| package li.cil.oc.server.component |
| |
| import com.naef.jnlua.{LuaRuntimeException, LuaMemoryAllocationException, LuaType, LuaState} |
| import java.lang.Thread.UncaughtExceptionHandler |
| import java.util.concurrent._ |
| import java.util.concurrent.atomic.AtomicInteger |
| import java.util.logging.Level |
| import li.cil.oc.api |
| import li.cil.oc.api.Persistable |
| import li.cil.oc.api.network.{Message, Visibility, Node} |
| import li.cil.oc.common.tileentity |
| import li.cil.oc.server.driver |
| import li.cil.oc.util.ExtendedLuaState.extendLuaState |
| import li.cil.oc.util.LuaStateFactory |
| import li.cil.oc.{OpenComputers, Config} |
| import net.minecraft.nbt._ |
| import net.minecraft.tileentity.TileEntity |
| import net.minecraft.world.World |
| import net.minecraftforge.event.ForgeSubscribe |
| import net.minecraftforge.event.world.ChunkEvent |
| import scala.Array.canBuildFrom |
| import scala.Some |
| import scala.collection.JavaConversions._ |
| import scala.collection.JavaConverters._ |
| import scala.io.Source |
| |
| /** |
| * Wrapper class for Lua states set up to behave like a pseudo-OS. |
| * <p/> |
| * This class takes care of the following: |
| * <ul> |
| * <li>Creating a new Lua state when started from a previously stopped state.</li> |
| * <li>Updating the Lua state in a parallel thread so as not to block the game.</li> |
| * <li>Synchronizing calls from the computer thread to other game components.</li> |
| * <li>Saving the internal state of the computer across chunk saves/loads.</li> |
| * <li>Closing the Lua state when stopping a previously running computer.</li> |
| * </ul> |
| * <p/> |
| * Computers are relatively useless without drivers. Drivers are a combination |
| * of Lua and Java/Scala code that allows the computer to interact with the |
| * game world, or more specifically: with other components, by sending messages |
| * across the component network the computer is connected to (see `Network`). |
| * <p/> |
| * Host code (Java/Scala) cannot directly call Lua code. It can only queue |
| * signals (events, messages, packets, whatever you want to call it) which will |
| * be passed to the Lua state one by one and processed there (see `signal`). |
| * <p/> |
| * |
| */ |
| class Computer(val owner: Computer.Environment) extends Persistable with Runnable { |
| // ----------------------------------------------------------------------- // |
| // General |
| // ----------------------------------------------------------------------- // |
| |
| private var state = Computer.State.Stopped |
| |
| private val stateMonitor = new Object() // To synchronize access to `state`. |
| |
| private var future: Option[Future[_]] = None |
| |
| private var lua: LuaState = null |
| |
| private var kernelMemory = 0 |
| |
| private val signals = new LinkedBlockingQueue[Computer.Signal](256) |
| |
| private val rom = api.FileSystem. |
| fromClass(OpenComputers.getClass, Config.resourceDomain, "lua/rom"). |
| flatMap(api.FileSystem.asNode) |
| |
| // ----------------------------------------------------------------------- // |
| |
| private var timeStarted = 0L // Game-world time for os.clock(). |
| |
| private var worldTime = 0L // Game-world time for os.time(). |
| |
| private var lastUpdate = 0L // Real-world time for pause detection. |
| |
| private var sleepUntil = Double.PositiveInfinity // Real-world time. |
| |
| private var wasRunning = false // To signal stops synchronously. |
| |
| // ----------------------------------------------------------------------- // |
| |
| def recomputeMemory() = if (lua != null) |
| lua.setTotalMemory(kernelMemory + Config.baseMemory + owner.installedMemory) |
| |
| // ----------------------------------------------------------------------- // |
| |
| def start() = stateMonitor.synchronized( |
| (state == Computer.State.Stopped) && init() && { |
| // Initial state. Will be switched to State.Yielded in the next update() |
| // due to the signals queue not being empty ( |
| state = Computer.State.Suspended |
| |
| // Remember when we started, for os.clock(). |
| timeStarted = owner.world.getWorldInfo.getWorldTotalTime |
| |
| // Mark state change in owner, to send it to clients. |
| owner.markAsChanged() |
| |
| // Inject component added signals for all nodes in the network. |
| owner.network.foreach(_.nodes(owner).foreach(node => signal("component_added", node.address.get))) |
| |
| // All green, computer started successfully. |
| owner.network.foreach(_.sendToVisible(owner, "computer.started")) |
| true |
| }) |
| |
| def stop() = stateMonitor.synchronized(state match { |
| case Computer.State.Stopped => false // Nothing to do. |
| case _ if future.isEmpty => close(); true // Not executing, kill it. |
| case _ => |
| // If the computer is currently executing something we enter an |
| // intermediate state to ensure the executor or synchronized call truly |
| // stopped, before switching back to stopped to allow starting the |
| // computer again. The executor and synchronized call will check for |
| // this state and call close(), thus switching the state to stopped. |
| state = Computer.State.Stopping |
| true |
| }) |
| |
| def isRunning = state != Computer.State.Stopped && lastUpdate != 0 |
| |
| // ----------------------------------------------------------------------- // |
| |
| def signal(name: String, args: Any*) = stateMonitor.synchronized(state match { |
| case Computer.State.Stopped | Computer.State.Stopping => false |
| case _ => signals.offer(new Computer.Signal(name, args.map { |
| case null | Unit | None => Unit |
| case arg: Boolean => arg |
| case arg: Byte => arg.toDouble |
| case arg: Char => arg.toDouble |
| case arg: Short => arg.toDouble |
| case arg: Int => arg.toDouble |
| case arg: Long => arg.toDouble |
| case arg: Float => arg.toDouble |
| case arg: Double => arg |
| case arg: String => arg |
| case _ => throw new IllegalArgumentException() |
| }.toArray)) |
| }) |
| |
| def update() { |
| // Update last time run to let our executor thread know it doesn't have to |
| // pause. |
| lastUpdate = System.currentTimeMillis |
| |
| // TODO This seems to be the "run time", not the elapsed ingame time. For example, when doing /time set 0 the game |
| // should jump to the next day, but this value does not jump. Is this just Forge or do we have to find some other |
| // way around this? CC seems to use getWorldTime, which is really odd, since that should be only within the range |
| // of a single day (0 to 24000), which it *is*... perhaps vanilla Minecraft (not re-compiled) behaves different? |
| // Update world time for computer threads. |
| worldTime = owner.world.getWorldInfo.getWorldTotalTime |
| |
| // Signal stops to the network. This is used to close file handles, for example. |
| if (wasRunning && !isRunning) |
| owner.network.foreach(_.sendToVisible(owner, "computer.stopped")) |
| wasRunning = isRunning |
| |
| // Check if we should switch states. |
| stateMonitor.synchronized(state match { |
| // Computer is rebooting. |
| case Computer.State.Rebooting => { |
| state = Computer.State.Stopped |
| owner.network.foreach(_.sendToVisible(owner, "computer.stopped")) |
| owner.network.foreach(_.sendToVisible(owner, "computer.started")) |
| start() |
| } |
| // Resume from pauses based on signal underflow. |
| case Computer.State.Suspended if !signals.isEmpty => execute(Computer.State.Yielded) |
| case Computer.State.Sleeping if lastUpdate >= sleepUntil || !signals.isEmpty => execute(Computer.State.Yielded) |
| // Resume in case we paused because the game was paused. |
| case Computer.State.Paused => execute(Computer.State.Yielded) |
| case Computer.State.SynchronizedReturnPaused => execute(Computer.State.SynchronizedReturn) |
| // Perform a synchronized call (message sending). |
| case Computer.State.SynchronizedCall => { |
| assert(future.isEmpty) |
| // These three asserts are all guaranteed by run(). |
| assert(lua.getTop == 2) |
| assert(lua.isThread(1)) |
| assert(lua.isFunction(2)) |
| // We switch into running state, since we'll behave as though the call |
| // were performed from our executor thread. |
| state = Computer.State.Running |
| try { |
| // Synchronized call protocol requires the called function to return |
| // a table, which holds the results of the call, to be passed back |
| // to the coroutine.yield() that triggered the call. |
| lua.call(0, 1) |
| lua.checkType(2, LuaType.TABLE) |
| // Nothing should have been able to trigger a future. |
| assert(future.isEmpty) |
| // If the call lead to stop() being called we stop right now, |
| // otherwise we return the result to our executor. |
| if (state == Computer.State.Stopping) |
| close() |
| else { |
| assert(state == Computer.State.Running) |
| execute(Computer.State.SynchronizedReturn) |
| } |
| } catch { |
| case _: LuaMemoryAllocationException => |
| // This can happen if we run out of memory while converting a Java |
| // exception to a string (which we have to do to avoid keeping |
| // userdata on the stack, which cannot be persisted). |
| OpenComputers.log.warning("Out of memory!") // TODO remove this when we have a component that can display crash messages |
| //owner.network.foreach(_.sendToVisible(owner, "computer.crashed", "not enough memory")) |
| close() |
| case e: java.lang.Error if e.getMessage == "not enough memory" => |
| OpenComputers.log.warning("Out of memory!") // TODO remove this when we have a component that can display crash messages |
| // TODO get this to the world as a computer.crashed message. problem: synchronizing it. |
| //owner.network.foreach(_.sendToVisible(owner, "computer.crashed", "not enough memory")) |
| close() |
| case e: Throwable => { |
| OpenComputers.log.log(Level.WARNING, "Faulty Lua implementation for synchronized calls.", e) |
| close() |
| } |
| } |
| } |
| case _ => // Nothing special to do, just avoid match errors. |
| }) |
| } |
| |
| // ----------------------------------------------------------------------- // |
| |
| def load(nbt: NBTTagCompound) { |
| state = nbt.getInteger("state") match { |
| case id if id >= 0 && id < Computer.State.maxId => Computer.State(id) |
| case _ => Computer.State.Stopped |
| } |
| |
| if (state != Computer.State.Stopped && init()) { |
| // Unlimit memory use while unpersisting. |
| lua.setTotalMemory(Integer.MAX_VALUE) |
| try { |
| // Try unpersisting Lua, because that's what all of the rest depends |
| // on. First, clear the stack, meaning the current kernel. |
| lua.setTop(0) |
| |
| if (!nbt.hasKey("kernel") || !unpersist(nbt.getByteArray("kernel")) || !lua.isThread(1)) { |
| // This shouldn't really happen, but there's a chance it does if |
| // the save was corrupt (maybe someone modified the Lua files). |
| throw new IllegalStateException("Invalid kernel.") |
| } |
| if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn) { |
| if (!nbt.hasKey("stack") || !unpersist(nbt.getByteArray("stack")) || |
| (state == Computer.State.SynchronizedCall && !lua.isFunction(2)) || |
| (state == Computer.State.SynchronizedReturn && !lua.isTable(2))) { |
| // Same as with the above, should not really happen normally, but |
| // could for the same reasons. |
| throw new IllegalStateException("Invalid stack.") |
| } |
| } |
| |
| assert(signals.size == 0) |
| val signalsNbt = nbt.getTagList("signals") |
| signals.addAll((0 until signalsNbt.tagCount()). |
| map(signalsNbt.tagAt(_).asInstanceOf[NBTTagCompound]). |
| map(signalNbt => { |
| val argsNbt = signalNbt.getCompoundTag("args") |
| val argsLength = argsNbt.getInteger("length") |
| new Computer.Signal(signalNbt.getString("name"), |
| (0 until argsLength).map("arg" + _).map(argsNbt.getTag).map { |
| case tag: NBTTagByte if tag.data == -1 => Unit |
| case tag: NBTTagByte => tag.data == 1 |
| case tag: NBTTagDouble => tag.data |
| case tag: NBTTagString => tag.data |
| case _ => throw new IllegalStateException("Invalid signal.") |
| }.toArray) |
| }).asJava) |
| |
| rom.foreach(_.load(nbt.getCompoundTag("rom"))) |
| kernelMemory = nbt.getInteger("kernelMemory") |
| timeStarted = nbt.getLong("timeStarted") |
| |
| // Clean up some after we're done and limit memory again. |
| lua.gc(LuaState.GcAction.COLLECT, 0) |
| recomputeMemory() |
| |
| // Ensure the executor is started in the next update if necessary. |
| assert(future.isEmpty) |
| state match { |
| case Computer.State.Yielded => |
| state = Computer.State.Paused |
| case Computer.State.SynchronizedReturn => |
| state = Computer.State.SynchronizedReturnPaused |
| case _ => // Will be started by update() if necessary. |
| } |
| } catch { |
| case e: IllegalStateException => { |
| OpenComputers.log.log(Level.WARNING, "Could not restore computer.", e) |
| close() |
| } |
| case e: LuaRuntimeException => { |
| OpenComputers.log.warning("Could not restore computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat ")) |
| close() |
| } |
| } |
| } |
| // Init failed, or we were already stopped. |
| else state = Computer.State.Stopped |
| } |
| |
| def save(nbt: NBTTagCompound): Unit = this.synchronized { |
| assert(state != Computer.State.Running) // Lock on 'this' should guarantee this. |
| assert(state != Computer.State.Stopping) // Only set while executor is running. |
| |
| nbt.setInteger("state", (state match { |
| case Computer.State.Paused => Computer.State.Yielded |
| case Computer.State.Sleeping => Computer.State.Yielded |
| case Computer.State.SynchronizedReturnPaused => Computer.State.SynchronizedReturn |
| case other => other |
| }).id) |
| if (state == Computer.State.Stopped) { |
| return |
| } |
| |
| // Unlimit memory while persisting. |
| val memory = lua.getTotalMemory |
| lua.setTotalMemory(Integer.MAX_VALUE) |
| try { |
| // Try persisting Lua, because that's what all of the rest depends on. |
| // While in a driver call we have one object on the global stack: either |
| // the function to call the driver with, or the result of the call. |
| if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn || state == Computer.State.SynchronizedReturnPaused) { |
| assert(if (state == Computer.State.SynchronizedCall) lua.isFunction(2) else lua.isTable(2)) |
| nbt.setByteArray("stack", persist(2)) |
| } |
| // Save the kernel state (which is always at stack index one). |
| assert(lua.isThread(1)) |
| nbt.setByteArray("kernel", persist(1)) |
| |
| val list = new NBTTagList |
| for (s <- signals.iterator) { |
| val signal = new NBTTagCompound |
| signal.setString("name", s.name) |
| val args = new NBTTagCompound |
| args.setInteger("length", s.args.length) |
| s.args.zipWithIndex.foreach { |
| case (Unit, i) => args.setByte("arg" + i, -1) |
| case (arg: Boolean, i) => args.setByte("arg" + i, if (arg) 1 else 0) |
| case (arg: Double, i) => args.setDouble("arg" + i, arg) |
| case (arg: String, i) => args.setString("arg" + i, arg) |
| } |
| signal.setCompoundTag("args", args) |
| list.appendTag(signal) |
| } |
| nbt.setTag("signals", list) |
| |
| val romNbt = new NBTTagCompound() |
| rom.foreach(_.save(romNbt)) |
| nbt.setCompoundTag("rom", romNbt) |
| nbt.setInteger("kernelMemory", kernelMemory) |
| nbt.setLong("timeStarted", timeStarted) |
| } |
| catch { |
| case e: Throwable => { |
| e.printStackTrace() |
| nbt.setInteger("state", Computer.State.Stopped.id) |
| } |
| } |
| finally { |
| // Clean up some after we're done and limit memory again. |
| lua.gc(LuaState.GcAction.COLLECT, 0) |
| lua.setTotalMemory(memory) |
| } |
| } |
| |
| private def persist(index: Int): Array[Byte] = { |
| lua.getGlobal("persist") // ... obj persist? |
| if (lua.isFunction(-1)) { |
| // ... obj persist |
| lua.pushValue(index) // ... obj persist obj |
| lua.call(1, 1) // ... obj str? |
| if (lua.isString(-1)) { |
| // ... obj str |
| val result = lua.toByteArray(-1) |
| lua.pop(1) // ... obj |
| return result |
| } // ... obj :( |
| } // ... obj :( |
| lua.pop(1) // ... obj |
| Array[Byte]() |
| } |
| |
| private def unpersist(value: Array[Byte]): Boolean = { |
| lua.getGlobal("unpersist") // ... unpersist? |
| if (lua.isFunction(-1)) { |
| // ... unpersist |
| lua.pushByteArray(value) // ... unpersist str |
| lua.call(1, 1) // ... obj |
| return true |
| } // ... :( |
| false |
| } |
| |
| // ----------------------------------------------------------------------- // |
| |
| private def init(): Boolean = { |
| // Creates a new state with all base libraries and the persistence library |
| // loaded into it. This means the state has much more power than it |
| // rightfully should have, so we sandbox it a bit in the following. |
| LuaStateFactory.createState() match { |
| case None => |
| lua = null |
| return false |
| case Some(value) => lua = value |
| } |
| |
| try { |
| // Push a couple of functions that override original Lua API functions or |
| // that add new functionality to it. |
| |
| // Push a couple of functions that override original Lua API functions or |
| // that add new functionality to it. |
| lua.getGlobal("os") |
| |
| // Custom os.clock() implementation returning the time the computer has |
| // been running, instead of the native library... |
| lua.pushScalaFunction(lua => { |
| // World time is in ticks, and each second has 20 ticks. Since we |
| // want os.clock() to return real seconds, though, we'll divide it |
| // accordingly. |
| lua.pushNumber((worldTime - timeStarted) / 20.0) |
| 1 |
| }) |
| lua.setField(-2, "clock") |
| |
| // Return ingame time for os.time(). |
| lua.pushScalaFunction(lua => { |
| // Game time is in ticks, so that each day has 24000 ticks, meaning |
| // one hour is game time divided by one thousand. Also, Minecraft |
| // starts days at 6 o'clock, so we add those six hours. Thus: |
| // timestamp = (time + 6000) / 1000[h] * 60[m] * 60[s] * 1000[ms] |
| lua.pushNumber((worldTime + 6000) * 60 * 60) |
| 1 |
| }) |
| lua.setField(-2, "time") |
| |
| // Allow the system to read how much memory it uses and has available. |
| lua.pushScalaFunction(lua => { |
| lua.pushInteger(lua.getTotalMemory - kernelMemory) |
| 1 |
| }) |
| lua.setField(-2, "totalMemory") |
| |
| lua.pushScalaFunction(lua => { |
| // This is *very* unlikely, but still: avoid this getting larger than |
| // what we report as the total memory. |
| lua.pushInteger(lua.getFreeMemory min (lua.getTotalMemory - kernelMemory)) |
| 1 |
| }) |
| lua.setField(-2, "freeMemory") |
| |
| // Allow the computer to figure out its own id in the component network. |
| lua.pushScalaFunction(lua => { |
| owner.address match { |
| case None => lua.pushNil() |
| case Some(address) => lua.pushString(address) |
| } |
| 1 |
| }) |
| lua.setField(-2, "address") |
| |
| // And it's ROM address. |
| lua.pushScalaFunction(lua => { |
| rom.foreach(_.address match { |
| case None => lua.pushNil() |
| case Some(address) => lua.pushString(address) |
| }) |
| 1 |
| }) |
| lua.setField(-2, "romAddress") |
| |
| // Pop the os table. |
| lua.pop(1) |
| |
| // Until we get to ingame screens we log to Java's stdout. |
| lua.pushScalaFunction(lua => { |
| for (i <- 1 to lua.getTop) lua.`type`(i) match { |
| case LuaType.NIL => print("nil") |
| case LuaType.BOOLEAN => print(lua.toBoolean(i)) |
| case LuaType.NUMBER => print(lua.toNumber(i)) |
| case LuaType.STRING => print(lua.toString(i)) |
| case LuaType.TABLE => print("table") |
| case LuaType.FUNCTION => print("function") |
| case LuaType.THREAD => print("thread") |
| case LuaType.LIGHTUSERDATA | LuaType.USERDATA => print("userdata") |
| } |
| println() |
| 0 |
| }) |
| lua.setGlobal("print") |
| |
| // Set up functions used to send network messages. |
| def parseArgument(lua: LuaState, index: Int) = lua.`type`(index) match { |
| case LuaType.BOOLEAN => lua.toBoolean(index) |
| case LuaType.NUMBER => lua.toNumber(index) |
| case LuaType.STRING => lua.toByteArray(index) |
| case _ => Unit |
| } |
| |
| def parseArguments(lua: LuaState, start: Int) = |
| for (index <- start to lua.getTop) yield parseArgument(lua, index) |
| |
| def pushResult(lua: LuaState, value: Any): Unit = value match { |
| case value: Boolean => lua.pushBoolean(value) |
| case value: Byte => lua.pushNumber(value) |
| case value: Short => lua.pushNumber(value) |
| case value: Int => lua.pushNumber(value) |
| case value: Long => lua.pushNumber(value) |
| case value: Float => lua.pushNumber(value) |
| case value: Double => lua.pushNumber(value) |
| case value: String => lua.pushString(value) |
| case value: Array[Byte] => lua.pushByteArray(value) |
| case value: Array[_] => { |
| lua.newTable() |
| value.zipWithIndex.foreach { |
| case (entry, index) => |
| pushResult(lua, entry) |
| lua.rawSet(-2, index) |
| } |
| } |
| // TODO maps, tuples/seqs? |
| // TODO I fear they are, but check if the following are really necessary for Java interop. |
| case value: java.lang.Byte => lua.pushNumber(value.byteValue) |
| case value: java.lang.Short => lua.pushNumber(value.shortValue) |
| case value: java.lang.Integer => lua.pushNumber(value.intValue) |
| case value: java.lang.Long => lua.pushNumber(value.longValue) |
| case value: java.lang.Float => lua.pushNumber(value.floatValue) |
| case value: java.lang.Double => lua.pushNumber(value.doubleValue) |
| case _ => lua.pushNil() |
| } |
| |
| lua.pushScalaFunction(lua => |
| owner.network.fold(None: Option[Array[Any]])(_. |
| sendToAddress(owner, lua.checkString(1), lua.checkString(2), parseArguments(lua, 3): _*)) match { |
| case Some(Array(results@_*)) => |
| results.foreach(pushResult(lua, _)) |
| results.length |
| case _ => 0 |
| }) |
| lua.setGlobal("sendToAddress") |
| |
| lua.pushScalaFunction(lua => { |
| owner.network.fold(None: Option[Node])(_.node(lua.checkString(1))) match { |
| case None => 0 |
| case Some(node) => lua.pushString(node.name); 1 |
| } |
| }) |
| lua.setGlobal("nodeName") |
| |
| // How long programs may run without yielding before we stop them. |
| lua.pushNumber(Config.timeout) |
| lua.setGlobal("timeout") |
| |
| // Provide driver API code. |
| lua.pushScalaFunction(lua => { |
| val apis = driver.Registry.apis |
| lua.newTable(apis.length, 0) |
| for ((name, code) <- apis) { |
| lua.pushString(Source.fromInputStream(code).mkString) |
| code.close() |
| lua.setField(-2, name) |
| } |
| 1 |
| }) |
| lua.setGlobal("drivers") |
| |
| // Run the boot script. This sets up the permanent value tables as |
| // well as making the functions used for persisting/unpersisting |
| // available as globals. It also wraps the message sending functions |
| // so that they yield a closure doing the actual call so that that |
| // message call can be performed in a synchronized fashion. |
| lua.load(classOf[Computer].getResourceAsStream(Config.scriptPath + "boot.lua"), "=boot", "t") |
| lua.call(0, 0) |
| |
| // Load the basic kernel which sets up the sandbox, loads the init script |
| // and then runs it in a coroutine with a debug hook checking for |
| // timeouts. |
| lua.load(classOf[Computer].getResourceAsStream(Config.scriptPath + "kernel.lua"), "=kernel", "t") |
| lua.newThread() // Left as the first value on the stack. |
| // Run to the first yield in kernel, to get a good idea of how much |
| // memory all the basic functionality we provide needs. |
| lua.pop(lua.resume(1, 0)) |
| |
| // Run the garbage collector to get rid of stuff left behind after the |
| // initialization phase to get a good estimate of the base memory usage |
| // the kernel has. We remember that size to grant user-space programs a |
| // fixed base amount of memory, regardless of the memory need of the |
| // underlying system (which may change across releases). Add some buffer |
| // to avoid the init script eating up all the rest immediately. |
| lua.gc(LuaState.GcAction.COLLECT, 0) |
| kernelMemory = (lua.getTotalMemory - lua.getFreeMemory) + 2048 |
| recomputeMemory() |
| |
| // Clear any left-over signals from a previous run. |
| signals.clear() |
| |
| // Connect the ROM node to our owner. |
| rom.foreach(rom => owner.network.foreach(_.connect(owner, rom))) |
| |
| return true |
| } |
| catch { |
| case ex: Throwable => { |
| OpenComputers.log.log(Level.WARNING, "Failed initializing computer.", ex) |
| close() |
| } |
| } |
| false |
| } |
| |
| private def close(): Unit = stateMonitor.synchronized( |
| if (state != Computer.State.Stopped) { |
| state = Computer.State.Stopped |
| lua.setTotalMemory(Integer.MAX_VALUE) |
| lua.close() |
| lua = null |
| kernelMemory = 0 |
| signals.clear() |
| timeStarted = 0 |
| future = None |
| sleepUntil = Long.MaxValue |
| |
| // Mark state change in owner, to send it to clients. |
| owner.markAsChanged() |
| }) |
| |
| private def execute(value: Computer.State.Value) { |
| assert(future.isEmpty) |
| sleepUntil = Long.MaxValue |
| state = value |
| future = Some(Computer.Executor.pool.submit(this)) |
| } |
| |
| // This is a really high level lock that we only use for saving and loading. |
| override def run(): Unit = this.synchronized { |
| val callReturn = stateMonitor.synchronized { |
| val oldState = state |
| state = Computer.State.Running |
| |
| // See if the game appears to be paused, in which case we also pause. |
| if (System.currentTimeMillis - lastUpdate > 200) { |
| state = oldState match { |
| case Computer.State.SynchronizedReturn => Computer.State.SynchronizedReturnPaused |
| case _ => Computer.State.Paused |
| } |
| future = None |
| return |
| } |
| |
| oldState |
| } match { |
| case Computer.State.SynchronizedReturn => true |
| case Computer.State.Yielded | Computer.State.Sleeping => false |
| case s => |
| OpenComputers.log.warning("Running computer from invalid state " + s.toString + ". This is a bug!") |
| close() |
| return |
| } |
| |
| // The kernel thread will always be at stack index one. |
| assert(lua.isThread(1)) |
| |
| try { |
| // Resume the Lua state and remember the number of results we get. |
| val results = if (callReturn) { |
| // If we were doing a synchronized call, continue where we left off. |
| assert(lua.getTop == 2) |
| assert(lua.isTable(2)) |
| lua.resume(1, 1) |
| } |
| else Option(signals.poll()) match { |
| case None => lua.resume(1, 0) |
| case Some(signal) => { |
| lua.pushString(signal.name) |
| signal.args.foreach { |
| case Unit => lua.pushNil() |
| case arg: Boolean => lua.pushBoolean(arg) |
| case arg: Double => lua.pushNumber(arg) |
| case arg: String => lua.pushString(arg) |
| } |
| lua.resume(1, 1 + signal.args.length) |
| } |
| } |
| |
| // Check if the kernel is still alive. |
| stateMonitor.synchronized(if (lua.status(1) == LuaState.YIELD) { |
| // Intermediate state in some cases. Satisfies the assert in execute(). |
| future = None |
| // Someone called stop() in the meantime. |
| if (state == Computer.State.Stopping) |
| close() |
| // If we have a single number that's how long we may wait before |
| // resuming the state again. |
| else if (results == 1 && lua.isNumber(2)) { |
| val sleep = lua.toNumber(2) * 1000 |
| lua.pop(results) |
| // But only sleep if we don't have more signals to process. |
| if (signals.isEmpty) { |
| state = Computer.State.Sleeping |
| sleepUntil = System.currentTimeMillis + sleep |
| } |
| else execute(Computer.State.Yielded) |
| } |
| // If we get one function it must be a wrapper for a synchronized call. |
| // The protocol is that a closure is pushed that is then called from |
| // the main server thread, and returns a table, which is in turn passed |
| // to the originating coroutine.yield(). |
| else if (results == 1 && lua.isFunction(2)) |
| state = Computer.State.SynchronizedCall |
| // Check if we are shutting down, and if so if we're rebooting. This is |
| // signalled by boolean values, where `false` means shut down, `true` |
| // means reboot (i.e shutdown then start again). |
| else if (results == 1 && lua.isBoolean(2)) { |
| val reboot = lua.toBoolean(2) |
| close() |
| if (reboot) |
| state = Computer.State.Rebooting |
| } |
| else { |
| // Something else, just pop the results and try again. |
| lua.pop(results) |
| if (signals.isEmpty) |
| state = Computer.State.Suspended |
| else |
| execute(Computer.State.Yielded) |
| } |
| |
| // State has inevitably changed, mark as changed to save again. |
| owner.markAsChanged() |
| } |
| // The kernel thread returned. If it threw we'd we in the catch below. |
| else { |
| assert(lua.isThread(1)) |
| // We're expecting the result of a pcall, if anything, so boolean + (result | string). |
| if (!lua.isBoolean(2) || !(lua.isString(3) || lua.isNil(3))) { |
| OpenComputers.log.warning("Kernel returned unexpected results.") |
| } |
| // The pcall *should* never return normally... but check for it nonetheless. |
| if (lua.toBoolean(2)) { |
| OpenComputers.log.warning("Kernel stopped unexpectedly.") |
| } |
| else { |
| // This can trigger another out of memory error if the original |
| // error was an out of memory error. |
| OpenComputers.log.warning("Computer crashed.\n" + lua.toString(3)) // TODO remove this when we have a component that can display crash messages |
| // TODO get this to the world as a computer.crashed message. problem: synchronizing it. |
| //owner.network.sendToAll(owner, "computer.crashed", lua.toString(3)) |
| } |
| close() |
| }) |
| } |
| catch { |
| case e: LuaRuntimeException => |
| OpenComputers.log.warning("Kernel crashed. This is a bug!\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat ")) |
| close() |
| case e: LuaMemoryAllocationException => |
| OpenComputers.log.warning("Out of memory!") // TODO remove this when we have a component that can display crash messages |
| // TODO get this to the world as a computer.crashed message. problem: synchronizing it. |
| //owner.network.sendToAll(owner, "computer.crashed", "not enough memory") |
| close() |
| case e: java.lang.Error if e.getMessage == "not enough memory" => |
| OpenComputers.log.warning("Out of memory!") // TODO remove this when we have a component that can display crash messages |
| // TODO get this to the world as a computer.crashed message. problem: synchronizing it. |
| //owner.network.sendToAll(owner, "computer.crashed", "not enough memory") |
| close() |
| } |
| } |
| } |
| |
| object Computer { |
| |
| trait Environment extends Node { |
| protected val computer: Computer |
| |
| def world: World |
| |
| def installedMemory: Int |
| |
| /** |
| * Called when the computer state changed, so it should be saved again. |
| * <p/> |
| * This is called asynchronously from the Computer's executor thread, so the |
| * computer's owner must make sure to handle this in a synchronized fashion. |
| */ |
| def markAsChanged(): Unit |
| |
| // ----------------------------------------------------------------------- // |
| |
| override def name = "computer" |
| |
| override def visibility = Visibility.Network |
| |
| override def receive(message: Message) = { |
| super.receive(message) |
| message.data match { |
| // The isRunning check is here to avoid component_* signals being |
| // generated while loading a chunk. |
| case Array() if message.name == "network.connect" && computer.isRunning => |
| computer.signal("component_added", message.source.address.get); None |
| case Array() if message.name == "network.disconnect" && computer.isRunning => |
| computer.signal("component_removed", message.source.address.get); None |
| case Array(oldAddress: Integer) if message.name == "network.reconnect" && computer.isRunning => |
| computer.signal("component_changed", message.source.address.get, oldAddress); None |
| |
| // Arbitrary signals, usually from other components. |
| case Array(name: String, args@_*) if message.name == "computer.signal" => |
| computer.signal(name, List(message.source.address.get) ++ args: _*); None |
| |
| // Remote control. |
| case Array() if message.name == "computer.start" => |
| Some(Array(computer.start().asInstanceOf[Any])) |
| case Array() if message.name == "computer.stop" => |
| Some(Array(computer.stop().asInstanceOf[Any])) |
| case Array() if message.name == "computer.running" => |
| Some(Array(computer.isRunning.asInstanceOf[Any])) |
| case _ => None |
| } |
| } |
| |
| override protected def onConnect() { |
| super.onConnect() |
| computer.rom.foreach(rom => network.foreach(_.connect(this, rom))) |
| } |
| |
| override protected def onDisconnect() { |
| super.onDisconnect() |
| computer.rom.foreach(rom => rom.network.foreach(_.remove(rom))) |
| } |
| |
| override def load(nbt: NBTTagCompound) { |
| super.load(nbt) |
| computer.load(nbt.getCompoundTag("computer")) |
| } |
| |
| override def save(nbt: NBTTagCompound) { |
| super.save(nbt) |
| val computerNbt = new NBTTagCompound |
| computer.save(computerNbt) |
| nbt.setCompoundTag("computer", computerNbt) |
| } |
| } |
| |
| @ForgeSubscribe |
| def onChunkUnload(e: ChunkEvent.Unload) = |
| onUnload(e.world, e.getChunk.chunkTileEntityMap.values.map(_.asInstanceOf[TileEntity])) |
| |
| private def onUnload(w: World, tileEntities: Iterable[TileEntity]) = if (!w.isRemote) { |
| tileEntities. |
| filter(_.isInstanceOf[tileentity.Computer]). |
| map(_.asInstanceOf[tileentity.Computer]). |
| foreach(_.turnOff()) |
| } |
| |
| /** Signals are messages sent to the Lua state from Java asynchronously. */ |
| private class Signal(val name: String, val args: Array[Any]) |
| |
| /** Possible states of the computer, and in particular its executor. */ |
| private object State extends Enumeration { |
| /** The computer is not running right now and there is no Lua state. */ |
| val Stopped = Value("Stopped") |
| |
| /** The computer is running but yielded and there were no more signals to process. */ |
| val Suspended = Value("Suspended") |
| |
| /** The computer is running but yielded but will resume as soon as possible. */ |
| val Yielded = Value("Yielded") |
| |
| /** The computer is running but yielding for a longer amount of time. */ |
| val Sleeping = Value("Sleeping") |
| |
| /** The computer is paused and waiting for the game to resume. */ |
| val Paused = Value("Paused") |
| |
| /** The computer is up and running, executing Lua code. */ |
| val Running = Value("Running") |
| |
| /** The computer is currently shutting down (waiting for executor). */ |
| val Stopping = Value("Stopping") |
| |
| /** The computer executor is waiting for a synchronized call to be made. */ |
| val SynchronizedCall = Value("SynchronizedCall") |
| |
| /** The computer should resume with the result of a synchronized call. */ |
| val SynchronizedReturn = Value("SynchronizedReturn") |
| |
| /** The computer is paused and waiting for the game to resume. */ |
| val SynchronizedReturnPaused = Value("SynchronizedReturnPaused") |
| |
| /** Computer is currently rebooting. */ |
| val Rebooting = Value("Rebooting") |
| } |
| |
| /** Singleton for requesting executors that run our Lua states. */ |
| private object Executor { |
| val pool = Executors.newScheduledThreadPool(Config.threads, |
| new ThreadFactory() { |
| private val threadNumber = new AtomicInteger(1) |
| |
| private val group = System.getSecurityManager match { |
| case null => Thread.currentThread().getThreadGroup |
| case s => s.getThreadGroup |
| } |
| |
| def newThread(r: Runnable): Thread = { |
| val name = OpenComputers.getClass.getSimpleName + "-" + threadNumber.getAndIncrement |
| val thread = new Thread(group, r, name) |
| if (!thread.isDaemon) |
| thread.setDaemon(true) |
| if (thread.getPriority != Thread.MIN_PRIORITY) |
| thread.setPriority(Thread.MIN_PRIORITY) |
| thread.setUncaughtExceptionHandler(new UncaughtExceptionHandler { |
| def uncaughtException(t: Thread, e: Throwable) { |
| OpenComputers.log.log(Level.WARNING, "Unhandled exception in worker thread.", e) |
| } |
| }) |
| thread |
| } |
| }) |
| } |
| |
| } |