blob: 7a6fce53e1ab7cd293262d84becac3e35d799861 [file] [log] [blame] [raw]
package li.cil.oc.server.computer
import com.naef.jnlua._
import java.util.concurrent._
import java.util.concurrent.atomic.AtomicInteger
import java.util.logging.Level
import li.cil.oc.common.computer.IComputer
import li.cil.oc.common.tileentity.TileEntityComputer
import li.cil.oc.{OpenComputers, Config}
import net.minecraft.nbt._
import net.minecraft.tileentity.TileEntity
import net.minecraft.world.World
import net.minecraftforge.event.ForgeSubscribe
import net.minecraftforge.event.world.ChunkEvent
import scala.Array.canBuildFrom
import scala.Some
import scala.collection.JavaConversions._
import scala.collection.JavaConverters._
import scala.io.Source
/**
* Wrapper class for Lua states set up to behave like a pseudo-OS.
* <p/>
* This class takes care of the following:
* <ul>
* <li>Creating a new Lua state when started from a previously stopped state.</li>
* <li>Updating the Lua state in a parallel thread so as not to block the game.</li>
* <li>Synchronizing calls from the computer thread to the network.</li>
* <li>Saving the internal state of the computer across chunk saves/loads.</li>
* <li>Closing the Lua state when stopping a previously running computer.</li>
* </ul>
* <p/>
* See `Driver` to read more about component drivers and how they interact
* with computers - and through them the components they interface.
*/
class Computer(val owner: IComputerEnvironment) extends IComputer with Runnable {
// ----------------------------------------------------------------------- //
// General
// ----------------------------------------------------------------------- //
/**
* The current execution state of the computer. This is used to track how to
* resume the computers main thread, if at all, and whether to accept new
* signals or not.
*/
private var state = Computer.State.Stopped
/** The internal Lua state. Only set while the computer is running. */
private[computer] var lua: LuaState = null
/**
* The base memory consumption of the kernel. Used to permit a fixed base
* memory for userland even if the amount of memory the kernel uses changes
* over time (i.e. with future releases of the mod). This is set when
* starting up the computer.
*/
private var kernelMemory = 0
/**
* The queue of signals the Lua state should process. Signals are queued from
* the Java side and processed one by one in the Lua VM. They are the only
* means to communicate actively with the computer (passively only message
* handlers can interact with the computer by returning some result).
*/
private val signals = new LinkedBlockingQueue[Computer.Signal](100)
// ----------------------------------------------------------------------- //
/**
* The time (world time) when the computer was started. This is used for our
* custom implementation of os.clock(), which returns the amount of the time
* the computer has been running.
*/
private var timeStarted = 0.0
/**
* The last time (system time) the update function was called by the server
* thread. We use this to detect whether the game was paused, to also pause
* the executor thread for our Lua state.
*/
private var lastUpdate = 0L
/**
* The current world time. This is used for our custom implementation of
* os.time(). This is updated by the server thread and read by the computer
* thread, to avoid computer threads directly accessing the world state.
*/
private var worldTime = 0L
// ----------------------------------------------------------------------- //
/**
* This is used to keep track of the current executor of the Lua state, for
* example to wait for the computer to finish running a task.
*/
private var future: Option[Future[_]] = None
/** This is used to synchronize access to the state field. */
private val stateMonitor = new Object()
/** This is used to synchronize while saving, so we don't stop while we do. */
private val saveMonitor = new Object()
// ----------------------------------------------------------------------- //
// IComputerContext
// ----------------------------------------------------------------------- //
override def signal(name: String, args: Any*) = {
def values = args.map {
case null | Unit => Unit
case arg: Boolean => arg
case arg: Byte => arg.toDouble
case arg: Char => arg.toDouble
case arg: Short => arg.toDouble
case arg: Int => arg.toDouble
case arg: Long => arg.toDouble
case arg: Float => arg.toDouble
case arg: Double => arg
case arg: String => arg
case _ => throw new IllegalArgumentException()
}.toArray
stateMonitor.synchronized(state match {
// We don't push new signals when stopped or shutting down.
case Computer.State.Stopped | Computer.State.Stopping => false
// Currently sleeping. Cancel that and start immediately.
case Computer.State.Sleeping =>
val v = values // Map first, may error.
future.get.cancel(true)
state = Computer.State.Suspended
signals.offer(new Computer.Signal(name, v))
future = Some(Computer.Executor.pool.submit(this))
true
// Basically running, but had nothing to do so we stopped. Resume.
case Computer.State.Suspended if !future.isDefined =>
signals.offer(new Computer.Signal(name, values))
future = Some(Computer.Executor.pool.submit(this))
true
// Running or in synchronized call, just push the signal.
case _ =>
signals.offer(new Computer.Signal(name, values))
true
})
}
// ----------------------------------------------------------------------- //
// IComputer
// ----------------------------------------------------------------------- //
override def start() = stateMonitor.synchronized(
state == Computer.State.Stopped && init() && {
state = Computer.State.Suspended
// Mark state change in owner, to send it to clients.
owner.markAsChanged()
// Inject a dummy signal so that real ones don't get swallowed. This way
// we can just ignore the parameters the first time the kernel is run
// and all actual signals will be read using coroutine.yield().
// IMPORTANT: This will also create our worker thread for the first run.
signal("dummy")
// Inject component added signals for all nodes in the network.
owner.network.nodes.foreach(node => signal("component_added", node.address))
true
})
override def stop() = saveMonitor.synchronized(stateMonitor.synchronized {
if (state != Computer.State.Stopped) {
if (state != Computer.State.Running) {
// If the computer is not currently running we can simply close it,
// and cancel any pending future - which may already be running and
// waiting for the stateMonitor, so we do a hard abort.
future.foreach(_.cancel(true))
close()
}
else {
// Otherwise we enter an intermediate state to ensure the executor
// truly stopped, before switching back to stopped to allow starting
// the computer again. The executor will check for this state and
// call close.
state = Computer.State.Stopping
}
true
}
else false
})
override def isRunning = stateMonitor.synchronized(state != Computer.State.Stopped)
override def update() {
stateMonitor.synchronized(state match {
case Computer.State.Stopped | Computer.State.Stopping => return
case Computer.State.SynchronizedCall => {
assert(lua.getTop == 2)
assert(lua.isThread(1))
assert(lua.isFunction(2))
try {
lua.call(0, 1)
lua.checkType(2, LuaType.TABLE)
state = Computer.State.SynchronizedReturn
assert(!future.isDefined)
future = Some(Computer.Executor.pool.submit(this))
} catch {
// This can happen if we run out of memory while converting a Java exception to a string.
case _: LuaMemoryAllocationException =>
// TODO error message somewhere ingame
close()
// This should not happen.
case _: Throwable => {
OpenComputers.log.warning("Faulty Lua implementation for synchronized calls.")
close()
}
}
}
case Computer.State.Paused => {
state = Computer.State.Suspended
assert(!future.isDefined)
future = Some(Computer.Executor.pool.submit(this))
}
case Computer.State.SynchronizedReturnPaused => {
state = Computer.State.SynchronizedReturn
assert(!future.isDefined)
future = Some(Computer.Executor.pool.submit(this))
}
case _ => /* Nothing special to do. */
})
// Update world time for computer threads.
worldTime = owner.world.getWorldInfo.getWorldTotalTime
// Remember when we started the computer for os.clock(). We do this in the
// update because only then can we be sure the world is available.
if (timeStarted == 0)
timeStarted = worldTime
// Update last time run to let our executor thread know it doesn't have to
// pause.
lastUpdate = System.currentTimeMillis
}
// ----------------------------------------------------------------------- //
override def load(nbt: NBTTagCompound): Unit =
saveMonitor.synchronized(this.synchronized {
// Clear out what we currently have, if anything.
stateMonitor.synchronized {
assert(state != Computer.State.Running) // Lock on 'this' should guarantee this.
stop()
}
state = Computer.State(nbt.getInteger("state"))
if (state != Computer.State.Stopped && init()) {
// Unlimit memory use while unpersisting.
val memory = lua.getTotalMemory
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try unpersisting Lua, because that's what all of the rest depends
// on. First, clear the stack, meaning the current kernel.
lua.setTop(0)
if (!unpersist(nbt.getByteArray("kernel")) || !lua.isThread(1)) {
// This shouldn't really happen, but there's a chance it does if
// the save was corrupt (maybe someone modified the Lua files).
throw new IllegalStateException("Could not restore kernel.")
}
if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn) {
if (!unpersist(nbt.getByteArray("stack")) ||
(state == Computer.State.SynchronizedCall && !lua.isFunction(2)) ||
(state == Computer.State.SynchronizedReturn && !lua.isTable(2))) {
// Same as with the above, should not really happen normally, but
// could for the same reasons.
throw new IllegalStateException("Could not restore stack.")
}
assert(lua.getTop == 2)
}
assert(signals.size() == 0)
val signalsTag = nbt.getTagList("signals")
signals.addAll((0 until signalsTag.tagCount()).
map(signalsTag.tagAt(_).asInstanceOf[NBTTagCompound]).
map(signal => {
val argsTag = signal.getCompoundTag("args")
val argsLength = argsTag.getInteger("length")
new Computer.Signal(signal.getString("name"),
(0 until argsLength).map("arg" + _).map(argsTag.getTag).map {
case tag: NBTTagByte if tag.data == -1 => Unit
case tag: NBTTagByte => tag.data == 1
case tag: NBTTagDouble => tag.data
case tag: NBTTagString => tag.data
}.toArray)
}).asJava)
timeStarted = nbt.getDouble("timeStarted")
// Clean up some after we're done and limit memory again.
lua.gc(LuaState.GcAction.COLLECT, 0)
lua.setTotalMemory(memory)
// Start running our worker thread.
assert(!future.isDefined)
state match {
case Computer.State.Suspended | Computer.State.Sleeping | Computer.State.SynchronizedReturn =>
future = Some(Computer.Executor.pool.submit(this))
case _ => // Wasn't running before.
}
} catch {
case t: Throwable => {
OpenComputers.log.log(Level.WARNING, "Could not restore computer.", t)
close()
}
}
}
else {
close()
}
})
override def save(nbt: NBTTagCompound): Unit =
saveMonitor.synchronized(this.synchronized {
stateMonitor.synchronized {
assert(state != Computer.State.Running) // Lock on 'this' should guarantee this.
assert(state != Computer.State.Stopping) // Only set while executor is running.
}
nbt.setInteger("state", state.id)
if (state == Computer.State.Stopped) {
return
}
// Unlimit memory while persisting.
val memory = lua.getTotalMemory
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try persisting Lua, because that's what all of the rest depends on.
// While in a driver call we have one object on the global stack: either
// the function to call the driver with, or the result of the call.
if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn) {
assert(if (state == Computer.State.SynchronizedCall) lua.isFunction(2) else lua.isTable(2))
nbt.setByteArray("stack", persist(2))
}
// Save the kernel state (which is always at stack index one).
assert(lua.isThread(1))
nbt.setByteArray("kernel", persist(1))
val list = new NBTTagList
for (s <- signals.iterator) {
val signal = new NBTTagCompound
signal.setString("name", s.name)
val args = new NBTTagCompound
args.setInteger("length", s.args.length)
s.args.zipWithIndex.foreach {
case (Unit, i) => args.setByte("arg" + i, -1)
case (arg: Boolean, i) => args.setByte("arg" + i, if (arg) 1 else 0)
case (arg: Double, i) => args.setDouble("arg" + i, arg)
case (arg: String, i) => args.setString("arg" + i, arg)
}
signal.setCompoundTag("args", args)
list.appendTag(signal)
}
nbt.setTag("signals", list)
nbt.setDouble("timeStarted", timeStarted)
}
catch {
case t: Throwable => {
t.printStackTrace()
nbt.setInteger("state", Computer.State.Stopped.id)
}
}
finally {
// Clean up some after we're done and limit memory again.
lua.gc(LuaState.GcAction.COLLECT, 0)
lua.setTotalMemory(memory)
}
})
private def persist(index: Int): Array[Byte] = {
lua.getGlobal("persist") // ... obj persist?
if (lua.isFunction(-1)) {
// ... obj persist
lua.pushValue(index) // ... obj persist obj
lua.call(1, 1) // ... obj str?
if (lua.isString(-1)) {
// ... obj str
val result = lua.toByteArray(-1)
lua.pop(1) // ... obj
return result
} // ... obj :(
} // ... obj :(
lua.pop(1) // ... obj
Array[Byte]()
}
private def unpersist(value: Array[Byte]): Boolean = {
lua.getGlobal("unpersist") // ... unpersist?
if (lua.isFunction(-1)) {
// ... unpersist
lua.pushByteArray(value) // ... unpersist str
lua.call(1, 1) // ... obj
return true
} // ... :(
false
}
// ----------------------------------------------------------------------- //
// Internals
// ----------------------------------------------------------------------- //
private def init(): Boolean = {
// Creates a new state with all base libraries and the persistence library
// loaded into it. This means the state has much more power than it
// rightfully should have, so we sandbox it a bit in the following.
LuaStateFactory.createState() match {
case None =>
lua = null
return false
case Some(value) => lua = value
}
try {
// Push a couple of functions that override original Lua API functions or
// that add new functionality to it.
// Push a couple of functions that override original Lua API functions or
// that add new functionality to it.
lua.getGlobal("os")
// Custom os.clock() implementation returning the time the computer has
// been running, instead of the native library...
lua.pushJavaFunction(ScalaFunction(lua => {
// World time is in ticks, and each second has 20 ticks. Since we
// want os.clock() to return real seconds, though, we'll divide it
// accordingly.
lua.pushNumber((worldTime - timeStarted) / 20.0)
1
}))
lua.setField(-2, "clock")
// Return ingame time for os.time().
lua.pushJavaFunction(ScalaFunction(lua => {
// Game time is in ticks, so that each day has 24000 ticks, meaning
// one hour is game time divided by one thousand. Also, Minecraft
// starts days at 6 o'clock, so we add those six hours. Thus:
// timestamp = (time + 6000) / 1000[h] * 60[m] * 60[s] * 1000[ms]
lua.pushNumber((worldTime + 6000) * 60 * 60)
1
}))
lua.setField(-2, "time")
// Allow the system to read how much memory it uses and has available.
lua.pushJavaFunction(ScalaFunction(lua => {
lua.pushInteger(kernelMemory)
1
}))
lua.setField(-2, "romSize")
// Allow the computer to figure out its own id in the component network.
lua.pushJavaFunction(ScalaFunction(lua => {
lua.pushInteger(owner.address)
1
}))
lua.setField(-2, "address")
// Pop the os table.
lua.pop(1)
// Until we get to ingame screens we log to Java's stdout.
lua.pushJavaFunction(ScalaFunction(lua => {
for (i <- 1 to lua.getTop) lua.`type`(i) match {
case LuaType.NIL => print("nil")
case LuaType.BOOLEAN => print(lua.toBoolean(i))
case LuaType.NUMBER => print(lua.toNumber(i))
case LuaType.STRING => print(lua.toString(i))
case LuaType.TABLE => print("table")
case LuaType.FUNCTION => print("function")
case LuaType.THREAD => print("thread")
case LuaType.LIGHTUSERDATA | LuaType.USERDATA => print("userdata")
}
println()
0
}))
lua.setGlobal("print")
// Set up functions used to send network messages.
def parseArgument(lua: LuaState, index: Int) = lua.`type`(index) match {
case LuaType.BOOLEAN => lua.toBoolean(index)
case LuaType.NUMBER => lua.toNumber(index)
case LuaType.STRING => lua.toString(index)
case _ => Unit
}
def parseArguments(lua: LuaState, start: Int) =
for (index <- start to lua.getTop) yield parseArgument(lua, index)
def pushResult(lua: LuaState, value: Any): Unit = value match {
case value: Boolean => lua.pushBoolean(value)
case value: Byte => lua.pushNumber(value)
case value: Short => lua.pushNumber(value)
case value: Int => lua.pushNumber(value)
case value: Long => lua.pushNumber(value)
case value: Float => lua.pushNumber(value)
case value: Double => lua.pushNumber(value)
case value: String => lua.pushString(value)
case value: Array[_] => {
lua.newTable()
value.zipWithIndex.foreach {
case (entry, index) =>
pushResult(lua, entry)
lua.rawSet(-2, index)
}
}
// TODO maps, tuples/seqs?
// TODO I fear they are, but check if the following are really necessary for Java interop.
case value: java.lang.Byte => lua.pushNumber(value.byteValue)
case value: java.lang.Short => lua.pushNumber(value.shortValue)
case value: java.lang.Integer => lua.pushNumber(value.intValue)
case value: java.lang.Long => lua.pushNumber(value.longValue)
case value: java.lang.Float => lua.pushNumber(value.floatValue)
case value: java.lang.Double => lua.pushNumber(value.doubleValue)
case _ => lua.pushNil()
}
lua.pushJavaFunction(ScalaFunction(lua =>
owner.network.sendToNode(owner, lua.checkInteger(1), lua.checkString(2), parseArguments(lua, 3): _*) match {
case Some(Array(results@_*)) =>
results.foreach(pushResult(lua, _))
results.length
case None => 0
}))
lua.setGlobal("sendToNode")
lua.pushJavaFunction(ScalaFunction(lua => {
owner.network.sendToAll(owner, lua.checkString(1), parseArguments(lua, 2): _*)
0
}))
lua.setGlobal("sendToAll")
lua.pushJavaFunction(ScalaFunction(lua => {
owner.network.node(lua.checkInteger(1)) match {
case None => 0
case Some(node) => lua.pushString(node.name); 1
}
}))
lua.setGlobal("nodeName")
// Run the boot script. This sets up the permanent value tables as
// well as making the functions used for persisting/unpersisting
// available as globals. It also wraps the message sending functions
// so that they yield a closure doing the actual call so that that
// message call can be performed in a synchronized fashion.
lua.load(classOf[Computer].getResourceAsStream(
"/assets/opencomputers/lua/boot.lua"), "=boot", "t")
lua.call(0, 0)
// Install all driver callbacks into the state. This is done once in
// the beginning so that we can take the memory the callbacks use into
// account when computing the kernel's memory use.
Drivers.installOn(this)
// Loads the init script. This is run by the kernel as a separate
// coroutine to enforce timeouts and sandbox user scripts.
lua.pushJavaFunction(new JavaFunction() {
def invoke(lua: LuaState): Int = {
lua.pushString(Source.fromInputStream(classOf[Computer].
getResourceAsStream("/assets/opencomputers/lua/init.lua")).mkString)
1
}
})
lua.setGlobal("init")
// Load the basic kernel which takes care of handling signals by managing
// the list of active processes. Whatever functionality we can we
// implement in Lua, so we also implement most of the kernel's
// functionality in Lua. Why? Because like this it's automatically
// persisted for us without having to write more additional NBT stuff.
lua.load(classOf[Computer].getResourceAsStream(
"/assets/opencomputers/lua/kernel.lua"), "=kernel", "t")
lua.newThread() // Leave it as the first value on the stack.
// Run the garbage collector to get rid of stuff left behind after the
// initialization phase to get a good estimate of the base memory usage
// the kernel has. We remember that size to grant user-space programs a
// fixed base amount of memory, regardless of the memory need of the
// underlying system (which may change across releases).
lua.gc(LuaState.GcAction.COLLECT, 0)
kernelMemory = lua.getTotalMemory - lua.getFreeMemory
lua.setTotalMemory(kernelMemory + 64 * 1024)
// Clear any left-over signals from a previous run.
signals.clear()
return true
}
catch {
case ex: Throwable => {
OpenComputers.log.log(Level.WARNING, "Failed initializing computer.", ex)
close()
}
}
false
}
private def close(): Unit = stateMonitor.synchronized(
if (state != Computer.State.Stopped) {
state = Computer.State.Stopped
lua.setTotalMemory(Integer.MAX_VALUE)
lua.close()
lua = null
kernelMemory = 0
signals.clear()
timeStarted = 0
future = None
// Mark state change in owner, to send it to clients.
owner.markAsChanged()
})
// This is a really high level lock that we only use for saving and loading.
override def run(): Unit = this.synchronized {
// See if the game appears to be paused, in which case we also pause.
if (System.currentTimeMillis - lastUpdate > 200)
stateMonitor.synchronized {
state =
if (state == Computer.State.SynchronizedReturn) Computer.State.SynchronizedReturnPaused
else Computer.State.Paused
future = None
return
}
val callReturn = stateMonitor.synchronized {
if (state == Computer.State.Stopped) return
val oldState = state
state = Computer.State.Running
future = None
oldState
} match {
case Computer.State.SynchronizedReturn | Computer.State.SynchronizedReturnPaused => true
case Computer.State.Stopped | Computer.State.Paused | Computer.State.Suspended | Computer.State.Sleeping => false
case s =>
OpenComputers.log.warning("Running computer from invalid state " + s.toString + "!")
stateMonitor.synchronized {
state = s
future = None
}
return
}
try {
// This is synchronized so that we don't run a Lua state while saving or
// loading the computer to or from an NBTTagCompound or other stuff
// corrupting our Lua state.
// The kernel thread will always be at stack index one.
assert(lua.isThread(1))
// Resume the Lua state and remember the number of results we get.
val results = if (callReturn) {
// If we were doing a driver call, continue where we left off.
assert(lua.getTop == 2)
lua.resume(1, 1)
}
else signals.poll() match {
// No signal, just run any non-sleeping processes.
case null => lua.resume(1, 0)
// Got a signal, inject it and call any handlers (if any).
case signal => {
lua.pushString(signal.name)
signal.args.foreach {
case Unit => lua.pushNil()
case arg: Boolean => lua.pushBoolean(arg)
case arg: Double => lua.pushNumber(arg)
case arg: String => lua.pushString(arg)
}
lua.resume(1, 1 + signal.args.length)
}
}
// State has inevitably changed, mark as changed to save again.
owner.markAsChanged()
// Only queue for next execution step if the kernel is still alive.
if (lua.status(1) == LuaState.YIELD) {
// Lua state yielded normally, see what we have.
stateMonitor.synchronized {
if (state == Computer.State.Stopping) {
// Someone called stop() in the meantime.
close()
}
else if (results == 1 && lua.isNumber(2)) {
// We got a number. This tells us how long we should wait before
// resuming the state again.
val sleep = (lua.toNumber(2) * 1000).toLong
lua.pop(results)
if (signals.isEmpty) {
state = Computer.State.Sleeping
assert(!future.isDefined)
future = Some(Computer.Executor.pool.schedule(this, sleep, TimeUnit.MILLISECONDS))
}
else {
state = Computer.State.Suspended
assert(!future.isDefined)
future = Some(Computer.Executor.pool.submit(this))
}
}
else if (results == 1 && lua.isFunction(2)) {
// If we get one function it's a wrapper for a synchronized call.
state = Computer.State.SynchronizedCall
assert(!future.isDefined)
}
else {
// Something else, just pop the results and try again.
lua.pop(results)
state = Computer.State.Suspended
assert(!future.isDefined)
if (!signals.isEmpty) future = Some(Computer.Executor.pool.submit(this))
}
}
// Avoid getting to the closing part after the exception handling.
return
}
// Error handling.
else if (lua.isBoolean(2) && !lua.toBoolean(2)) {
// TODO Print something to an in-game screen.
OpenComputers.log.warning(lua.toString(3))
}
}
catch {
case er: LuaMemoryAllocationException => {
// This is pretty likely to happen for non-upgraded computers.
// TODO Print something to an in-game screen, a la kernel panic.
OpenComputers.log.warning("Out of memory!")
}
// Top-level catch-anything, because otherwise those exceptions get
// gobbled up by the executor unless we call the future's get().
case t: Throwable =>
OpenComputers.log.log(Level.WARNING, "Faulty kernel implementation, it should never throw.", t)
}
// If we come here there was an error or we stopped, kill off the state.
close()
}
}
object Computer {
@ForgeSubscribe
def onChunkUnload(e: ChunkEvent.Unload) =
onUnload(e.world, e.getChunk.chunkTileEntityMap.values.map(_.asInstanceOf[TileEntity]))
private def onUnload(w: World, tileEntities: Iterable[TileEntity]) = if (!w.isRemote) {
tileEntities.
filter(_.isInstanceOf[TileEntityComputer]).
map(_.asInstanceOf[TileEntityComputer]).
foreach(_.turnOff())
}
/** Signals are messages sent to the Lua state from Java asynchronously. */
private class Signal(val name: String, val args: Array[Any])
/** Possible states of the computer, and in particular its executor. */
private object State extends Enumeration {
/** The computer is not running right now and there is no Lua state. */
val Stopped = Value("Stopped")
/** The computer is running but yielded for a moment. */
val Suspended = Value("Suspended")
/** The computer is running but yielding for a longer amount of time. */
val Sleeping = Value("Sleeping")
/** The computer is paused and waiting for the game to resume. */
val Paused = Value("Paused")
/** The computer is up and running, executing Lua code. */
val Running = Value("Running")
/** The computer is currently shutting down (waiting for executor). */
val Stopping = Value("Stopping")
/** The computer executor is waiting for a synchronized call to be made. */
val SynchronizedCall = Value("SynchronizedCall")
/** The computer should resume with the result of a synchronized call. */
val SynchronizedReturn = Value("SynchronizedReturn")
/** The computer is paused and waiting for the game to resume. */
val SynchronizedReturnPaused = Value("SynchronizedReturnPaused")
}
/** Singleton for requesting executors that run our Lua states. */
private object Executor {
val pool = Executors.newScheduledThreadPool(Config.threads,
new ThreadFactory() {
private val threadNumber = new AtomicInteger(1)
private val group = System.getSecurityManager match {
case null => Thread.currentThread().getThreadGroup
case s => s.getThreadGroup
}
def newThread(r: Runnable): Thread = {
val name = "OpenComputers-" + threadNumber.getAndIncrement
val thread = new Thread(group, r, name)
if (!thread.isDaemon)
thread.setDaemon(true)
if (thread.getPriority != Thread.MIN_PRIORITY)
thread.setPriority(Thread.MIN_PRIORITY)
thread
}
})
}
}