blob: 39b481079a96f3ce3c96294011714c36d734ce7c [file] [log] [blame] [raw]
package li.cil.oc.server.machine
import java.util.concurrent.TimeUnit
import li.cil.oc.OpenComputers
import li.cil.oc.Settings
import li.cil.oc.api.FileSystem
import li.cil.oc.api.Network
import li.cil.oc.api.detail.MachineAPI
import li.cil.oc.api.machine
import li.cil.oc.api.machine._
import li.cil.oc.api.network._
import li.cil.oc.api.prefab
import li.cil.oc.common.SaveHandler
import li.cil.oc.common.tileentity
import li.cil.oc.server.PacketSender
import li.cil.oc.server.driver.Registry
import li.cil.oc.util.ExtendedNBT._
import li.cil.oc.util.ResultWrapper.result
import li.cil.oc.util.ThreadPoolFactory
import net.minecraft.client.Minecraft
import net.minecraft.entity.player.EntityPlayer
import net.minecraft.nbt._
import net.minecraft.server.MinecraftServer
import net.minecraft.server.integrated.IntegratedServer
import net.minecraftforge.common.util.Constants.NBT
import scala.Array.canBuildFrom
import scala.collection.convert.WrapAsJava._
import scala.collection.mutable
class Machine(val host: MachineHost) extends prefab.ManagedEnvironment with machine.Machine with Runnable {
override val node = Network.newNode(this, Visibility.Network).
withComponent("computer", Visibility.Neighbors).
withConnector(Settings.get.bufferComputer).
create()
val tmp = if (Settings.get.tmpSize > 0) {
Option(FileSystem.asManagedEnvironment(FileSystem.
fromMemory(Settings.get.tmpSize * 1024), "tmpfs"))
} else None
var architecture: Architecture = _
private var bootAddress = ""
private[machine] val state = mutable.Stack(Machine.State.Stopped)
private val _components = mutable.Map.empty[String, String]
private val addedComponents = mutable.Set.empty[Component]
private val _users = mutable.Set.empty[String]
private val signals = mutable.Queue.empty[Machine.Signal]
private var maxCallBudget = 1.0
@volatile private var callBudget = 0.0
// We want to ignore the call limit in synchronized calls to avoid errors.
private var inSynchronizedCall = false
// ----------------------------------------------------------------------- //
var worldTime = 0L // Game-world time for os.time().
private var uptime = 0L // Game-world time [ticks] for os.uptime().
private var cpuTotal = 0L // Pseudo-real-world time [ns] for os.clock().
private var cpuStart = 0L // Pseudo-real-world time [ns] for os.clock().
private var remainIdle = 0 // Ticks left to sleep before resuming.
private var remainingPause = 0 // Ticks left to wait before resuming.
private var usersChanged = false // Send updated users list to clients?
private var message: Option[String] = None // For error messages.
private var cost = Settings.get.computerCost * Settings.get.tickFrequency
// ----------------------------------------------------------------------- //
override def onHostChanged() = {
maxCallBudget = host.callBudget
Option(architecture).foreach(_.recomputeMemory())
}
override def getBootAddress = bootAddress
override def setBootAddress(value: String) = bootAddress = Option(value).fold("")(_.take(36))
override def components = scala.collection.convert.WrapAsJava.mapAsJavaMap(_components)
def componentCount = (_components.foldLeft(0.0)((acc, entry) => entry match {
case (_, name) => acc + (if (name != "filesystem") 1.0 else 0.25)
}) + addedComponents.foldLeft(0.0)((acc, component) => acc + (if (component.name != "filesystem") 1 else 0.25)) - 1).toInt // -1 = this computer
override def tmpAddress = tmp.fold(null: String)(_.node.address)
def lastError = message.orNull
override def setCostPerTick(value: Double) = cost = value * Settings.get.tickFrequency
override def getCostPerTick = cost / Settings.get.tickFrequency
override def users = _users.synchronized(_users.toArray)
override def upTime() = {
// Convert from old saves (set to -timeStarted on load).
if (uptime < 0) {
uptime = worldTime + uptime
}
uptime / 20.0
}
override def cpuTime = (cpuTotal + (System.nanoTime() - cpuStart)) * 10e-10
// ----------------------------------------------------------------------- //
override def canInteract(player: String) = !Settings.get.canComputersBeOwned ||
_users.synchronized(_users.isEmpty || _users.contains(player)) ||
MinecraftServer.getServer.isSinglePlayer || {
val config = MinecraftServer.getServer.getConfigurationManager
val entity = config.func_152612_a(player)
entity != null && config.func_152596_g(entity.getGameProfile)
}
override def isRunning = state.synchronized(state.top != Machine.State.Stopped && state.top != Machine.State.Stopping)
override def isPaused = state.synchronized(state.top == Machine.State.Paused && remainingPause > 0)
override def start(): Boolean = state.synchronized(state.top match {
case Machine.State.Stopped =>
processAddedComponents()
verifyComponents()
if (!Settings.get.ignorePower && node.globalBuffer < cost) {
// No beep! We have no energy after all :P
crash("gui.Error.NoEnergy")
false
}
else if (host.cpuArchitecture() == null || host.maxComponents == 0) {
beep("-")
crash("gui.Error.NoCPU")
false
}
else if (componentCount > host.maxComponents) {
beep("-..")
crash("gui.Error.ComponentOverflow")
false
}
else if (host.installedMemory < 1) {
beep("-.")
crash("gui.Error.NoRAM")
false
}
else if (!init()) {
beep("--")
false
}
else {
switchTo(Machine.State.Starting)
uptime = 0
node.sendToReachable("computer.started")
true
}
case Machine.State.Paused if remainingPause > 0 =>
remainingPause = 0
host.markForSaving()
true
case Machine.State.Stopping =>
switchTo(Machine.State.Restarting)
true
case _ =>
false
})
private def beep(pattern: String) {
PacketSender.sendSound(host.world, host.xPosition, host.yPosition, host.zPosition, pattern)
}
override def pause(seconds: Double): Boolean = {
val ticksToPause = math.max((seconds * 20).toInt, 0)
def shouldPause(state: Machine.State.Value) = state match {
case Machine.State.Stopping | Machine.State.Stopped => false
case Machine.State.Paused if ticksToPause <= remainingPause => false
case _ => true
}
if (shouldPause(state.synchronized(state.top))) {
// Check again when we get the lock, might have changed since.
Machine.this.synchronized(state.synchronized(if (shouldPause(state.top)) {
if (state.top != Machine.State.Paused) {
assert(!state.contains(Machine.State.Paused))
state.push(Machine.State.Paused)
}
remainingPause = ticksToPause
host.markForSaving()
return true
}))
}
false
}
override def stop() = state.synchronized(state.top match {
case Machine.State.Stopped | Machine.State.Stopping =>
false
case _ =>
state.push(Machine.State.Stopping)
true
})
override def crash(message: String) = {
this.message = Option(message)
stop()
}
override def signal(name: String, args: AnyRef*) = state.synchronized(state.top match {
case Machine.State.Stopped | Machine.State.Stopping => false
case _ => signals.synchronized {
if (signals.size >= 256) false
else if (args == null) {
signals.enqueue(new Machine.Signal(name, Array.empty))
true
}
else {
signals.enqueue(new Machine.Signal(name, args.map {
case null | Unit | None => null
case arg: java.lang.Boolean => arg
case arg: java.lang.Byte => Double.box(arg.doubleValue)
case arg: java.lang.Character => Double.box(arg.toDouble)
case arg: java.lang.Short => Double.box(arg.doubleValue)
case arg: java.lang.Integer => Double.box(arg.doubleValue)
case arg: java.lang.Long => Double.box(arg.doubleValue)
case arg: java.lang.Float => Double.box(arg.doubleValue)
case arg: java.lang.Double => arg
case arg: java.lang.String => arg
case arg: Array[Byte] => arg
case arg: Map[_, _] if arg.isEmpty || arg.head._1.isInstanceOf[String] && arg.head._2.isInstanceOf[String] => arg
case arg: NBTTagCompound => arg
case arg =>
OpenComputers.log.warn("Trying to push signal with an unsupported argument of type " + arg.getClass.getName)
null
}.toArray[AnyRef]))
true
}
}
})
override def popSignal(): Machine.Signal = signals.synchronized(if (signals.isEmpty) null else signals.dequeue().convert())
override def methods(value: scala.AnyRef) = Callbacks(value).map(entry => {
val (name, callback) = entry
name -> callback.annotation
})
override def invoke(address: String, method: String, args: Array[AnyRef]) =
if (node != null && node.network != null) Option(node.network.node(address)) match {
case Some(component: Component) if component.canBeSeenFrom(node) || component == node =>
val direct = component.annotation(method).direct
if (direct && architecture.isInitialized) {
checkLimit(component.annotation(method).limit)
}
component.invoke(method, this, args: _*)
case _ => throw new IllegalArgumentException("no such component")
}
else {
// Not really, but makes the VM stop, which is what we want in this case,
// because it means we've been disconnected / disposed already.
throw new LimitReachedException()
}
override def invoke(value: Value, method: String, args: Array[AnyRef]): Array[AnyRef] = Callbacks(value).get(method) match {
case Some(callback) =>
val direct = callback.annotation.direct
if (direct && architecture.isInitialized) {
checkLimit(callback.annotation.limit)
}
Registry.convert(callback(value, this, new ArgumentsImpl(Seq(args: _*))))
case _ => throw new NoSuchMethodException()
}
private def checkLimit(limit: Int): Unit = if (!inSynchronizedCall) {
val callCost = math.max(1.0 / limit, 0.001)
if (callCost >= callBudget) {
throw new LimitReachedException()
}
callBudget -= callCost
}
override def addUser(name: String) {
if (_users.size >= Settings.get.maxUsers)
throw new Exception("too many users")
if (_users.contains(name))
throw new Exception("user exists")
if (name.length > Settings.get.maxUsernameLength)
throw new Exception("username too long")
if (!MinecraftServer.getServer.getConfigurationManager.getAllUsernames.contains(name))
throw new Exception("player must be online")
_users.synchronized {
_users += name
usersChanged = true
}
}
override def removeUser(name: String) = _users.synchronized {
val success = _users.remove(name)
if (success) {
usersChanged = true
}
success
}
// ----------------------------------------------------------------------- //
@Callback(doc = """function():boolean -- Starts the computer. Returns true if the state changed.""")
def start(context: Context, args: Arguments): Array[AnyRef] =
result(!isPaused && start())
@Callback(doc = """function():boolean -- Stops the computer. Returns true if the state changed.""")
def stop(context: Context, args: Arguments): Array[AnyRef] =
result(stop())
@Callback(direct = true, doc = """function():boolean -- Returns whether the computer is running.""")
def isRunning(context: Context, args: Arguments): Array[AnyRef] =
result(isRunning)
@Callback(doc = """function([frequency:number[, duration:number]]) -- Plays a tone, useful to alert users via audible feedback.""")
def beep(context: Context, args: Arguments): Array[AnyRef] = {
val frequency = args.optInteger(0, 440)
if (frequency < 20 || frequency > 2000) {
throw new IllegalArgumentException("invalid frequency, must be in [20, 2000]")
}
val duration = args.optDouble(1, 0.1)
val durationInMilliseconds = math.max(50, math.min(5000, (duration * 1000).toInt))
context.pause(durationInMilliseconds / 1000.0)
PacketSender.sendSound(host.world, host.xPosition, host.yPosition, host.zPosition, frequency, durationInMilliseconds)
null
}
// ----------------------------------------------------------------------- //
override val canUpdate = true
override def update() = if (state.synchronized(state.top != Machine.State.Stopped)) {
// Add components that were added since the last update to the actual list
// of components if we can see them. We use this delayed approach to avoid
// issues with components that have a visibility lower than their
// reachability, because in that case if they get connected in the wrong
// order we wouldn't add them (since they'd be invisible in their connect
// message, and only become visible with a later node-to-node connection,
// but that wouldn't trigger a connect message anymore due to the higher
// reachability).
processAddedComponents()
// Component overflow check, crash if too many components are connected, to
// avoid confusion on the user's side due to components not showing up.
if (componentCount > host.maxComponents) {
crash("gui.Error.ComponentOverflow")
}
// Update world time for time() and uptime().
worldTime = host.world.getWorldTime
uptime += 1
if (remainIdle > 0) {
remainIdle -= 1
}
// Reset direct call budget.
callBudget = maxCallBudget
// Make sure we have enough power.
if (host.world.getTotalWorldTime % Settings.get.tickFrequency == 0) {
state.synchronized(state.top match {
case Machine.State.Paused |
Machine.State.Restarting |
Machine.State.Stopping |
Machine.State.Stopped => // No power consumption.
case Machine.State.Sleeping if remainIdle > 0 && signals.isEmpty =>
if (!node.tryChangeBuffer(-cost * Settings.get.sleepCostFactor)) {
crash("gui.Error.NoEnergy")
}
case _ =>
if (!node.tryChangeBuffer(-cost)) {
crash("gui.Error.NoEnergy")
}
})
}
// Avoid spamming user list across the network.
if (host.world.getTotalWorldTime % 20 == 0 && usersChanged) {
val list = _users.synchronized {
usersChanged = false
users
}
host match {
case computer: tileentity.traits.Computer => PacketSender.sendComputerUserList(computer, list)
case _ =>
}
}
// Check if we should switch states. These are all the states in which we're
// guaranteed that the executor thread isn't running anymore.
state.synchronized(state.top match {
// Booting up.
case Machine.State.Starting =>
verifyComponents()
switchTo(Machine.State.Yielded)
// Computer is rebooting.
case Machine.State.Restarting =>
close()
if (Settings.get.eraseTmpOnReboot) {
tmp.foreach(_.node.remove()) // To force deleting contents.
tmp.foreach(tmp => node.connect(tmp.node))
}
node.sendToReachable("computer.stopped")
start()
// Resume from pauses based on sleep or signal underflow.
case Machine.State.Sleeping if remainIdle <= 0 || signals.nonEmpty =>
switchTo(Machine.State.Yielded)
// Resume in case we paused because the game was paused.
case Machine.State.Paused =>
if (remainingPause > 0) {
remainingPause -= 1
}
else {
verifyComponents() // In case we're resuming after loading.
state.pop()
switchTo(state.top) // Trigger execution if necessary.
}
// Perform a synchronized call (message sending).
case Machine.State.SynchronizedCall =>
// We switch into running state, since we'll behave as though the call
// were performed from our executor thread.
switchTo(Machine.State.Running)
try {
inSynchronizedCall = true
architecture.runSynchronized()
inSynchronizedCall = false
// Check if the callback called pause() or stop().
state.top match {
case Machine.State.Running =>
switchTo(Machine.State.SynchronizedReturn)
case Machine.State.Paused =>
state.pop() // Paused
state.pop() // Running, no switchTo to avoid new future.
state.push(Machine.State.SynchronizedReturn)
state.push(Machine.State.Paused)
case Machine.State.Stopping => // Nothing to do, we'll die anyway.
case _ => throw new AssertionError()
}
}
catch {
case e: java.lang.Error if e.getMessage == "not enough memory" =>
crash("gui.Error.OutOfMemory")
case e: Throwable =>
OpenComputers.log.warn("Faulty architecture implementation for synchronized calls.", e)
crash("gui.Error.InternalError")
}
finally {
inSynchronizedCall = false
}
assert(state.top != Machine.State.Running)
case _ => // Nothing special to do, just avoid match errors.
})
// Finally check if we should stop the computer. We cannot lock the state
// because we may have to wait for the executor thread to finish, which
// might turn into a deadlock depending on where it currently is.
state.synchronized(state.top) match {
// Computer is shutting down.
case Machine.State.Stopping => Machine.this.synchronized(state.synchronized {
close()
tmp.foreach(_.node.remove()) // To force deleting contents.
if (node.network != null) {
tmp.foreach(tmp => node.connect(tmp.node))
}
node.sendToReachable("computer.stopped")
})
case _ =>
}
}
// ----------------------------------------------------------------------- //
override def onMessage(message: Message) {
message.data match {
case Array(name: String, args@_*) if message.name == "computer.signal" =>
signal(name, Seq(message.source.address) ++ args: _*)
case Array(player: EntityPlayer, name: String, args@_*) if message.name == "computer.checked_signal" =>
if (canInteract(player.getCommandSenderName))
signal(name, Seq(message.source.address) ++ args: _*)
case _ =>
if (message.name == "computer.start" && !isPaused) start()
else if (message.name == "computer.stop") stop()
}
}
override def onConnect(node: Node) {
if (node == this.node) {
_components += this.node.address -> this.node.name
tmp.foreach(fs => node.connect(fs.node))
Option(architecture).foreach(_.onConnect())
}
else {
node match {
case component: Component => addComponent(component)
case _ =>
}
}
// For computers, to generate the components in their inventory.
host.onMachineConnect(node)
}
override def onDisconnect(node: Node) {
if (node == this.node) {
close()
tmp.foreach(_.node.remove())
}
else {
node match {
case component: Component => removeComponent(component)
case _ =>
}
}
// For computers, to save the components in their inventory.
host.onMachineDisconnect(node)
}
// ----------------------------------------------------------------------- //
def addComponent(component: Component) {
if (!_components.contains(component.address)) {
addedComponents += component
}
}
def removeComponent(component: Component) {
if (_components.contains(component.address)) {
_components.synchronized(_components -= component.address)
signal("component_removed", component.address, component.name)
}
addedComponents -= component
}
private def processAddedComponents() {
if (addedComponents.size > 0) {
for (component <- addedComponents) {
if (component.canBeSeenFrom(node)) {
_components.synchronized(_components += component.address -> component.name)
// Skip the signal if we're not initialized yet, since we'd generate a
// duplicate in the startup script otherwise.
if (architecture != null && architecture.isInitialized) {
signal("component_added", component.address, component.name)
}
}
}
addedComponents.clear()
}
}
private def verifyComponents() {
val invalid = mutable.Set.empty[String]
for ((address, name) <- _components) {
node.network.node(address) match {
case component: Component if component.name == name => // All is well.
case _ =>
if (name == "filesystem") {
OpenComputers.log.trace(s"A component of type '$name' disappeared ($address)! This usually means that it didn't save its node.")
OpenComputers.log.trace("If this was a file system provided by a ComputerCraft peripheral, this is normal.")
}
else OpenComputers.log.warn(s"A component of type '$name' disappeared ($address)! This usually means that it didn't save its node.")
signal("component_removed", address, name)
invalid += address
}
}
for (address <- invalid) {
_components -= address
}
}
// ----------------------------------------------------------------------- //
override def load(nbt: NBTTagCompound) = Machine.this.synchronized {
assert(state.top == Machine.State.Stopped)
assert(_users.isEmpty)
assert(signals.isEmpty)
state.clear()
super.load(nbt)
bootAddress = nbt.getString("bootAddress")
state.pushAll(nbt.getIntArray("state").reverse.map(Machine.State(_)))
nbt.getTagList("users", NBT.TAG_STRING).foreach((tag: NBTTagString) => _users += tag.func_150285_a_())
if (nbt.hasKey("message")) {
message = Some(nbt.getString("message"))
}
_components ++= nbt.getTagList("components", NBT.TAG_COMPOUND).map((tag: NBTTagCompound) =>
tag.getString("address") -> tag.getString("name"))
tmp.foreach(fs => {
if (nbt.hasKey("tmp")) fs.load(nbt.getCompoundTag("tmp"))
else fs.load(SaveHandler.loadNBT(nbt, node.address + "_tmp"))
})
if (state.size > 0 && isRunning && init()) try {
architecture.load(nbt)
signals ++= nbt.getTagList("signals", NBT.TAG_COMPOUND).map((signalNbt: NBTTagCompound) => {
val argsNbt = signalNbt.getCompoundTag("args")
val argsLength = argsNbt.getInteger("length")
new Machine.Signal(signalNbt.getString("name"),
(0 until argsLength).map("arg" + _).map(argsNbt.getTag).map {
case tag: NBTTagByte if tag.func_150290_f == -1 => null
case tag: NBTTagByte => Boolean.box(tag.func_150290_f == 1)
case tag: NBTTagDouble => Double.box(tag.func_150286_g)
case tag: NBTTagString => tag.func_150285_a_
case tag: NBTTagByteArray => tag.func_150292_c
case tag: NBTTagList =>
val data = mutable.Map.empty[String, String]
for (i <- 0 until tag.tagCount by 2) {
data += tag.getStringTagAt(i) -> tag.getStringTagAt(i + 1)
}
data
case tag: NBTTagCompound => tag
case _ => null
}.toArray[AnyRef])
})
uptime = nbt.getLong("uptime")
cpuTotal = nbt.getLong("cpuTime")
remainingPause = nbt.getInteger("remainingPause")
// Delay execution for a second to allow the world around us to settle.
if (state.top != Machine.State.Restarting) {
pause(Settings.get.startupDelay)
}
}
catch {
case t: Throwable =>
OpenComputers.log.error( s"""Unexpected error loading a state of computer at (${host.xPosition}, ${host.yPosition}, ${host.zPosition}). """ +
s"""State: ${state.headOption.fold("no state")(_.toString)}. Unless you're upgrading/downgrading across a major version, please report this! Thank you.""", t)
close()
}
else {
// Clean up in case we got a weird state stack.
close()
}
}
override def save(nbt: NBTTagCompound): Unit = Machine.this.synchronized {
assert(state.top != Machine.State.Running) // Lock on 'this' should guarantee this.
// Make sure we don't continue running until everything has saved.
pause(0.05)
super.save(nbt)
if (bootAddress != null) {
nbt.setString("bootAddress", bootAddress)
}
// Make sure the component list is up-to-date.
processAddedComponents()
nbt.setIntArray("state", state.map(_.id).toArray)
nbt.setNewTagList("users", _users)
message.foreach(nbt.setString("message", _))
val componentsNbt = new NBTTagList()
for ((address, name) <- _components) {
val componentNbt = new NBTTagCompound()
componentNbt.setString("address", address)
componentNbt.setString("name", name)
componentsNbt.appendTag(componentNbt)
}
nbt.setTag("components", componentsNbt)
tmp.foreach(fs => SaveHandler.scheduleSave(host, nbt, node.address + "_tmp", fs.save _))
if (state.top != Machine.State.Stopped) try {
architecture.save(nbt)
val signalsNbt = new NBTTagList()
for (s <- signals.iterator) {
val signalNbt = new NBTTagCompound()
signalNbt.setString("name", s.name)
signalNbt.setNewCompoundTag("args", args => {
args.setInteger("length", s.args.length)
s.args.zipWithIndex.foreach {
case (null, i) => args.setByte("arg" + i, -1)
case (arg: java.lang.Boolean, i) => args.setByte("arg" + i, if (arg) 1 else 0)
case (arg: java.lang.Double, i) => args.setDouble("arg" + i, arg)
case (arg: String, i) => args.setString("arg" + i, arg)
case (arg: Array[Byte], i) => args.setByteArray("arg" + i, arg)
case (arg: Map[_, _], i) =>
val list = new NBTTagList()
for ((key, value) <- arg) {
list.append(key.toString)
list.append(value.toString)
}
args.setTag("arg" + i, list)
case (arg: NBTTagCompound, i) => args.setTag("arg" + i, arg)
case (_, i) => args.setByte("arg" + i, -1)
}
})
signalsNbt.appendTag(signalNbt)
}
nbt.setTag("signals", signalsNbt)
nbt.setLong("uptime", uptime)
nbt.setLong("cpuTime", cpuTotal)
nbt.setInteger("remainingPause", remainingPause)
}
catch {
case t: Throwable =>
OpenComputers.log.error( s"""Unexpected error saving a state of computer at (${host.xPosition}, ${host.yPosition}, ${host.zPosition}). """ +
s"""State: ${state.headOption.fold("no state")(_.toString)}. Unless you're upgrading/downgrading across a major version, please report this! Thank you.""", t)
}
}
// ----------------------------------------------------------------------- //
private def init(): Boolean = {
// Recreate architecture if necessary.
val hostArchitecture = host.cpuArchitecture
if (architecture == null || architecture.getClass != hostArchitecture) {
if (hostArchitecture == null) return false
architecture = hostArchitecture.getConstructor(classOf[machine.Machine]).newInstance(this)
if (node.network != null) architecture.onConnect()
}
// Reset error state.
message = None
// Clear any left-over signals from a previous run.
signals.clear()
// Connect the `/tmp` node to our owner. We're not in a network in
// case we're loading, which is why we have to check it here.
if (node.network != null) {
tmp.foreach(fs => node.connect(fs.node))
}
try {
return architecture.initialize()
}
catch {
case ex: Throwable =>
OpenComputers.log.warn("Failed initializing computer.", ex)
close()
}
false
}
private def close() = state.synchronized(
if (state.size == 0 || state.top != Machine.State.Stopped) {
state.clear()
state.push(Machine.State.Stopped)
Option(architecture).foreach(_.close())
signals.clear()
uptime = 0
cpuTotal = 0
cpuStart = 0
remainIdle = 0
// Mark state change in owner, to send it to clients.
host.markForSaving()
})
// ----------------------------------------------------------------------- //
private def switchTo(value: Machine.State.Value) = {
val result = state.pop()
if (value == Machine.State.Stopping || value == Machine.State.Restarting) {
state.clear()
}
state.push(value)
if (value == Machine.State.Yielded || value == Machine.State.SynchronizedReturn) {
remainIdle = 0
Machine.threadPool.schedule(this, Settings.get.executionDelay, TimeUnit.MILLISECONDS)
}
// Mark state change in owner, to send it to clients.
host.markForSaving()
result
}
private def isGamePaused = !MinecraftServer.getServer.isDedicatedServer && (MinecraftServer.getServer match {
case integrated: IntegratedServer => Minecraft.getMinecraft.isGamePaused
case _ => false
})
// This is a really high level lock that we only use for saving and loading.
override def run(): Unit = Machine.this.synchronized {
val isSynchronizedReturn = state.synchronized {
if (state.top != Machine.State.Yielded &&
state.top != Machine.State.SynchronizedReturn) {
return
}
// See if the game appears to be paused, in which case we also pause.
if (isGamePaused) {
state.push(Machine.State.Paused)
return
}
switchTo(Machine.State.Running) == Machine.State.SynchronizedReturn
}
cpuStart = System.nanoTime()
try {
val result = architecture.runThreaded(isSynchronizedReturn)
// Check if someone called pause() or stop() in the meantime.
state.synchronized {
state.top match {
case Machine.State.Running =>
result match {
case result: ExecutionResult.Sleep =>
signals.synchronized {
// Immediately check for signals to allow processing more than one
// signal per game tick.
if (signals.isEmpty && result.ticks > 0) {
switchTo(Machine.State.Sleeping)
remainIdle = result.ticks
} else {
switchTo(Machine.State.Yielded)
}
}
case result: ExecutionResult.SynchronizedCall =>
switchTo(Machine.State.SynchronizedCall)
case result: ExecutionResult.Shutdown =>
if (result.reboot) {
switchTo(Machine.State.Restarting)
}
else {
switchTo(Machine.State.Stopping)
}
case result: ExecutionResult.Error =>
beep("--")
crash(Option(result.message).getOrElse("unknown error"))
}
case Machine.State.Paused =>
state.pop() // Paused
state.pop() // Running, no switchTo to avoid new future.
result match {
case result: ExecutionResult.Sleep =>
remainIdle = result.ticks
state.push(Machine.State.Sleeping)
case result: ExecutionResult.SynchronizedCall =>
state.push(Machine.State.SynchronizedCall)
case result: ExecutionResult.Shutdown =>
if (result.reboot) {
state.push(Machine.State.Restarting)
}
else {
state.push(Machine.State.Stopping)
}
case result: ExecutionResult.Error =>
crash(Option(result.message).getOrElse("unknown error"))
}
state.push(Machine.State.Paused)
case Machine.State.Stopping => // Nothing to do, we'll die anyway.
case _ => throw new AssertionError("Invalid state in executor post-processing.")
}
assert(state.top != Machine.State.Running)
}
}
catch {
case e: Throwable =>
OpenComputers.log.warn("Architecture's runThreaded threw an error. This should never happen!", e)
crash("gui.Error.InternalError")
}
// Keep track of time spent executing the computer.
cpuTotal += System.nanoTime() - cpuStart
}
}
object Machine extends MachineAPI {
// Keep registration order, to allow deterministic iteration of the architectures.
val checked = mutable.LinkedHashSet.empty[Class[_ <: Architecture]]
override def add(architecture: Class[_ <: Architecture]) {
if (!checked.contains(architecture)) {
try {
architecture.getConstructor(classOf[machine.Machine])
}
catch {
case t: Throwable => throw new IllegalArgumentException("Architecture does not have required constructor.")
}
checked += architecture
}
}
override def architectures = checked.toSeq
override def create(host: MachineHost) = new Machine(host)
/** Possible states of the computer, and in particular its executor. */
private[machine] object State extends Enumeration {
/** The computer is not running right now and there is no Lua state. */
val Stopped = Value("Stopped")
/** Booting up, doing the first run to initialize the kernel and libs. */
val Starting = Value("Starting")
/** Computer is currently rebooting. */
val Restarting = Value("Restarting")
/** The computer is currently shutting down. */
val Stopping = Value("Stopping")
/** The computer is paused and waiting for the game to resume. */
val Paused = Value("Paused")
/** The computer executor is waiting for a synchronized call to be made. */
val SynchronizedCall = Value("SynchronizedCall")
/** The computer should resume with the result of a synchronized call. */
val SynchronizedReturn = Value("SynchronizedReturn")
/** The computer will resume as soon as possible. */
val Yielded = Value("Yielded")
/** The computer is yielding for a longer amount of time. */
val Sleeping = Value("Sleeping")
/** The computer is up and running, executing Lua code. */
val Running = Value("Running")
}
/** Signals are messages sent to the Lua state from Java asynchronously. */
private[machine] class Signal(val name: String, val args: Array[AnyRef]) extends machine.Signal {
def convert() = new Signal(name, Registry.convert(args))
}
private val threadPool = ThreadPoolFactory.create("Computer", Settings.get.threads)
}