| /******************************************************************************* |
| * Copyright (c) 2009-2011 Luaj.org. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| ******************************************************************************/ |
| package org.luaj.vm2; |
| |
| import org.luaj.vm2.lib.MathLib; |
| |
| /** |
| * Extension of {@link LuaNumber} which can hold a Java double as its value. |
| * <p> |
| * These instance are not instantiated directly by clients, but indirectly |
| * via the static functions {@link LuaValue#valueOf(int)} or {@link LuaValue#valueOf(double)} |
| * functions. This ensures that values which can be represented as int |
| * are wrapped in {@link LuaInteger} instead of {@link LuaDouble}. |
| * <p> |
| * Almost all API's implemented in LuaDouble are defined and documented in {@link LuaValue}. |
| * <p> |
| * However the constants {@link #NAN}, {@link #POSINF}, {@link #NEGINF}, |
| * {@link #JSTR_NAN}, {@link #JSTR_POSINF}, and {@link #JSTR_NEGINF} may be useful |
| * when dealing with Nan or Infinite values. |
| * <p> |
| * LuaDouble also defines functions for handling the unique math rules of lua devision and modulo in |
| * <ul> |
| * <li>{@link #ddiv(double, double)}</li> |
| * <li>{@link #ddiv_d(double, double)}</li> |
| * <li>{@link #dmod(double, double)}</li> |
| * <li>{@link #dmod_d(double, double)}</li> |
| * </ul> |
| * <p> |
| * @see LuaValue |
| * @see LuaNumber |
| * @see LuaInteger |
| * @see LuaValue#valueOf(int) |
| * @see LuaValue#valueOf(double) |
| */ |
| public class LuaDouble extends LuaNumber { |
| |
| /** Constant LuaDouble representing NaN (not a number) */ |
| public static final LuaDouble NAN = new LuaDouble( Double.NaN ); |
| |
| /** Constant LuaDouble representing positive infinity */ |
| public static final LuaDouble POSINF = new LuaDouble( Double.POSITIVE_INFINITY ); |
| |
| /** Constant LuaDouble representing negative infinity */ |
| public static final LuaDouble NEGINF = new LuaDouble( Double.NEGATIVE_INFINITY ); |
| |
| /** Constant String representation for NaN (not a number), "nan" */ |
| public static final String JSTR_NAN = "nan"; |
| |
| /** Constant String representation for positive infinity, "inf" */ |
| public static final String JSTR_POSINF = "inf"; |
| |
| /** Constant String representation for negative infinity, "-inf" */ |
| public static final String JSTR_NEGINF = "-inf"; |
| |
| /** The value being held by this instance. */ |
| final double v; |
| |
| public static LuaNumber valueOf(double d) { |
| int id = (int) d; |
| return d==id? (LuaNumber) LuaInteger.valueOf(id): (LuaNumber) new LuaDouble(d); |
| } |
| |
| /** Don't allow ints to be boxed by DoubleValues */ |
| private LuaDouble(double d) { |
| this.v = d; |
| } |
| |
| public int hashCode() { |
| long l = Double.doubleToLongBits(v + 1); |
| return ((int)(l>>32)) + (int) l; |
| } |
| |
| public boolean islong() { |
| return v == (long) v; |
| } |
| |
| public byte tobyte() { return (byte) (long) v; } |
| public char tochar() { return (char) (long) v; } |
| public double todouble() { return v; } |
| public float tofloat() { return (float) v; } |
| public int toint() { return (int) (long) v; } |
| public long tolong() { return (long) v; } |
| public short toshort() { return (short) (long) v; } |
| |
| public double optdouble(double defval) { return v; } |
| public int optint(int defval) { return (int) (long) v; } |
| public LuaInteger optinteger(LuaInteger defval) { return LuaInteger.valueOf((int) (long)v); } |
| public long optlong(long defval) { return (long) v; } |
| |
| public LuaInteger checkinteger() { return LuaInteger.valueOf( (int) (long) v ); } |
| |
| // unary operators |
| public LuaValue neg() { return valueOf(-v); } |
| |
| // object equality, used for key comparison |
| public boolean equals(Object o) { return o instanceof LuaDouble? ((LuaDouble)o).v == v: false; } |
| |
| // equality w/ metatable processing |
| public LuaValue eq( LuaValue val ) { return val.raweq(v)? TRUE: FALSE; } |
| public boolean eq_b( LuaValue val ) { return val.raweq(v); } |
| |
| // equality w/o metatable processing |
| public boolean raweq( LuaValue val ) { return val.raweq(v); } |
| public boolean raweq( double val ) { return v == val; } |
| public boolean raweq( int val ) { return v == val; } |
| |
| // basic binary arithmetic |
| public LuaValue add( LuaValue rhs ) { return rhs.add(v); } |
| public LuaValue add( double lhs ) { return LuaDouble.valueOf(lhs + v); } |
| public LuaValue sub( LuaValue rhs ) { return rhs.subFrom(v); } |
| public LuaValue sub( double rhs ) { return LuaDouble.valueOf(v - rhs); } |
| public LuaValue sub( int rhs ) { return LuaDouble.valueOf(v - rhs); } |
| public LuaValue subFrom( double lhs ) { return LuaDouble.valueOf(lhs - v); } |
| public LuaValue mul( LuaValue rhs ) { return rhs.mul(v); } |
| public LuaValue mul( double lhs ) { return LuaDouble.valueOf(lhs * v); } |
| public LuaValue mul( int lhs ) { return LuaDouble.valueOf(lhs * v); } |
| public LuaValue pow( LuaValue rhs ) { return rhs.powWith(v); } |
| public LuaValue pow( double rhs ) { return MathLib.dpow(v,rhs); } |
| public LuaValue pow( int rhs ) { return MathLib.dpow(v,rhs); } |
| public LuaValue powWith( double lhs ) { return MathLib.dpow(lhs,v); } |
| public LuaValue powWith( int lhs ) { return MathLib.dpow(lhs,v); } |
| public LuaValue div( LuaValue rhs ) { return rhs.divInto(v); } |
| public LuaValue div( double rhs ) { return LuaDouble.ddiv(v,rhs); } |
| public LuaValue div( int rhs ) { return LuaDouble.ddiv(v,rhs); } |
| public LuaValue divInto( double lhs ) { return LuaDouble.ddiv(lhs,v); } |
| public LuaValue mod( LuaValue rhs ) { return rhs.modFrom(v); } |
| public LuaValue mod( double rhs ) { return LuaDouble.dmod(v,rhs); } |
| public LuaValue mod( int rhs ) { return LuaDouble.dmod(v,rhs); } |
| public LuaValue modFrom( double lhs ) { return LuaDouble.dmod(lhs,v); } |
| |
| |
| /** Divide two double numbers according to lua math, and return a {@link LuaValue} result. |
| * @param lhs Left-hand-side of the division. |
| * @param rhs Right-hand-side of the division. |
| * @return {@link LuaValue} for the result of the division, |
| * taking into account positive and negiative infinity, and Nan |
| * @see #ddiv_d(double, double) |
| */ |
| public static LuaValue ddiv(double lhs, double rhs) { |
| return rhs!=0? valueOf( lhs / rhs ): lhs>0? POSINF: lhs==0? NAN: NEGINF; |
| } |
| |
| /** Divide two double numbers according to lua math, and return a double result. |
| * @param lhs Left-hand-side of the division. |
| * @param rhs Right-hand-side of the division. |
| * @return Value of the division, taking into account positive and negative infinity, and Nan |
| * @see #ddiv(double, double) |
| */ |
| public static double ddiv_d(double lhs, double rhs) { |
| return rhs!=0? lhs / rhs: lhs>0? Double.POSITIVE_INFINITY: lhs==0? Double.NaN: Double.NEGATIVE_INFINITY; |
| } |
| |
| /** Take modulo double numbers according to lua math, and return a {@link LuaValue} result. |
| * @param lhs Left-hand-side of the modulo. |
| * @param rhs Right-hand-side of the modulo. |
| * @return {@link LuaValue} for the result of the modulo, |
| * using lua's rules for modulo |
| * @see #dmod_d(double, double) |
| */ |
| public static LuaValue dmod(double lhs, double rhs) { |
| return rhs!=0? valueOf( lhs-rhs*Math.floor(lhs/rhs) ): NAN; |
| } |
| |
| /** Take modulo for double numbers according to lua math, and return a double result. |
| * @param lhs Left-hand-side of the modulo. |
| * @param rhs Right-hand-side of the modulo. |
| * @return double value for the result of the modulo, |
| * using lua's rules for modulo |
| * @see #dmod(double, double) |
| */ |
| public static double dmod_d(double lhs, double rhs) { |
| return rhs!=0? lhs-rhs*Math.floor(lhs/rhs): Double.NaN; |
| } |
| |
| // relational operators |
| public LuaValue lt( LuaValue rhs ) { return rhs.gt_b(v)? LuaValue.TRUE: FALSE; } |
| public LuaValue lt( double rhs ) { return v < rhs? TRUE: FALSE; } |
| public LuaValue lt( int rhs ) { return v < rhs? TRUE: FALSE; } |
| public boolean lt_b( LuaValue rhs ) { return rhs.gt_b(v); } |
| public boolean lt_b( int rhs ) { return v < rhs; } |
| public boolean lt_b( double rhs ) { return v < rhs; } |
| public LuaValue lteq( LuaValue rhs ) { return rhs.gteq_b(v)? LuaValue.TRUE: FALSE; } |
| public LuaValue lteq( double rhs ) { return v <= rhs? TRUE: FALSE; } |
| public LuaValue lteq( int rhs ) { return v <= rhs? TRUE: FALSE; } |
| public boolean lteq_b( LuaValue rhs ) { return rhs.gteq_b(v); } |
| public boolean lteq_b( int rhs ) { return v <= rhs; } |
| public boolean lteq_b( double rhs ) { return v <= rhs; } |
| public LuaValue gt( LuaValue rhs ) { return rhs.lt_b(v)? LuaValue.TRUE: FALSE; } |
| public LuaValue gt( double rhs ) { return v > rhs? TRUE: FALSE; } |
| public LuaValue gt( int rhs ) { return v > rhs? TRUE: FALSE; } |
| public boolean gt_b( LuaValue rhs ) { return rhs.lt_b(v); } |
| public boolean gt_b( int rhs ) { return v > rhs; } |
| public boolean gt_b( double rhs ) { return v > rhs; } |
| public LuaValue gteq( LuaValue rhs ) { return rhs.lteq_b(v)? LuaValue.TRUE: FALSE; } |
| public LuaValue gteq( double rhs ) { return v >= rhs? TRUE: FALSE; } |
| public LuaValue gteq( int rhs ) { return v >= rhs? TRUE: FALSE; } |
| public boolean gteq_b( LuaValue rhs ) { return rhs.lteq_b(v); } |
| public boolean gteq_b( int rhs ) { return v >= rhs; } |
| public boolean gteq_b( double rhs ) { return v >= rhs; } |
| |
| // string comparison |
| public int strcmp( LuaString rhs ) { typerror("attempt to compare number with string"); return 0; } |
| |
| public String tojstring() { |
| /* |
| if ( v == 0.0 ) { // never occurs in J2me |
| long bits = Double.doubleToLongBits( v ); |
| return ( bits >> 63 == 0 ) ? "0" : "-0"; |
| } |
| */ |
| long l = (long) v; |
| if ( l == v ) |
| return Long.toString(l); |
| if ( Double.isNaN(v) ) |
| return JSTR_NAN; |
| if ( Double.isInfinite(v) ) |
| return (v<0? JSTR_NEGINF: JSTR_POSINF); |
| return Float.toString((float)v); |
| } |
| |
| public LuaString strvalue() { |
| return LuaString.valueOf(tojstring()); |
| } |
| |
| public LuaString optstring(LuaString defval) { |
| return LuaString.valueOf(tojstring()); |
| } |
| |
| public LuaValue tostring() { |
| return LuaString.valueOf(tojstring()); |
| } |
| |
| public String optjstring(String defval) { |
| return tojstring(); |
| } |
| |
| public LuaNumber optnumber(LuaNumber defval) { |
| return this; |
| } |
| |
| public boolean isnumber() { |
| return true; |
| } |
| |
| public boolean isstring() { |
| return true; |
| } |
| |
| public LuaValue tonumber() { |
| return this; |
| } |
| public int checkint() { return (int) (long) v; } |
| public long checklong() { return (long) v; } |
| public LuaNumber checknumber() { return this; } |
| public double checkdouble() { return v; } |
| |
| public String checkjstring() { |
| return tojstring(); |
| } |
| public LuaString checkstring() { |
| return LuaString.valueOf(tojstring()); |
| } |
| |
| public boolean isvalidkey() { |
| return !Double.isNaN(v); |
| } |
| } |