {
state.overflowFlag = true;
}
/**
* Clears the Overflow Flag
*/
public void clearOverflowFlag() {
state.overflowFlag = false;
}
/**
* Set the illegal instruction trap.
*/
public void setOpTrap() {
state.opTrap = true;
}
/**
* Clear the illegal instruction trap.
*/
public void clearOpTrap() {
state.opTrap = false;
}
public int getAccumulator() {
return state.a;
}
public void setAccumulator(int val) {
state.a = val;
}
public int getXRegister() {
return state.x;
}
public void setXRegister(int val) {
state.x = val;
}
public int getYRegister() {
return state.y;
}
public void setYRegister(int val) {
state.y = val;
}
public int getProgramCounter() {
return state.pc;
}
public void setProgramCounter(int addr) {
state.pc = addr;
}
public int getStackPointer() {
return state.sp;
}
public void setStackPointer(int offset) {
state.sp = offset;
}
public int getInstruction() {
return state.ir;
}
/**
* @value The value of the Process Status Register bits to be set.
*/
public void setProcessorStatus(int value) {
if ((value & P_CARRY) != 0)
setCarryFlag();
else
clearCarryFlag();
if ((value & P_ZERO) != 0)
setZeroFlag();
else
clearZeroFlag();
if ((value & P_IRQ_DISABLE) != 0)
setIrqDisableFlag();
else
clearIrqDisableFlag();
if ((value & P_DECIMAL) != 0)
setDecimalModeFlag();
else
clearDecimalModeFlag();
if ((value & P_BREAK) != 0)
setBreakFlag();
else
clearBreakFlag();
if ((value & P_OVERFLOW) != 0)
setOverflowFlag();
else
clearOverflowFlag();
if ((value & P_NEGATIVE) != 0)
setNegativeFlag();
else
clearNegativeFlag();
}
public String getAccumulatorStatus() {
return "$" + Utils.byteToHex(state.a);
}
public String getXRegisterStatus() {
return "$" + Utils.byteToHex(state.x);
}
public String getYRegisterStatus() {
return "$" + Utils.byteToHex(state.y);
}
public String getProgramCounterStatus() {
return "$" + Utils.wordToHex(state.pc);
}
public String getStackPointerStatus() {
return "$" + Utils.byteToHex(state.sp);
}
public int getProcessorStatus() {
return state.getStatusFlag();
}
/**
* Simulate transition from logic-high to logic-low on the INT line.
*/
public void assertIrq() {
state.irqAsserted = true;
}
/**
* Simulate transition from logic-low to logic-high of the INT line.
*/
public void clearIrq() {
state.irqAsserted = false;
}
/**
* Simulate transition from logic-high to logic-low on the NMI line.
*/
public void assertNmi() {
state.nmiAsserted = true;
}
/**
* Simulate transition from logic-low to logic-high of the NMI line.
*/
public void clearNmi() {
state.nmiAsserted = false;
}
/**
* Push an item onto the stack, and decrement the stack counter.
* Will wrap-around if already at the bottom of the stack (This
* is the same behavior as the real 6502)
*/
void stackPush(int data) {
bus.write(0x100 + state.sp, data);
if (state.sp == 0) {
state.sp = 0xff;
} else {
--state.sp;
}
}
/**
* Pre-increment the stack pointer, and return the top of the stack.
* Will wrap-around if already at the top of the stack (This
* is the same behavior as the real 6502)
*/
int stackPop() {
if (state.sp == 0xff) {
state.sp = 0x00;
} else {
++state.sp;
}
return bus.read(0x100 + state.sp);
}
/**
* Peek at the value currently at the top of the stack
*/
int stackPeek() {
return bus.read(0x100 + state.sp + 1);
}
/*
* Increment the PC, rolling over if necessary.
*/
void incrementPC() {
if (state.pc == 0xffff) {
state.pc = 0;
} else {
++state.pc;
}
}
/**
* Given a hi byte and a low byte, return the Absolute,X
* offset address.
*/
int xAddress(int lowByte, int hiByte) {
return (Utils.address(lowByte, hiByte) + state.x) & 0xffff;
}
/**
* Given a hi byte and a low byte, return the Absolute,Y
* offset address.
*/
int yAddress(int lowByte, int hiByte) {
return (Utils.address(lowByte, hiByte) + state.y) & 0xffff;
}
/**
* Given a single byte, compute the Zero Page,X offset address.
*/
int zpxAddress(int zp) {
return (zp + state.x) & 0xff;
}
/**
* Given a single byte, compute the offset address.
*/
int relAddress(int offset) {
// Cast the offset to a signed byte to handle negative offsets
int newpc = (state.pc + (byte) offset) & 0xffff;
this.cycles -= ((newpc & 0xFF00) != (state.pc & 0xFF00)) ? 2 : 1;
return newpc;
}
/**
* Given a single byte, compute the Zero Page,Y offset address.
*/
int zpyAddress(int zp) {
return (zp + state.y) & 0xff;
}
/**
* Return a formatted string representing the last instruction and
* operands that were executed.
*
* @return A string representing the mnemonic and operands of the instruction
*/
public static String disassembleOp(int opCode, int[] args) {
String mnemonic = opcodeNames[opCode];
if (mnemonic == null) {
return "???";
}
StringBuilder sb = new StringBuilder(mnemonic);
switch (instructionModes[opCode]) {
case ABS:
sb.append(" $").append(Utils.wordToHex(Utils.address(args[0], args[1])));
break;
case ABX:
sb.append(" $").append(Utils.wordToHex(Utils.address(args[0], args[1]))).append(",X");
break;
case ABY:
sb.append(" $").append(Utils.wordToHex(Utils.address(args[0], args[1]))).append(",Y");
break;
case IMM:
sb.append(" #$").append(Utils.byteToHex(args[0]));
break;
case IND:
sb.append(" ($").append(Utils.wordToHex(Utils.address(args[0], args[1]))).append(")");
break;
case XIN:
sb.append(" ($").append(Utils.byteToHex(args[0])).append(",X)");
break;
case INY:
sb.append(" ($").append(Utils.byteToHex(args[0])).append("),Y");
break;
case REL:
case ZPG:
sb.append(" $").append(Utils.byteToHex(args[0]));
break;
case ZPX:
sb.append(" $").append(Utils.byteToHex(args[0])).append(",X");
break;
case ZPY:
sb.append(" $").append(Utils.byteToHex(args[0])).append(",Y");
break;
}
return sb.toString();
}
/**
* @param address Address to disassemble
* @return String containing the disassembled instruction and operands.
*/
public String disassembleOpAtAddress(int address) {
int opCode = bus.read(address);
int args[] = new int[2];
int size = Cpu.instructionSizes[opCode];
for (int i = 1; i < size; i++) {
args[i - 1] = bus.read(address + i);
}
return disassembleOp(opCode, args);
}
}