blob: 82919653f9da2b94a6fcd5fc3b8c6c9d243c4165 [file] [log] [blame] [raw]
package li.cil.oc.api.prefab;
import li.cil.oc.api.Network;
import li.cil.oc.api.network.Node;
import li.cil.oc.api.network.SidedEnvironment;
import net.minecraft.nbt.NBTTagCompound;
import net.minecraft.tileentity.TileEntity;
import net.minecraftforge.common.util.ForgeDirection;
import scala.Array;
/**
* TileEntities can implement the {@link li.cil.oc.api.network.SidedEnvironment}
* interface to allow them to interact with the component network, by providing
* a separate {@link li.cil.oc.api.network.Node} for each block face, and
* connecting it to said network. This allows more control over connectivity
* than the simple {@link li.cil.oc.api.network.Environment}.
* <p/>
* Nodes in such a network can communicate with each other, or just use the
* network as an index structure to find other nodes connected to them.
*/
@SuppressWarnings("UnusedDeclaration")
public abstract class TileEntitySidedEnvironment extends TileEntity implements SidedEnvironment {
// See constructor.
protected Node[] nodes = new Node[6];
// See updateEntity().
protected boolean addedToNetwork = false;
/**
* This expects a node per face that is used to represent this tile entity.
* <p/>
* You must only create new nodes using the factory method in the network
* API, {@link li.cil.oc.api.Network#newNode(li.cil.oc.api.network.Environment, li.cil.oc.api.network.Visibility)}.
* <p/>
* For example:
* <pre>
* // The first parameters to newNode is the host() of the node, which will
* // usually be this tile entity. The second one is it's reachability,
* // which determines how other nodes in the same network can query this
* // node. See {@link li.cil.oc.api.network.Network#nodes(li.cil.oc.api.network.Node)}.
* super(Network.newNode(???, Visibility.Network)
* // This call allows the node to consume energy from the
* // component network it is in and act as a consumer, or to
* // inject energy into that network and act as a producer.
* // If you do not need energy remove this call.
* .withConnector()
* // This call marks the tile entity as a component. This means you
* // can mark methods in it using the {@link li.cil.oc.api.network.Callback}
* // annotation, making them callable from user code. The first
* // parameter is the name by which the component will be known in
* // the computer, in this case it could be accessed as
* // <tt>component.example</tt>. The second parameter is the
* // component's visibility. This is like the node's reachability,
* // but only applies to computers. For example, network cards can
* // only be <em>seen</em> by the computer they're installed in, but
* // can be <em>reached</em> by all other network cards in the same
* // network. If you do not need callbacks remove this call.
* .withComponent("example", Visibility.Neighbors)
* // Finalizes the construction of the node and returns it.
* .create(), ...);
* </pre>
*/
protected TileEntitySidedEnvironment(final Node... nodes) {
Array.copy(nodes, 0, this.nodes, 0, Math.min(nodes.length, this.nodes.length));
}
// ----------------------------------------------------------------------- //
// canConnect() is for the client side, to determine how cables are
// rendered, for example, so you'll have to provide that logic yourself.
// Nodes are only created on the server side, so checking whether a node
// exists for a side won't work on the client.
@Override
public Node sidedNode(final ForgeDirection side) {
return side == ForgeDirection.UNKNOWN ? null : nodes[side.ordinal()];
}
// ----------------------------------------------------------------------- //
@Override
public void updateEntity() {
super.updateEntity();
// On the first update, try to add our node to nearby networks. We do
// this in the update logic, not in validate() because we need to access
// neighboring tile entities, which isn't possible in validate().
// We could alternatively check node != null && node.network() == null,
// but this has somewhat better performance, and makes it clearer.
if (!addedToNetwork) {
addedToNetwork = true;
// Note that joinOrCreateNetwork will try to connect each of our
// sided nodes to their respective neighbor (sided) node.
Network.joinOrCreateNetwork(this);
}
}
@Override
public void onChunkUnload() {
super.onChunkUnload();
// Make sure to remove the node from its network when its environment,
// meaning this tile entity, gets unloaded.
for (Node node : nodes) {
if (node != null) node.remove();
}
}
@Override
public void invalidate() {
super.invalidate();
// Make sure to remove the node from its network when its environment,
// meaning this tile entity, gets unloaded.
for (Node node : nodes) {
if (node != null) node.remove();
}
}
// ----------------------------------------------------------------------- //
@Override
public void readFromNBT(final NBTTagCompound nbt) {
super.readFromNBT(nbt);
int index = 0;
for (Node node : nodes) {
// The host check may be superfluous for you. It's just there to allow
// some special cases, where getNode() returns some node managed by
// some other instance (for example when you have multiple internal
// nodes in this tile entity).
if (node != null && node.host() == this) {
// This restores the node's address, which is required for networks
// to continue working without interruption across loads. If the
// node is a power connector this is also required to restore the
// internal energy buffer of the node.
node.load(nbt.getCompoundTag("oc:node" + index));
}
++index;
}
}
@Override
public void writeToNBT(NBTTagCompound nbt) {
super.writeToNBT(nbt);
int index = 0;
for (Node node : nodes) {
// See readFromNBT() regarding host check.
if (node != null && node.host() == this) {
final NBTTagCompound nodeNbt = new NBTTagCompound();
node.save(nodeNbt);
nbt.setTag("oc:node" + index, nodeNbt);
}
++index;
}
}
}