| package li.cil.oc.server.component |
| |
| import com.naef.jnlua._ |
| import java.io.{FileNotFoundException, IOException} |
| import java.lang.Thread.UncaughtExceptionHandler |
| import java.util.concurrent._ |
| import java.util.concurrent.atomic.AtomicInteger |
| import java.util.logging.Level |
| import li.cil.oc |
| import li.cil.oc.api |
| import li.cil.oc.api.Persistable |
| import li.cil.oc.api.network._ |
| import li.cil.oc.common.tileentity |
| import li.cil.oc.server |
| import li.cil.oc.util.ExtendedLuaState.extendLuaState |
| import li.cil.oc.util.LuaStateFactory |
| import li.cil.oc.{OpenComputers, Config} |
| import net.minecraft.nbt._ |
| import net.minecraft.tileentity.TileEntity |
| import net.minecraft.world.World |
| import net.minecraftforge.event.ForgeSubscribe |
| import net.minecraftforge.event.world.ChunkEvent |
| import scala.Array.canBuildFrom |
| import scala.Some |
| import scala.collection.convert.WrapAsScala._ |
| import scala.collection.mutable |
| import scala.math.ScalaNumber |
| |
| /** |
| * Wrapper class for Lua states set up to behave like a pseudo-OS. |
| * <p/> |
| * This class takes care of the following: |
| * <ul> |
| * <li>Creating a new Lua state when started from a previously stopped state.</li> |
| * <li>Updating the Lua state in a parallel thread so as not to block the game.</li> |
| * <li>Synchronizing calls from the computer thread to other game components.</li> |
| * <li>Saving the internal state of the computer across chunk saves/loads.</li> |
| * <li>Closing the Lua state when stopping a previously running computer.</li> |
| * </ul> |
| * <p/> |
| * Computers are relatively useless without drivers. Drivers are a combination |
| * of Lua and Java/Scala code that allows the computer to interact with the |
| * game world, or more specifically: with other components, by sending messages |
| * across the component network the computer is connected to (see `Network`). |
| * <p/> |
| * Host code (Java/Scala) cannot directly call Lua code. It can only queue |
| * signals (events, messages, packets, whatever you want to call it) which will |
| * be passed to the Lua state one by one and processed there (see `signal`). |
| * <p/> |
| * |
| */ |
| class Computer(val owner: Computer.Environment) extends Persistable with Runnable { |
| // ----------------------------------------------------------------------- // |
| // General |
| // ----------------------------------------------------------------------- // |
| |
| private var state = Computer.State.Stopped |
| |
| private val stateMonitor = new Object() // To synchronize access to `state`. |
| |
| private var future: Option[Future[_]] = None |
| |
| private var lua: LuaState = null |
| |
| private var kernelMemory = 0 |
| |
| private val components = mutable.Map.empty[String, String] |
| |
| private val addedComponents = mutable.Set.empty[Component] |
| |
| private val signals = new mutable.Queue[Computer.Signal] |
| |
| private val rom = Option(api.FileSystem. |
| fromClass(OpenComputers.getClass, Config.resourceDomain, "lua/rom")). |
| flatMap(fs => Option(api.FileSystem.asManagedEnvironment(fs, "rom"))) |
| |
| private val tmp = Option(api.FileSystem. |
| fromMemory(512 * 1024)). |
| flatMap(fs => Option(api.FileSystem.asManagedEnvironment(fs, "tmpfs"))) |
| |
| // ----------------------------------------------------------------------- // |
| |
| private var timeStarted = 0L // Game-world time [ms] for os.uptime(). |
| |
| private var worldTime = 0L // Game-world time for os.time(). |
| |
| private var lastUpdate = 0L // Real-world time [ms] for pause detection. |
| |
| private var cpuTime = 0L // Pseudo-real-world time [ns] for os.clock(). |
| |
| private var cpuStart = 0L // Pseudo-real-world time [ns] for os.clock(). |
| |
| private var sleepUntil = 0.0 // Real-world time [ms]. |
| |
| private var wasRunning = false // To signal stops synchronously. |
| |
| private var message: Option[String] = None // For error messages. |
| |
| // ----------------------------------------------------------------------- // |
| |
| def recomputeMemory() = stateMonitor.synchronized(if (lua != null) { |
| lua.setTotalMemory(Int.MaxValue) |
| lua.gc(LuaState.GcAction.COLLECT, 0) |
| if (kernelMemory > 0) |
| lua.setTotalMemory(kernelMemory + owner.installedMemory) |
| }) |
| |
| // ----------------------------------------------------------------------- // |
| |
| def start() = stateMonitor.synchronized(owner.node.network != null && |
| state == Computer.State.Stopped && |
| owner.installedMemory > 0 && |
| init() && { |
| // Initial state. Will be switched to State.Yielded in the next update() |
| // due to the signals queue not being empty ( |
| state = Computer.State.Suspended |
| |
| // Remember when we started, for os.clock(). |
| timeStarted = owner.world.getWorldInfo.getWorldTotalTime |
| |
| // Mark state change in owner, to send it to clients. |
| owner.markAsChanged(8) // Initial power required to start. |
| |
| // Push a dummy signal to get the computer going. |
| signal("dummy") |
| |
| // All green, computer started successfully. |
| owner.node.sendToReachable("computer.started") |
| true |
| }) |
| |
| def stop() = stateMonitor.synchronized(state match { |
| case Computer.State.Stopped => false // Nothing to do. |
| case _ if future.isEmpty => close(); true // Not executing, kill it. |
| case _ => |
| // If the computer is currently executing something we enter an |
| // intermediate state to ensure the executor or synchronized call truly |
| // stopped, before switching back to stopped to allow starting the |
| // computer again. The executor and synchronized call will check for |
| // this state and call close(), thus switching the state to stopped. |
| state = Computer.State.Stopping |
| true |
| }) |
| |
| def isRunning = state != Computer.State.Stopped |
| |
| // ----------------------------------------------------------------------- // |
| |
| def signal(name: String, args: Any*) = stateMonitor.synchronized(state match { |
| case Computer.State.Stopped | Computer.State.Stopping => false |
| case _ if signals.size >= 256 => false |
| case _ => |
| signals.enqueue(new Computer.Signal(name, args.map { |
| case null | Unit | None => Unit |
| case arg: java.lang.Boolean => arg |
| case arg: java.lang.Byte => arg.toDouble |
| case arg: java.lang.Character => arg.toDouble |
| case arg: java.lang.Short => arg.toDouble |
| case arg: java.lang.Integer => arg.toDouble |
| case arg: java.lang.Long => arg.toDouble |
| case arg: java.lang.Float => arg.toDouble |
| case arg: java.lang.Double => arg |
| case arg: java.lang.String => arg |
| case arg: Array[Byte] => arg |
| case arg => |
| OpenComputers.log.warning("Trying to push signal with an unsupported argument of type " + arg.getClass.getName) |
| Unit |
| }.toArray)) |
| true |
| }) |
| |
| def addComponent(component: Component) { |
| if (!components.contains(component.address)) { |
| addedComponents += component |
| } |
| } |
| |
| def removeComponent(component: Component) { |
| if (components.contains(component.address)) { |
| components -= component.address |
| signal("component_removed", component.address, component.name) |
| } |
| addedComponents -= component |
| } |
| |
| private def processAddedComponents() { |
| for (component <- addedComponents) { |
| if (component.canBeSeenFrom(owner.node)) { |
| components += component.address -> component.name |
| // Skip the signal if we're not initialized yet, since we'd generate a |
| // duplicate in the startup script otherwise. |
| if (kernelMemory > 0) |
| signal("component_added", component.address, component.name) |
| } |
| } |
| addedComponents.clear() |
| } |
| |
| private def verifyComponents() { |
| val invalid = mutable.Set.empty[String] |
| for ((address, name) <- components) { |
| if (owner.node.network.node(address) == null) { |
| OpenComputers.log.warning("A component of type '" + name + |
| "' disappeared! This usually means that it didn't save its node.") |
| signal("component_removed", address, name) |
| invalid += address |
| } |
| } |
| for (address <- invalid) { |
| components -= address |
| } |
| } |
| |
| def update() { |
| // Add components that were added since the last update to the actual list |
| // of components if we can see them. We use this delayed approach to avoid |
| // issues with components that have a visibility lower than their |
| // reachability, because in that case if they get connected in the wrong |
| // order we wouldn't add them (since they'd be invisible in their connect |
| // message, and only become visible with a later node-to-node connection, |
| // but that wouldn't trigger a connect message anymore due to the higher |
| // reachability). |
| processAddedComponents() |
| |
| // Are we waiting for the world to settle? |
| if (lastUpdate == 0) |
| if (System.currentTimeMillis() < sleepUntil) |
| return |
| else |
| verifyComponents() |
| |
| // Update last time run to let our executor thread know it doesn't have to |
| // pause. |
| lastUpdate = System.currentTimeMillis |
| |
| // TODO This seems to be the "run time", not the elapsed ingame time. For example, when doing /time set 0 the game |
| // should jump to the next day, but this value does not jump. Is this just Forge or do we have to find some other |
| // way around this? CC seems to use getWorldTime, which is really odd, since that should be only within the range |
| // of a single day (0 to 24000), which it *is*... perhaps vanilla Minecraft (not re-compiled) behaves different? |
| // Update world time for computer threads. |
| worldTime = owner.world.getWorldInfo.getWorldTotalTime |
| |
| def cleanup() { |
| rom.foreach(_.node.remove()) |
| tmp.foreach(_.node.remove()) |
| owner.node.sendToReachable("computer.stopped") |
| |
| message.foreach(println) // TODO remove this at some point (add a tool that can read these error messages?) |
| } |
| |
| // Signal stops to the network. This is used to close file handles, for example. |
| if (wasRunning && !isRunning) { |
| cleanup() |
| } |
| wasRunning = isRunning |
| |
| // Check if we should switch states. |
| stateMonitor.synchronized(state match { |
| // Computer is rebooting. |
| case Computer.State.Rebooting => { |
| close() |
| cleanup() |
| start() |
| } |
| // Resume from pauses based on signal underflow. |
| case Computer.State.Suspended if !signals.isEmpty => execute(Computer.State.Yielded) |
| case Computer.State.Sleeping if lastUpdate >= sleepUntil || !signals.isEmpty => execute(Computer.State.Yielded) |
| // Resume in case we paused because the game was paused. |
| case Computer.State.Paused => execute(Computer.State.Yielded) |
| case Computer.State.SynchronizedReturnPaused => execute(Computer.State.SynchronizedReturn) |
| // Perform a synchronized call (message sending). |
| case Computer.State.SynchronizedCall => { |
| assert(future.isEmpty) |
| // These three asserts are all guaranteed by run(). |
| assert(lua.getTop == 2) |
| assert(lua.isThread(1)) |
| assert(lua.isFunction(2)) |
| // We switch into running state, since we'll behave as though the call |
| // were performed from our executor thread. |
| state = Computer.State.Running |
| try { |
| // Synchronized call protocol requires the called function to return |
| // a table, which holds the results of the call, to be passed back |
| // to the coroutine.yield() that triggered the call. |
| lua.call(0, 1) |
| lua.checkType(2, LuaType.TABLE) |
| // Nothing should have been able to trigger a future. |
| assert(future.isEmpty) |
| // If the call lead to stop() being called we stop right now, |
| // otherwise we return the result to our executor. |
| if (state == Computer.State.Stopping) |
| close() |
| else { |
| assert(state == Computer.State.Running) |
| execute(Computer.State.SynchronizedReturn) |
| } |
| } catch { |
| case _: LuaMemoryAllocationException => |
| // This can happen if we run out of memory while converting a Java |
| // exception to a string (which we have to do to avoid keeping |
| // userdata on the stack, which cannot be persisted). |
| message = Some("not enough memory") |
| close() |
| case e: java.lang.Error if e.getMessage == "not enough memory" => |
| message = Some("not enough memory") |
| close() |
| case e: Throwable => |
| OpenComputers.log.log(Level.WARNING, "Faulty Lua implementation for synchronized calls.", e) |
| message = Some("protocol error") |
| close() |
| } |
| } |
| case _ => // Nothing special to do, just avoid match errors. |
| }) |
| } |
| |
| // ----------------------------------------------------------------------- // |
| |
| def load(nbt: NBTTagCompound) { |
| val computerNbt = nbt.getCompoundTag("oc.computer") |
| |
| state = computerNbt.getInteger("state") match { |
| case id if id >= 0 && id < Computer.State.maxId => Computer.State(id) |
| case _ => Computer.State.Stopped |
| } |
| |
| if (state != Computer.State.Stopped && init()) { |
| // Unlimit memory use while unpersisting. |
| lua.setTotalMemory(Integer.MAX_VALUE) |
| |
| try { |
| // Try unpersisting Lua, because that's what all of the rest depends |
| // on. First, clear the stack, meaning the current kernel. |
| lua.setTop(0) |
| |
| if (!computerNbt.hasKey("kernel") || !unpersist(computerNbt.getByteArray("kernel")) || !lua.isThread(1)) { |
| // This shouldn't really happen, but there's a chance it does if |
| // the save was corrupt (maybe someone modified the Lua files). |
| throw new IllegalStateException("Invalid kernel.") |
| } |
| if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn) { |
| if (!computerNbt.hasKey("stack") || !unpersist(computerNbt.getByteArray("stack")) || |
| (state == Computer.State.SynchronizedCall && !lua.isFunction(2)) || |
| (state == Computer.State.SynchronizedReturn && !lua.isTable(2))) { |
| // Same as with the above, should not really happen normally, but |
| // could for the same reasons. |
| throw new IllegalStateException("Invalid stack.") |
| } |
| } |
| |
| val componentsNbt = computerNbt.getTagList("components") |
| components ++= (0 until componentsNbt.tagCount). |
| map(componentsNbt.tagAt). |
| map(_.asInstanceOf[NBTTagCompound]). |
| map(c => c.getString("address") -> c.getString("name")) |
| |
| val signalsNbt = computerNbt.getTagList("signals") |
| signals ++= (0 until signalsNbt.tagCount). |
| map(signalsNbt.tagAt). |
| map(_.asInstanceOf[NBTTagCompound]). |
| map(signalNbt => { |
| val argsNbt = signalNbt.getCompoundTag("args") |
| val argsLength = argsNbt.getInteger("length") |
| new Computer.Signal(signalNbt.getString("name"), |
| (0 until argsLength).map("arg" + _).map(argsNbt.getTag).map { |
| case tag: NBTTagByte if tag.data == -1 => Unit |
| case tag: NBTTagByte => tag.data == 1 |
| case tag: NBTTagDouble => tag.data |
| case tag: NBTTagString => tag.data |
| case tag: NBTTagByteArray => tag.byteArray |
| case _ => Unit |
| }.toArray) |
| }) |
| |
| rom.foreach(rom => { |
| val romNbt = computerNbt.getCompoundTag("rom") |
| rom.node.load(romNbt) |
| rom.load(romNbt) |
| }) |
| tmp.foreach(tmp => { |
| val tmpNbt = computerNbt.getCompoundTag("tmp") |
| tmp.node.load(tmpNbt) |
| tmp.load(tmpNbt) |
| }) |
| kernelMemory = computerNbt.getInteger("kernelMemory") |
| timeStarted = computerNbt.getLong("timeStarted") |
| cpuTime = computerNbt.getLong("cpuTime") |
| if (computerNbt.hasKey("message")) { |
| message = Some(computerNbt.getString("message")) |
| } |
| |
| // Limit memory again. |
| recomputeMemory() |
| |
| // Ensure the executor is started in the next update if necessary. |
| assert(future.isEmpty) |
| state match { |
| case Computer.State.Yielded => |
| state = Computer.State.Paused |
| case Computer.State.SynchronizedReturn => |
| state = Computer.State.SynchronizedReturnPaused |
| case _ => // Will be started by update() if necessary. |
| } |
| |
| // Delay execution for a second to allow the world around us to settle. |
| sleepUntil = System.currentTimeMillis() + 1000 |
| } catch { |
| case e: LuaRuntimeException => { |
| OpenComputers.log.warning("Could not unpersist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat ")) |
| close() |
| } |
| } |
| } |
| // Init failed, or we were already stopped. |
| else state = Computer.State.Stopped |
| } |
| |
| def save(nbt: NBTTagCompound): Unit = this.synchronized { |
| assert(state != Computer.State.Running) // Lock on 'this' should guarantee this. |
| assert(state != Computer.State.Stopping) // Only set while executor is running. |
| |
| processAddedComponents() |
| |
| val computerNbt = new NBTTagCompound() |
| |
| computerNbt.setInteger("state", (state match { |
| case Computer.State.Paused => Computer.State.Yielded |
| case Computer.State.SynchronizedReturnPaused => Computer.State.SynchronizedReturn |
| case Computer.State.Sleeping => Computer.State.Yielded |
| case other => other |
| }).id) |
| if (state != Computer.State.Stopped) { |
| // Unlimit memory while persisting. |
| lua.setTotalMemory(Integer.MAX_VALUE) |
| |
| try { |
| // Try persisting Lua, because that's what all of the rest depends on. |
| // Save the kernel state (which is always at stack index one). |
| assert(lua.isThread(1)) |
| computerNbt.setByteArray("kernel", persist(1)) |
| // While in a driver call we have one object on the global stack: either |
| // the function to call the driver with, or the result of the call. |
| if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn || state == Computer.State.SynchronizedReturnPaused) { |
| assert(if (state == Computer.State.SynchronizedCall) lua.isFunction(2) else lua.isTable(2)) |
| computerNbt.setByteArray("stack", persist(2)) |
| } |
| |
| val componentsNbt = new NBTTagList() |
| for ((address, name) <- components) { |
| val componentNbt = new NBTTagCompound() |
| componentNbt.setString("address", address) |
| componentNbt.setString("name", name) |
| componentsNbt.appendTag(componentNbt) |
| } |
| computerNbt.setTag("components", componentsNbt) |
| |
| val signalsNbt = new NBTTagList() |
| for (s <- signals.iterator) { |
| val signalNbt = new NBTTagCompound() |
| signalNbt.setString("name", s.name) |
| val args = new NBTTagCompound() |
| args.setInteger("length", s.args.length) |
| s.args.zipWithIndex.foreach { |
| case (Unit, i) => args.setByte("arg" + i, -1) |
| case (arg: Boolean, i) => args.setByte("arg" + i, if (arg) 1 else 0) |
| case (arg: Double, i) => args.setDouble("arg" + i, arg) |
| case (arg: String, i) => args.setString("arg" + i, arg) |
| case (arg: Array[Byte], i) => args.setByteArray("arg" + i, arg) |
| } |
| signalNbt.setCompoundTag("args", args) |
| signalsNbt.appendTag(signalNbt) |
| } |
| computerNbt.setTag("signals", signalsNbt) |
| |
| val romNbt = new NBTTagCompound() |
| rom.foreach(rom => { |
| rom.save(romNbt) |
| rom.node.save(romNbt) |
| }) |
| computerNbt.setCompoundTag("rom", romNbt) |
| |
| val tmpNbt = new NBTTagCompound() |
| tmp.foreach(tmp => { |
| tmp.save(tmpNbt) |
| tmp.node.save(tmpNbt) |
| }) |
| computerNbt.setCompoundTag("tmp", tmpNbt) |
| |
| computerNbt.setInteger("kernelMemory", kernelMemory) |
| computerNbt.setLong("timeStarted", timeStarted) |
| computerNbt.setLong("cpuTime", cpuTime) |
| message.foreach(computerNbt.setString("message", _)) |
| } catch { |
| case e: LuaRuntimeException => { |
| OpenComputers.log.warning("Could not persist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat ")) |
| computerNbt.setInteger("state", Computer.State.Stopped.id) |
| } |
| } |
| |
| // Limit memory again. |
| recomputeMemory() |
| } |
| |
| nbt.setCompoundTag("oc.computer", computerNbt) |
| } |
| |
| private def persist(index: Int): Array[Byte] = { |
| lua.getGlobal("eris") /* ... eris */ |
| lua.getField(-1, "persist") /* ... eris persist */ |
| if (lua.isFunction(-1)) { |
| lua.getField(LuaState.REGISTRYINDEX, "perms") /* ... eris persist perms */ |
| lua.pushValue(index) // ... eris persist perms obj |
| try { |
| lua.call(2, 1) // ... eris str? |
| } catch { |
| case e: Throwable => |
| lua.pop(1) |
| throw e |
| } |
| if (lua.isString(-1)) { |
| // ... eris str |
| val result = lua.toByteArray(-1) |
| lua.pop(2) // ... |
| return result |
| } // ... eris :( |
| } // ... eris :( |
| lua.pop(2) // ... |
| Array[Byte]() |
| } |
| |
| private def unpersist(value: Array[Byte]): Boolean = { |
| lua.getGlobal("eris") // ... eris |
| lua.getField(-1, "unpersist") // ... eris unpersist |
| if (lua.isFunction(-1)) { |
| lua.getField(LuaState.REGISTRYINDEX, "uperms") /* ... eris persist uperms */ |
| lua.pushByteArray(value) // ... eris unpersist uperms str |
| lua.call(2, 1) // ... eris obj |
| lua.insert(-2) // ... obj eris |
| lua.pop(1) |
| return true |
| } // ... :( |
| lua.pop(1) |
| false |
| } |
| |
| // ----------------------------------------------------------------------- // |
| |
| private def init(): Boolean = { |
| // Utility functions for varargs callbacks. |
| def parseArgument(lua: LuaState, index: Int): AnyRef = lua.`type`(index) match { |
| case LuaType.BOOLEAN => Boolean.box(lua.toBoolean(index)) |
| case LuaType.NUMBER => Double.box(lua.toNumber(index)) |
| case LuaType.STRING => lua.toByteArray(index) |
| case _ => Unit |
| } |
| |
| def parseArguments(lua: LuaState, start: Int) = |
| for (index <- start to lua.getTop) yield parseArgument(lua, index) |
| |
| def pushList(value: Iterator[(Any, Int)]) { |
| lua.newTable() |
| var count = 0 |
| value.foreach { |
| case (x, index) => { |
| x match { |
| case (entry: ScalaNumber) => |
| pushResult(lua, entry.underlying()) |
| case (entry) => |
| pushResult(lua, entry.asInstanceOf[AnyRef]) |
| } |
| lua.rawSet(-2, index + 1) |
| count = count + 1 |
| } |
| } |
| lua.pushString("n") |
| lua.pushInteger(count) |
| lua.rawSet(-3) |
| } |
| |
| def pushResult(lua: LuaState, value: AnyRef): Unit = value match { |
| case null | Unit => lua.pushNil() |
| case value: java.lang.Boolean => lua.pushBoolean(value.booleanValue) |
| case value: java.lang.Byte => lua.pushNumber(value.byteValue) |
| case value: java.lang.Character => lua.pushString(String.valueOf(value)) |
| case value: java.lang.Short => lua.pushNumber(value.shortValue) |
| case value: java.lang.Integer => lua.pushNumber(value.intValue) |
| case value: java.lang.Long => lua.pushNumber(value.longValue) |
| case value: java.lang.Float => lua.pushNumber(value.floatValue) |
| case value: java.lang.Double => lua.pushNumber(value.doubleValue) |
| case value: java.lang.String => lua.pushString(value) |
| case value: Array[Byte] => lua.pushByteArray(value) |
| case value: Array[_] => pushList(value.zipWithIndex.iterator) |
| case value: Product => pushList(value.productIterator.zipWithIndex) |
| case value: Seq[_] => pushList(value.zipWithIndex.iterator) |
| // TODO maps? |
| case _ => |
| OpenComputers.log.warning("A component callback tried to return an unsupported value of type " + value.getClass.getName + ".") |
| lua.pushNil() |
| } |
| |
| // Reset error state. |
| message = None |
| |
| // Creates a new state with all base libraries and the persistence library |
| // loaded into it. This means the state has much more power than it |
| // rightfully should have, so we sandbox it a bit in the following. |
| LuaStateFactory.createState() match { |
| case None => |
| lua = null |
| return false |
| case Some(value) => lua = value |
| } |
| |
| // Connect the ROM and `/tmp` node to our owner. We're not in a network in |
| // case we're loading, which is why we have to check it here. |
| if (owner.node.network != null) { |
| rom.foreach(rom => owner.node.connect(rom.node)) |
| tmp.foreach(tmp => owner.node.connect(tmp.node)) |
| } |
| |
| try { |
| // Push a couple of functions that override original Lua API functions or |
| // that add new functionality to it. |
| |
| // Push a couple of functions that override original Lua API functions or |
| // that add new functionality to it. |
| lua.getGlobal("os") |
| |
| // Custom os.clock() implementation returning the time the computer has |
| // been actively running, instead of the native library... |
| lua.pushScalaFunction(lua => { |
| lua.pushNumber((cpuTime + (System.nanoTime() - cpuStart)) * 10e-10) |
| 1 |
| }) |
| lua.setField(-2, "clock") |
| |
| // Return ingame time for os.time(). |
| lua.pushScalaFunction(lua => { |
| // Game time is in ticks, so that each day has 24000 ticks, meaning |
| // one hour is game time divided by one thousand. Also, Minecraft |
| // starts days at 6 o'clock, so we add those six hours. Thus: |
| // timestamp = (time + 6000) / 1000[h] * 60[m] * 60[s] * 1000[ms] |
| lua.pushNumber((worldTime + 6000) * 60 * 60) |
| 1 |
| }) |
| lua.setField(-2, "time") |
| |
| // The time the computer has been running, as opposed to the CPU time. |
| lua.pushScalaFunction(lua => { |
| // World time is in ticks, and each second has 20 ticks. Since we |
| // want os.uptime() to return real seconds, though, we'll divide it |
| // accordingly. |
| lua.pushNumber((worldTime - timeStarted) / 20.0) |
| 1 |
| }) |
| lua.setField(-2, "uptime") |
| |
| // Allow the system to read how much memory it uses and has available. |
| lua.pushScalaFunction(lua => { |
| lua.pushInteger(lua.getTotalMemory - kernelMemory) |
| 1 |
| }) |
| lua.setField(-2, "totalMemory") |
| |
| lua.pushScalaFunction(lua => { |
| // This is *very* unlikely, but still: avoid this getting larger than |
| // what we report as the total memory. |
| lua.pushInteger(lua.getFreeMemory min (lua.getTotalMemory - kernelMemory)) |
| 1 |
| }) |
| lua.setField(-2, "freeMemory") |
| |
| lua.pushScalaFunction(lua => { |
| lua.pushBoolean(signal(lua.checkString(1), parseArguments(lua, 2): _*)) |
| 1 |
| }) |
| lua.setField(-2, "pushSignal") |
| |
| // Allow the computer to figure out its own id in the component network. |
| lua.pushScalaFunction(lua => { |
| Option(owner.node.address) match { |
| case None => lua.pushNil() |
| case Some(address) => lua.pushString(address) |
| } |
| 1 |
| }) |
| lua.setField(-2, "address") |
| |
| // And it's ROM address. |
| lua.pushScalaFunction(lua => { |
| rom.foreach(rom => Option(rom.node.address) match { |
| case None => lua.pushNil() |
| case Some(address) => lua.pushString(address) |
| }) |
| 1 |
| }) |
| lua.setField(-2, "romAddress") |
| |
| // And it's /tmp address... |
| lua.pushScalaFunction(lua => { |
| tmp.foreach(tmp => Option(tmp.node.address) match { |
| case None => lua.pushNil() |
| case Some(address) => lua.pushString(address) |
| }) |
| 1 |
| }) |
| lua.setField(-2, "tmpAddress") |
| |
| // Pop the os table. |
| lua.pop(1) |
| |
| // Until we get to ingame screens we log to Java's stdout. |
| lua.pushScalaFunction(lua => { |
| println((1 to lua.getTop).map(i => lua.`type`(i) match { |
| case LuaType.NIL => "nil" |
| case LuaType.BOOLEAN => lua.toBoolean(i) |
| case LuaType.NUMBER => lua.toNumber(i) |
| case LuaType.STRING => lua.toString(i) |
| case LuaType.TABLE => "table" |
| case LuaType.FUNCTION => "function" |
| case LuaType.THREAD => "thread" |
| case LuaType.LIGHTUSERDATA | LuaType.USERDATA => "userdata" |
| }).mkString(" ")) |
| 0 |
| }) |
| lua.setGlobal("print") |
| |
| // How long programs may run without yielding before we stop them. |
| lua.pushNumber(Config.timeout) |
| lua.setGlobal("timeout") |
| |
| // Component interaction stuff. |
| lua.newTable() |
| |
| lua.pushScalaFunction(lua => components.synchronized { |
| val filter = if (lua.isString(1)) Option(lua.toString(1)) else None |
| lua.newTable(0, components.size) |
| for ((address, name) <- components) { |
| if (filter.isEmpty || name.contains(filter.get)) { |
| lua.pushString(address) |
| lua.pushString(name) |
| lua.rawSet(-3) |
| } |
| } |
| 1 |
| }) |
| lua.setField(-2, "list") |
| |
| lua.pushScalaFunction(lua => components.synchronized { |
| components.get(lua.checkString(1)) match { |
| case Some(name: String) => |
| lua.pushString(name) |
| 1 |
| case _ => |
| lua.pushNil() |
| lua.pushString("no such component") |
| 2 |
| } |
| }) |
| lua.setField(-2, "type") |
| |
| lua.pushScalaFunction(lua => { |
| Option(owner.node.network.node(lua.checkString(1))) match { |
| case Some(component: server.network.Component) if component.canBeSeenFrom(owner.node) => |
| lua.newTable() |
| for (method <- component.methods()) { |
| lua.pushString(method) |
| lua.pushBoolean(component.isAsynchronous(method)) |
| lua.rawSet(-3) |
| } |
| 1 |
| case _ => |
| lua.pushNil() |
| lua.pushString("no such component") |
| 2 |
| } |
| }) |
| lua.setField(-2, "methods") |
| |
| lua.pushScalaFunction(lua => { |
| val address = lua.checkString(1) |
| val method = lua.checkString(2) |
| val args = parseArguments(lua, 3) |
| try { |
| (Option(owner.node.network.node(address)) match { |
| case Some(component: Component) if component.canBeSeenFrom(owner.node) => |
| component.invoke(method, owner, args: _*) |
| case _ => throw new Exception("no such component") |
| }) match { |
| case results: Array[_] => |
| lua.pushBoolean(true) |
| results.foreach(pushResult(lua, _)) |
| 1 + results.length |
| case _ => |
| lua.pushBoolean(true) |
| 1 |
| } |
| } catch { |
| case e: IllegalArgumentException if e.getMessage != null => |
| lua.pushBoolean(false) |
| lua.pushString(e.getMessage) |
| 2 |
| case e: Throwable if e.getMessage != null => |
| lua.pushBoolean(true) |
| lua.pushNil() |
| lua.pushString(e.getMessage) |
| 3 |
| case _: ArrayIndexOutOfBoundsException => |
| lua.pushBoolean(false) |
| lua.pushString("index out of bounds") |
| 2 |
| case _: IllegalArgumentException => |
| lua.pushBoolean(false) |
| lua.pushString("bad argument") |
| 2 |
| case _: NoSuchMethodException => |
| lua.pushBoolean(false) |
| lua.pushString("no such method") |
| 2 |
| case _: FileNotFoundException => |
| lua.pushBoolean(true) |
| lua.pushNil() |
| lua.pushString("file not found") |
| 3 |
| case _: SecurityException => |
| lua.pushBoolean(true) |
| lua.pushNil() |
| lua.pushString("access denied") |
| 3 |
| case _: IOException => |
| lua.pushBoolean(true) |
| lua.pushNil() |
| lua.pushString("i/o error") |
| 3 |
| case _: Throwable => |
| lua.pushBoolean(true) |
| lua.pushNil() |
| lua.pushString("unknown error") |
| 3 |
| } |
| }) |
| lua.setField(-2, "invoke") |
| |
| lua.setGlobal("component") |
| |
| // Run the boot script. This sets up the permanent value tables as |
| // well as making the functions used for persisting/unpersisting |
| // available as globals. It also wraps the message sending functions |
| // so that they yield a closure doing the actual call so that that |
| // message call can be performed in a synchronized fashion. |
| // lua.load(classOf[Computer].getResourceAsStream(Config.scriptPath + "boot.lua"), "=boot", "t") |
| // lua.call(0, 0) |
| initPerms() |
| |
| // Load the basic kernel which sets up the sandbox, loads the init script |
| // and then runs it in a coroutine with a debug hook checking for |
| // timeouts. |
| lua.load(classOf[Computer].getResourceAsStream(Config.scriptPath + "kernel.lua"), "=kernel", "t") |
| lua.newThread() // Left as the first value on the stack. |
| |
| // Clear any left-over signals from a previous run. |
| signals.clear() |
| |
| return true |
| } |
| catch { |
| case ex: Throwable => { |
| OpenComputers.log.log(Level.WARNING, "Failed initializing computer.", ex) |
| close() |
| } |
| } |
| false |
| } |
| |
| private def initPerms() { |
| // These tables must contain all java callbacks (i.e. C functions, since |
| // they are wrapped on the native side using a C function, of course). |
| // They are used when persisting/unpersisting the state so that the |
| // persistence library knows which values it doesn't have to serialize |
| // (since it cannot persist C functions). |
| lua.newTable() /* ... perms */ |
| lua.newTable() /* ... uperms */ |
| |
| val perms = lua.getTop - 1 |
| val uperms = lua.getTop |
| |
| def flattenAndStore() { |
| /* ... k v */ |
| // We only care for tables and functions, any value types are safe. |
| if (lua.isFunction(-1) || lua.isTable(-1)) { |
| lua.pushValue(-2) /* ... k v k */ |
| lua.getTable(uperms) /* ... k v uperms[k] */ |
| assert(lua.isNil(-1), "duplicate permanent value named " + lua.toString(-3)) |
| lua.pop(1) /* ... k v */ |
| // If we have aliases its enough to store the value once. |
| lua.pushValue(-1) /* ... k v v */ |
| lua.getTable(perms) /* ... k v perms[v] */ |
| val isNew = lua.isNil(-1) |
| lua.pop(1) /* ... k v */ |
| if (isNew) { |
| lua.pushValue(-1) /* ... k v v */ |
| lua.pushValue(-3) /* ... k v v k */ |
| lua.rawSet(perms) /* ... k v ; perms[v] = k */ |
| lua.pushValue(-2) /* ... k v k */ |
| lua.pushValue(-2) /* ... k v k v */ |
| lua.rawSet(uperms) /* ... k v ; uperms[k] = v */ |
| // Recurse into tables. |
| if (lua.isTable(-1)) { |
| // Enforce a deterministic order when determining the keys, to ensure |
| // the keys are the same when unpersisting again. |
| val key = lua.toString(-2) |
| val childKeys = mutable.ArrayBuffer.empty[String] |
| lua.pushNil() /* ... k v nil */ |
| while (lua.next(-2)) { |
| /* ... k v ck cv */ |
| lua.pop(1) /* ... k v ck */ |
| childKeys += lua.toString(-1) |
| } |
| /* ... k v */ |
| childKeys.sortWith((a, b) => a.compareTo(b) < 0) |
| for (childKey <- childKeys) { |
| lua.pushString(key + "." + childKey) /* ... k v ck */ |
| lua.getField(-2, childKey) /* ... k v ck cv */ |
| flattenAndStore() /* ... k v */ |
| } |
| /* ... k v */ |
| } |
| /* ... k v */ |
| } |
| /* ... k v */ |
| } |
| lua.pop(2) /* ... */ |
| } |
| |
| // Mark everything that's globally reachable at this point as permanent. |
| lua.pushString("_G") /* ... perms uperms k */ |
| lua.getGlobal("_G") /* ... perms uperms k v */ |
| |
| flattenAndStore() /* ... perms uperms */ |
| lua.setField(LuaState.REGISTRYINDEX, "uperms") /* ... perms */ |
| lua.setField(LuaState.REGISTRYINDEX, "perms") /* ... */ |
| } |
| |
| private def close() = stateMonitor.synchronized( |
| if (state != Computer.State.Stopped) { |
| state = Computer.State.Stopped |
| lua.setTotalMemory(Integer.MAX_VALUE) |
| lua.close() |
| lua = null |
| kernelMemory = 0 |
| signals.clear() |
| timeStarted = 0 |
| cpuTime = 0 |
| cpuStart = 0 |
| future = None |
| sleepUntil = 0 |
| |
| // Mark state change in owner, to send it to clients. |
| owner.markAsChanged(Double.NegativeInfinity) |
| }) |
| |
| // ----------------------------------------------------------------------- // |
| |
| private def execute(value: Computer.State.Value) { |
| assert(future.isEmpty) |
| sleepUntil = 0 |
| state = value |
| future = Some(Computer.Executor.pool.submit(this)) |
| } |
| |
| // This is a really high level lock that we only use for saving and loading. |
| override def run(): Unit = this.synchronized { |
| val callReturn = stateMonitor.synchronized { |
| val oldState = state |
| state = Computer.State.Running |
| |
| // See if the game appears to be paused, in which case we also pause. |
| if (System.currentTimeMillis - lastUpdate > 50) { |
| state = oldState match { |
| case Computer.State.SynchronizedReturn => Computer.State.SynchronizedReturnPaused |
| case _ => Computer.State.Paused |
| } |
| future = None |
| return |
| } |
| |
| oldState |
| } match { |
| case Computer.State.SynchronizedReturn => true |
| case Computer.State.Yielded | Computer.State.Sleeping => false |
| case Computer.State.Stopping => |
| // stop() was called directly after start(), e.g. due to lack of power. |
| close() |
| return |
| case s => |
| OpenComputers.log.warning("Running computer from invalid state " + s.toString + ". This is a bug!") |
| close() |
| return |
| } |
| |
| // The kernel thread will always be at stack index one. |
| assert(lua.isThread(1)) |
| |
| try { |
| // Help out the GC a little. The emergency GC has a few limitations that |
| // will make it free less memory than doing a full step manually. |
| lua.gc(LuaState.GcAction.COLLECT, 0) |
| // Resume the Lua state and remember the number of results we get. |
| cpuStart = System.nanoTime() |
| val results = if (callReturn) { |
| // If we were doing a synchronized call, continue where we left off. |
| assert(lua.getTop == 2) |
| assert(lua.isTable(2)) |
| lua.resume(1, 1) |
| } |
| else stateMonitor.synchronized(signals.dequeueFirst(_ => true)) match { |
| case Some(signal) => |
| lua.pushString(signal.name) |
| signal.args.foreach { |
| case Unit => lua.pushNil() |
| case arg: Boolean => lua.pushBoolean(arg) |
| case arg: Double => lua.pushNumber(arg) |
| case arg: String => lua.pushString(arg) |
| case arg: Array[Byte] => lua.pushByteArray(arg) |
| } |
| lua.resume(1, 1 + signal.args.length) |
| case _ => |
| lua.resume(1, 0) |
| } |
| |
| // Check if this was the first run, meaning the one used for initializing |
| // the kernel (loading the libs, establishing a memory baseline). |
| val runtime = if (kernelMemory == 0) { |
| // Run the garbage collector to get rid of stuff left behind after the |
| // initialization phase to get a good estimate of the base memory usage |
| // the kernel has. We remember that size to grant user-space programs a |
| // fixed base amount of memory, regardless of the memory need of the |
| // underlying system (which may change across releases). |
| lua.gc(LuaState.GcAction.COLLECT, 0) |
| kernelMemory = (lua.getTotalMemory - lua.getFreeMemory) + Config.baseMemory |
| recomputeMemory() |
| 0 |
| } |
| else { |
| System.nanoTime() - cpuStart |
| } |
| cpuTime += runtime |
| |
| // Check if the kernel is still alive. |
| stateMonitor.synchronized(if (lua.status(1) == LuaState.YIELD) { |
| // Intermediate state in some cases. Satisfies the assert in execute(). |
| future = None |
| // Someone called stop() in the meantime. |
| if (state == Computer.State.Stopping) |
| close() |
| // If we have a single number that's how long we may wait before |
| // resuming the state again. |
| else if (results == 1 && lua.isNumber(2)) { |
| val sleep = lua.toNumber(2) * 1000 |
| lua.pop(results) |
| // But only sleep if we don't have more signals to process. |
| if (signals.isEmpty) { |
| state = Computer.State.Sleeping |
| sleepUntil = System.currentTimeMillis + sleep |
| } |
| else execute(Computer.State.Yielded) |
| } |
| // If we get one function it must be a wrapper for a synchronized call. |
| // The protocol is that a closure is pushed that is then called from |
| // the main server thread, and returns a table, which is in turn passed |
| // to the originating coroutine.yield(). |
| else if (results == 1 && lua.isFunction(2)) |
| state = Computer.State.SynchronizedCall |
| // Check if we are shutting down, and if so if we're rebooting. This is |
| // signalled by boolean values, where `false` means shut down, `true` |
| // means reboot (i.e shutdown then start again). |
| else if (results == 1 && lua.isBoolean(2)) { |
| if (lua.toBoolean(2)) |
| state = Computer.State.Rebooting |
| else |
| close() |
| } |
| else { |
| // Something else, just pop the results and try again. |
| lua.pop(results) |
| if (signals.isEmpty) |
| state = Computer.State.Suspended |
| else |
| execute(Computer.State.Yielded) |
| } |
| |
| // State has inevitably changed, mark as changed to save again. |
| owner.markAsChanged(Config.computerCpuTimeCost * runtime / 1000 / 1000 / 1000) |
| } |
| // The kernel thread returned. If it threw we'd we in the catch below. |
| else { |
| assert(lua.isThread(1)) |
| // We're expecting the result of a pcall, if anything, so boolean + (result | string). |
| if (!lua.isBoolean(2) || !(lua.isString(3) || lua.isNil(3))) { |
| OpenComputers.log.warning("Kernel returned unexpected results.") |
| } |
| // The pcall *should* never return normally... but check for it nonetheless. |
| if (lua.toBoolean(2)) { |
| OpenComputers.log.warning("Kernel stopped unexpectedly.") |
| } |
| else { |
| lua.setTotalMemory(Int.MaxValue) |
| val error = lua.toString(3) |
| if (error != null) |
| message = Some(error) |
| else |
| message = Some("unknown error") |
| } |
| close() |
| }) |
| } |
| catch { |
| case e: LuaRuntimeException => |
| OpenComputers.log.warning("Kernel crashed. This is a bug!\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat ")) |
| message = Some("kernel panic") |
| close() |
| case e: LuaGcMetamethodException => |
| if (e.getMessage != null) |
| message = Some("kernel panic:\n" + e.getMessage) |
| else |
| message = Some("kernel panic:\nerror in garbage collection metamethod") |
| close() |
| case e: LuaMemoryAllocationException => |
| message = Some("not enough memory") |
| close() |
| case e: java.lang.Error if e.getMessage == "not enough memory" => |
| message = Some("not enough memory") |
| close() |
| case e: Throwable => |
| OpenComputers.log.log(Level.WARNING, "Unexpected error in kernel. This is a bug!\n", e) |
| message = Some("kernel panic") |
| close() |
| } |
| } |
| } |
| |
| object Computer { |
| |
| trait Environment extends tileentity.Environment with oc.util.Persistable with Context { |
| val node = api.Network.newNode(this, Visibility.Network). |
| withComponent("computer", Visibility.Neighbors). |
| withConnector(Config.bufferComputer). |
| create() |
| |
| val instance: Computer |
| |
| def world: World |
| |
| def installedMemory: Int |
| |
| /** |
| * Called when the computer state changed, so it should be saved again. |
| * <p/> |
| * This is called asynchronously from the Computer's executor thread, so the |
| * computer's owner must make sure to handle this in a synchronized fashion. |
| * |
| * @param power the power that should be consumed. |
| */ |
| def markAsChanged(power: Double): Unit |
| |
| // ----------------------------------------------------------------------- // |
| |
| def address = node.address |
| |
| def signal(name: String, args: AnyRef*) = instance.signal(name, args: _*) |
| |
| // ----------------------------------------------------------------------- // |
| |
| @LuaCallback("start") |
| def start(context: Context, args: Arguments): Array[Object] = |
| Array(Boolean.box(instance.start())) |
| |
| @LuaCallback("stop") |
| def stop(context: Context, args: Arguments): Array[Object] = |
| Array(Boolean.box(instance.stop())) |
| |
| @LuaCallback("isRunning") |
| def isRunning(context: Context, args: Arguments): Array[Object] = |
| Array(Boolean.box(instance.isRunning)) |
| |
| // ----------------------------------------------------------------------- // |
| |
| override def onMessage(message: Message) = { |
| super.onMessage(message) |
| message.data match { |
| case Array(name: String, args@_*) if message.name == "computer.signal" => |
| instance.signal(name, Seq(message.source.address) ++ args: _*) |
| case _ => |
| } |
| } |
| |
| override def onConnect(node: Node) { |
| super.onConnect(node) |
| if (node == this.node) { |
| instance.rom.foreach(rom => node.connect(rom.node)) |
| instance.tmp.foreach(tmp => node.connect(tmp.node)) |
| } |
| else { |
| node match { |
| case component: Component => instance.addComponent(component) |
| case _ => |
| } |
| } |
| } |
| |
| override def onDisconnect(node: Node) { |
| super.onDisconnect(node) |
| if (node == this.node) { |
| instance.rom.foreach(_.node.remove()) |
| instance.tmp.foreach(_.node.remove()) |
| } |
| else { |
| node match { |
| case component: Component => instance.removeComponent(component) |
| case _ => |
| } |
| } |
| } |
| |
| // ----------------------------------------------------------------------- // |
| |
| override def load(nbt: NBTTagCompound) { |
| super.load(nbt) |
| if (node != null) node.load(nbt) |
| if (instance != null) instance.load(nbt) |
| } |
| |
| override def save(nbt: NBTTagCompound) { |
| super.save(nbt) |
| if (node != null) node.save(nbt) |
| if (instance != null) instance.save(nbt) |
| } |
| } |
| |
| @ForgeSubscribe |
| def onChunkUnload(e: ChunkEvent.Unload) = |
| onUnload(e.world, e.getChunk.chunkTileEntityMap.values.map(_.asInstanceOf[TileEntity])) |
| |
| private def onUnload(w: World, tileEntities: Iterable[TileEntity]) = if (!w.isRemote) { |
| tileEntities. |
| filter(_.isInstanceOf[tileentity.Computer]). |
| map(_.asInstanceOf[tileentity.Computer]). |
| foreach(_.turnOff()) |
| } |
| |
| /** Signals are messages sent to the Lua state from Java asynchronously. */ |
| private class Signal(val name: String, val args: Array[Any]) |
| |
| /** Possible states of the computer, and in particular its executor. */ |
| private object State extends Enumeration { |
| /** The computer is not running right now and there is no Lua state. */ |
| val Stopped = Value("Stopped") |
| |
| /** The computer is running but yielded and there were no more signals to process. */ |
| val Suspended = Value("Suspended") |
| |
| /** The computer is running but yielded but will resume as soon as possible. */ |
| val Yielded = Value("Yielded") |
| |
| /** The computer is running but yielding for a longer amount of time. */ |
| val Sleeping = Value("Sleeping") |
| |
| /** The computer is paused and waiting for the game to resume. */ |
| val Paused = Value("Paused") |
| |
| /** The computer is up and running, executing Lua code. */ |
| val Running = Value("Running") |
| |
| /** The computer is currently shutting down (waiting for executor). */ |
| val Stopping = Value("Stopping") |
| |
| /** The computer executor is waiting for a synchronized call to be made. */ |
| val SynchronizedCall = Value("SynchronizedCall") |
| |
| /** The computer should resume with the result of a synchronized call. */ |
| val SynchronizedReturn = Value("SynchronizedReturn") |
| |
| /** The computer is paused and waiting for the game to resume. */ |
| val SynchronizedReturnPaused = Value("SynchronizedReturnPaused") |
| |
| /** Computer is currently rebooting. */ |
| val Rebooting = Value("Rebooting") |
| } |
| |
| /** Singleton for requesting executors that run our Lua states. */ |
| private object Executor { |
| val pool = Executors.newScheduledThreadPool(Config.threads, |
| new ThreadFactory() { |
| private val threadNumber = new AtomicInteger(1) |
| |
| private val group = System.getSecurityManager match { |
| case null => Thread.currentThread().getThreadGroup |
| case s => s.getThreadGroup |
| } |
| |
| def newThread(r: Runnable): Thread = { |
| val name = OpenComputers.getClass.getSimpleName + "-" + threadNumber.getAndIncrement |
| val thread = new Thread(group, r, name) |
| if (!thread.isDaemon) |
| thread.setDaemon(true) |
| if (thread.getPriority != Thread.MIN_PRIORITY) |
| thread.setPriority(Thread.MIN_PRIORITY) |
| thread.setUncaughtExceptionHandler(new UncaughtExceptionHandler { |
| def uncaughtException(t: Thread, e: Throwable) { |
| OpenComputers.log.log(Level.WARNING, "Unhandled exception in worker thread.", e) |
| } |
| }) |
| thread |
| } |
| }) |
| } |
| |
| } |