blob: 0de9b55f577656328b6dd9d5a4480f5a160a0588 [file] [log] [blame] [raw]
/*-
* Copyright (c) 2008, 2009 Yahoo!, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the authors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: releng/11.1/usr.sbin/mfiutil/mfi_config.c 251516 2013-06-08 02:54:59Z sbruno $
*/
#include <sys/param.h>
#if defined __FreeBSD__ && !defined __FreeBSD_kernel__
#define __FreeBSD_kernel__
#endif
#if defined DEBUG && defined HAVE_MFI_DRIVER && defined __FreeBSD_kernel__
#include <sys/sysctl.h>
#endif
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "mfiutil.h"
static int add_spare(int ac, char **av);
static int remove_spare(int ac, char **av);
static long long int
dehumanize(const char *value)
{
char *vtp;
long int long iv;
if (value == NULL)
return (0);
iv = strtoll(value, &vtp, 0);
if (vtp == value || (vtp[0] != '\0' && vtp[1] != '\0')) {
return (0);
}
switch (vtp[0]) {
case 't': case 'T':
iv *= 1024;
case 'g': case 'G':
iv *= 1024;
case 'm': case 'M':
iv *= 1024;
case 'k': case 'K':
iv *= 1024;
case '\0':
break;
default:
return (0);
}
return (iv);
}
int
mfi_config_read(int fd, struct mfi_config_data **configp)
{
return mfi_config_read_opcode(fd, MFI_DCMD_CFG_READ, configp, NULL, 0);
}
int
mfi_config_read_opcode(int fd, union mfi_dcmd_opcode opcode, struct mfi_config_data **configp,
uint8_t *mbox, size_t mboxlen)
{
struct mfi_config_data *config;
uint32_t config_size;
int error;
/*
* Keep fetching the config in a loop until we have a large enough
* buffer to hold the entire configuration.
*/
config = NULL;
config_size = 1024;
fetch:
config = reallocf(config, config_size);
if (config == NULL)
return (-1);
if (mfi_dcmd_command(fd, opcode, config,
config_size, mbox, mboxlen, NULL) < 0) {
error = errno;
free(config);
errno = error;
return (-1);
}
if (config->size > config_size) {
config_size = config->size;
goto fetch;
}
*configp = config;
return (0);
}
static struct mfi_array *
mfi_config_lookup_array(struct mfi_config_data *config, uint16_t array_ref)
{
struct mfi_array *ar;
char *p;
int i;
p = (char *)config->array;
for (i = 0; i < config->array_count; i++) {
ar = (struct mfi_array *)p;
if (ar->array_ref == array_ref)
return (ar);
p += config->array_size;
}
return (NULL);
}
static struct mfi_ld_config *
mfi_config_lookup_volume(struct mfi_config_data *config, uint8_t target_id)
{
struct mfi_ld_config *ld;
char *p;
int i;
p = (char *)config->array + config->array_count * config->array_size;
for (i = 0; i < config->log_drv_count; i++) {
ld = (struct mfi_ld_config *)p;
if (ld->properties.ld.v.target_id == target_id)
return (ld);
p += config->log_drv_size;
}
return (NULL);
}
static int
clear_config(int ac __unused, char **av __unused)
{
struct mfi_ld_list list;
int ch, error, fd;
u_int i;
fd = mfi_open(mfi_unit, O_RDWR);
if (fd < 0) {
error = errno;
warn("mfi_open");
return (error);
}
if (!mfi_reconfig_supported()) {
warnx("The current mfi(4) driver does not support "
"configuration changes.");
close(fd);
return (EOPNOTSUPP);
}
if (mfi_ld_get_list(fd, &list, NULL) < 0) {
error = errno;
warn("Failed to get volume list");
close(fd);
return (error);
}
for (i = 0; i < list.ld_count; i++) {
if (mfi_volume_busy(fd, list.ld_list[i].ld.v.target_id)) {
warnx("Volume %s is busy and cannot be deleted",
mfi_volume_name(fd, list.ld_list[i].ld.v.target_id));
close(fd);
return (EBUSY);
}
}
printf(
"Are you sure you wish to clear the configuration on mfi%u? [y/N] ",
mfi_unit);
ch = getchar();
if (ch != 'y' && ch != 'Y') {
printf("\nAborting\n");
close(fd);
return (0);
}
if (mfi_dcmd_command(fd, MFI_DCMD_CFG_CLEAR, NULL, 0, NULL, 0, NULL) < 0) {
error = errno;
warn("Failed to clear configuration");
close(fd);
return (error);
}
printf("mfi%d: Configuration cleared\n", mfi_unit);
close(fd);
return (0);
}
MFI_COMMAND(top, clear, clear_config);
#define MAX_DRIVES_PER_ARRAY MFI_MAX_ROW_SIZE
#define MFI_ARRAY_SIZE sizeof(struct mfi_array)
#define RT_RAID0 0
#define RT_RAID1 1
#define RT_RAID5 2
#define RT_RAID6 3
#define RT_JBOD 4
#define RT_CONCAT 5
#define RT_RAID10 6
#define RT_RAID50 7
#define RT_RAID60 8
static int
compare_int(const void *one, const void *two)
{
int first, second;
first = *(const int *)one;
second = *(const int *)two;
return (first - second);
}
static struct raid_type_entry {
const char *name;
int raid_type;
} raid_type_table[] = {
{ "raid0", RT_RAID0 },
{ "raid-0", RT_RAID0 },
{ "raid1", RT_RAID1 },
{ "raid-1", RT_RAID1 },
{ "mirror", RT_RAID1 },
{ "raid5", RT_RAID5 },
{ "raid-5", RT_RAID5 },
{ "raid6", RT_RAID6 },
{ "raid-6", RT_RAID6 },
{ "jbod", RT_JBOD },
{ "concat", RT_CONCAT },
{ "raid10", RT_RAID10 },
{ "raid1+0", RT_RAID10 },
{ "raid-10", RT_RAID10 },
{ "raid-1+0", RT_RAID10 },
{ "raid50", RT_RAID50 },
{ "raid5+0", RT_RAID50 },
{ "raid-50", RT_RAID50 },
{ "raid-5+0", RT_RAID50 },
{ "raid60", RT_RAID60 },
{ "raid6+0", RT_RAID60 },
{ "raid-60", RT_RAID60 },
{ "raid-6+0", RT_RAID60 },
{ NULL, 0 },
};
struct config_id_state {
int array_count;
int log_drv_count;
int *arrays;
int *volumes;
uint16_t array_ref;
uint8_t target_id;
};
struct array_info {
int drive_count;
struct mfi_pd_info *drives;
struct mfi_array *array;
};
/* Parse a comma-separated list of drives for an array. */
static int
parse_array(int fd, int raid_type, char *array_str, struct array_info *info)
{
struct mfi_pd_info *pinfo;
uint16_t device_id;
char *cp;
u_int count;
int error;
cp = array_str;
for (count = 0; cp != NULL; count++) {
cp = strchr(cp, ',');
if (cp != NULL) {
cp++;
if (*cp == ',') {
warnx("Invalid drive list '%s'", array_str);
return (EINVAL);
}
}
}
/* Validate the number of drives for this array. */
if (count >= MAX_DRIVES_PER_ARRAY) {
warnx("Too many drives for a single array: max is %d",
MAX_DRIVES_PER_ARRAY);
return (EINVAL);
}
switch (raid_type) {
case RT_RAID1:
case RT_RAID10:
if (count % 2 != 0) {
warnx("RAID1 and RAID10 require an even number of "
"drives in each array");
return (EINVAL);
}
break;
case RT_RAID5:
case RT_RAID50:
if (count < 3) {
warnx("RAID5 and RAID50 require at least 3 drives in "
"each array");
return (EINVAL);
}
break;
case RT_RAID6:
case RT_RAID60:
if (count < 4) {
warnx("RAID6 and RAID60 require at least 4 drives in "
"each array");
return (EINVAL);
}
break;
}
/* Validate each drive. */
info->drives = calloc(count, sizeof(struct mfi_pd_info));
if (info->drives == NULL) {
warnx("malloc failed");
return (ENOMEM);
}
info->drive_count = count;
for (pinfo = info->drives; (cp = strsep(&array_str, ",")) != NULL;
pinfo++) {
error = mfi_lookup_drive(fd, cp, &device_id);
if (error) {
free(info->drives);
info->drives = NULL;
return (error);
}
if (mfi_pd_get_info(fd, device_id, pinfo, NULL) < 0) {
error = errno;
warn("Failed to fetch drive info for drive %s", cp);
free(info->drives);
info->drives = NULL;
return (error);
}
if (pinfo->fw_state != MFI_PD_STATE_UNCONFIGURED_GOOD) {
warnx("Drive %u is not available", device_id);
free(info->drives);
info->drives = NULL;
return (EINVAL);
}
if (pinfo->state.ddf.v.pd_type.is_foreign) {
warnx("Drive %u is foreign", device_id);
free(info->drives);
info->drives = NULL;
return (EINVAL);
}
}
return (0);
}
/*
* Find the next free array ref assuming that 'array_ref' is the last
* one used. 'array_ref' should be 0xffff for the initial test.
*/
static uint16_t
find_next_array(struct config_id_state *state)
{
int i;
/* Assume the current one is used. */
state->array_ref++;
/* Find the next free one. */
for (i = 0; i < state->array_count; i++)
if (state->arrays[i] == state->array_ref)
state->array_ref++;
return (state->array_ref);
}
/*
* Find the next free volume ID assuming that 'target_id' is the last
* one used. 'target_id' should be 0xff for the initial test.
*/
static uint8_t
find_next_volume(struct config_id_state *state)
{
int i;
/* Assume the current one is used. */
state->target_id++;
/* Find the next free one. */
for (i = 0; i < state->log_drv_count; i++)
if (state->volumes[i] == state->target_id)
state->target_id++;
return (state->target_id);
}
/* Populate an array with drives. */
static void
build_array(int fd __unused, char *arrayp, struct array_info *array_info,
struct config_id_state *state, int verbose)
{
struct mfi_array *ar = (struct mfi_array *)arrayp;
int i;
ar->size = array_info->drives[0].coerced_size;
ar->num_drives = array_info->drive_count;
ar->array_ref = find_next_array(state);
for (i = 0; i < array_info->drive_count; i++) {
if (verbose)
printf("Adding drive %s to array %u\n",
mfi_drive_name(NULL,
array_info->drives[i].ref.v.device_id,
MFI_DNAME_DEVICE_ID|MFI_DNAME_HONOR_OPTS),
ar->array_ref);
if (ar->size > array_info->drives[i].coerced_size)
ar->size = array_info->drives[i].coerced_size;
ar->pd[i].ref = array_info->drives[i].ref;
ar->pd[i].fw_state = MFI_PD_STATE_ONLINE;
}
array_info->array = ar;
}
/*
* Create a volume that spans one or more arrays.
*/
static void
build_volume(char *volumep, int narrays, struct array_info *arrays,
int raid_type, long long int stripe_size, struct config_id_state *state, int verbose)
{
struct mfi_ld_config *ld = (struct mfi_ld_config *)volumep;
struct mfi_array *ar;
int i;
/* properties */
ld->properties.ld.v.target_id = find_next_volume(state);
ld->properties.ld.v.seq = 0;
ld->properties.default_cache_policy = MR_LD_CACHE_ALLOW_WRITE_CACHE |
MR_LD_CACHE_WRITE_BACK;
ld->properties.access_policy = MFI_LD_ACCESS_RW;
ld->properties.disk_cache_policy = MR_PD_CACHE_UNCHANGED;
ld->properties.current_cache_policy = MR_LD_CACHE_ALLOW_WRITE_CACHE |
MR_LD_CACHE_WRITE_BACK;
ld->properties.no_bgi = 0;
/* params */
switch (raid_type) {
case RT_RAID0:
case RT_JBOD:
ld->params.primary_raid_level = DDF_RAID0;
ld->params.raid_level_qualifier = 0;
ld->params.secondary_raid_level = 0;
break;
case RT_RAID1:
ld->params.primary_raid_level = DDF_RAID1;
ld->params.raid_level_qualifier = 0;
ld->params.secondary_raid_level = 0;
break;
case RT_RAID5:
ld->params.primary_raid_level = DDF_RAID5;
ld->params.raid_level_qualifier = 3;
ld->params.secondary_raid_level = 0;
break;
case RT_RAID6:
ld->params.primary_raid_level = DDF_RAID6;
ld->params.raid_level_qualifier = 3;
ld->params.secondary_raid_level = 0;
break;
case RT_CONCAT:
ld->params.primary_raid_level = DDF_CONCAT;
ld->params.raid_level_qualifier = 0;
ld->params.secondary_raid_level = 0;
break;
case RT_RAID10:
ld->params.primary_raid_level = DDF_RAID1;
ld->params.raid_level_qualifier = 0;
ld->params.secondary_raid_level = 3; /* XXX? */
break;
case RT_RAID50:
/*
* XXX: This appears to work though the card's BIOS
* complains that the configuration is foreign. The
* BIOS setup does not allow for creation of RAID-50
* or RAID-60 arrays. The only nested array
* configuration it allows for is RAID-10.
*/
ld->params.primary_raid_level = DDF_RAID5;
ld->params.raid_level_qualifier = 3;
ld->params.secondary_raid_level = 3; /* XXX? */
break;
case RT_RAID60:
ld->params.primary_raid_level = DDF_RAID6;
ld->params.raid_level_qualifier = 3;
ld->params.secondary_raid_level = 3; /* XXX? */
break;
}
/*
* Stripe size is encoded as (2 ^ N) * 512 = stripe_size. Use
* ffs() to simulate log2(stripe_size).
*/
ld->params.stripe_size = ffsll(stripe_size) - 1 - 9;
ld->params.num_drives = arrays[0].array->num_drives;
ld->params.span_depth = narrays;
ld->params.state = MFI_LD_STATE_OPTIMAL;
ld->params.init_state = MFI_LD_PARAMS_INIT_NO;
ld->params.is_consistent = 0;
/* spans */
for (i = 0; i < narrays; i++) {
ar = arrays[i].array;
if (verbose)
printf("Adding array %u to volume %u\n", ar->array_ref,
ld->properties.ld.v.target_id);
ld->span[i].start_block = 0;
ld->span[i].num_blocks = ar->size;
ld->span[i].array_ref = ar->array_ref;
}
}
static int
create_volume(int ac, char **av)
{
struct mfi_config_data *config;
struct mfi_array *ar;
struct mfi_ld_config *ld;
struct config_id_state state;
size_t config_size;
char *p, *cfg_arrays, *cfg_volumes;
int error, fd, i, raid_type;
int narrays, nvolumes, arrays_per_volume;
struct array_info *arrays;
long long int stripe_size;
#ifdef DEBUG
int dump;
#endif
int ch, verbose;
/*
* Backwards compat. Map 'create volume' to 'create' and
* 'create spare' to 'add'.
*/
if (ac > 1) {
if (strcmp(av[1], "volume") == 0) {
av++;
ac--;
} else if (strcmp(av[1], "spare") == 0) {
av++;
ac--;
return (add_spare(ac, av));
}
}
if (ac < 2) {
warnx("create volume: volume type required");
return (EINVAL);
}
memset(&state, 0, sizeof(state));
config = NULL;
arrays = NULL;
narrays = 0;
error = 0;
fd = mfi_open(mfi_unit, O_RDWR);
if (fd < 0) {
error = errno;
warn("mfi_open");
return (error);
}
if (!mfi_reconfig_supported()) {
warnx("The current mfi(4) driver does not support "
"configuration changes.");
error = EOPNOTSUPP;
goto error;
}
/* Lookup the RAID type first. */
raid_type = -1;
for (i = 0; raid_type_table[i].name != NULL; i++)
if (strcasecmp(raid_type_table[i].name, av[1]) == 0) {
raid_type = raid_type_table[i].raid_type;
break;
}
if (raid_type == -1) {
warnx("Unknown or unsupported volume type %s", av[1]);
error = EINVAL;
goto error;
}
/* Parse any options. */
optind = 2;
#ifdef DEBUG
dump = 0;
#endif
verbose = 0;
stripe_size = 64 * 1024;
while ((ch = getopt(ac, av, "ds:v")) != -1) {
switch (ch) {
#ifdef DEBUG
case 'd':
dump = 1;
break;
#endif
case 's':
stripe_size = dehumanize(optarg);
if ((stripe_size < 512) || (!powerof2(stripe_size)))
stripe_size = 64 * 1024;
break;
case 'v':
verbose = 1;
break;
case '?':
default:
error = EINVAL;
goto error;
}
}
ac -= optind;
av += optind;
/* Parse all the arrays. */
narrays = ac;
if (narrays == 0) {
warnx("At least one drive list is required");
error = EINVAL;
goto error;
}
switch (raid_type) {
case RT_RAID0:
case RT_RAID1:
case RT_RAID5:
case RT_RAID6:
case RT_CONCAT:
if (narrays != 1) {
warnx("Only one drive list can be specified");
error = EINVAL;
goto error;
}
break;
case RT_RAID10:
case RT_RAID50:
case RT_RAID60:
if (narrays < 1) {
warnx("RAID10, RAID50, and RAID60 require at least "
"two drive lists");
error = EINVAL;
goto error;
}
if (narrays > MFI_MAX_SPAN_DEPTH) {
warnx("Volume spans more than %d arrays",
MFI_MAX_SPAN_DEPTH);
error = EINVAL;
goto error;
}
break;
}
arrays = calloc(narrays, sizeof(*arrays));
if (arrays == NULL) {
warnx("malloc failed");
error = ENOMEM;
goto error;
}
for (i = 0; i < narrays; i++) {
error = parse_array(fd, raid_type, av[i], &arrays[i]);
if (error)
goto error;
}
switch (raid_type) {
case RT_RAID10:
case RT_RAID50:
case RT_RAID60:
for (i = 1; i < narrays; i++) {
if (arrays[i].drive_count != arrays[0].drive_count) {
warnx("All arrays must contain the same "
"number of drives");
error = EINVAL;
goto error;
}
}
break;
}
/*
* Fetch the current config and build sorted lists of existing
* array and volume identifiers.
*/
if (mfi_config_read(fd, &config) < 0) {
error = errno;
warn("Failed to read configuration");
goto error;
}
p = (char *)config->array;
state.array_ref = 0xffff;
state.target_id = 0xff;
state.array_count = config->array_count;
if (config->array_count > 0) {
state.arrays = calloc(config->array_count, sizeof(int));
if (state.arrays == NULL) {
warnx("malloc failed");
error = ENOMEM;
goto error;
}
for (i = 0; i < config->array_count; i++) {
ar = (struct mfi_array *)p;
state.arrays[i] = ar->array_ref;
p += config->array_size;
}
qsort(state.arrays, config->array_count, sizeof(int),
compare_int);
} else
state.arrays = NULL;
state.log_drv_count = config->log_drv_count;
if (config->log_drv_count) {
state.volumes = calloc(config->log_drv_count, sizeof(int));
if (state.volumes == NULL) {
warnx("malloc failed");
error = ENOMEM;
goto error;
}
for (i = 0; i < config->log_drv_count; i++) {
ld = (struct mfi_ld_config *)p;
state.volumes[i] = ld->properties.ld.v.target_id;
p += config->log_drv_size;
}
qsort(state.volumes, config->log_drv_count, sizeof(int),
compare_int);
} else
state.volumes = NULL;
free(config);
/* Determine the size of the configuration we will build. */
switch (raid_type) {
case RT_RAID0:
case RT_RAID1:
case RT_RAID5:
case RT_RAID6:
case RT_CONCAT:
case RT_JBOD:
/* Each volume spans a single array. */
nvolumes = narrays;
break;
case RT_RAID10:
case RT_RAID50:
case RT_RAID60:
/* A single volume spans multiple arrays. */
nvolumes = 1;
break;
default:
/* Pacify gcc. */
abort();
}
config_size = sizeof(struct mfi_config_data) +
sizeof(struct mfi_ld_config) * nvolumes + MFI_ARRAY_SIZE * narrays;
config = calloc(1, config_size);
if (config == NULL) {
warnx("malloc failed");
error = ENOMEM;
goto error;
}
config->size = config_size;
config->array_count = narrays;
config->array_size = MFI_ARRAY_SIZE; /* XXX: Firmware hardcode */
config->log_drv_count = nvolumes;
config->log_drv_size = sizeof(struct mfi_ld_config);
config->spares_count = 0;
config->spares_size = 40; /* XXX: Firmware hardcode */
cfg_arrays = (char *)config->array;
cfg_volumes = cfg_arrays + config->array_size * narrays;
/* Build the arrays. */
for (i = 0; i < narrays; i++) {
build_array(fd, cfg_arrays, &arrays[i], &state, verbose);
cfg_arrays += config->array_size;
}
/* Now build the volume(s). */
arrays_per_volume = narrays / nvolumes;
for (i = 0; i < nvolumes; i++) {
build_volume(cfg_volumes, arrays_per_volume,
&arrays[i * arrays_per_volume], raid_type, stripe_size,
&state, verbose);
cfg_volumes += config->log_drv_size;
}
#ifdef DEBUG
if (dump)
dump_config(fd, config, NULL);
#endif
/* Send the new config to the controller. */
if (mfi_dcmd_command(fd, MFI_DCMD_CFG_ADD, config, config_size,
NULL, 0, NULL) < 0) {
error = errno;
warn("Failed to add volume");
/* FALLTHROUGH */
}
error:
/* Clean up. */
free(config);
free(state.volumes);
free(state.arrays);
if (arrays != NULL) {
for (i = 0; i < narrays; i++)
free(arrays[i].drives);
free(arrays);
}
close(fd);
return (error);
}
MFI_COMMAND(top, create, create_volume);
static int
delete_volume(int ac, char **av)
{
struct mfi_ld_info info;
int error, fd;
uint8_t target_id, mbox[4];
/*
* Backwards compat. Map 'delete volume' to 'delete' and
* 'delete spare' to 'remove'.
*/
if (ac > 1) {
if (strcmp(av[1], "volume") == 0) {
av++;
ac--;
} else if (strcmp(av[1], "spare") == 0) {
av++;
ac--;
return (remove_spare(ac, av));
}
}
if (ac != 2) {
warnx("delete volume: volume required");
return (EINVAL);
}
fd = mfi_open(mfi_unit, O_RDWR);
if (fd < 0) {
error = errno;
warn("mfi_open");
return (error);
}
if (!mfi_reconfig_supported()) {
warnx("The current mfi(4) driver does not support "
"configuration changes.");
close(fd);
return (EOPNOTSUPP);
}
if (mfi_lookup_volume(fd, av[1], &target_id) < 0) {
error = errno;
warn("Invalid volume %s", av[1]);
close(fd);
return (error);
}
if (mfi_ld_get_info(fd, target_id, &info, NULL) < 0) {
error = errno;
warn("Failed to get info for volume %d", target_id);
close(fd);
return (error);
}
if (mfi_volume_busy(fd, target_id)) {
warnx("Volume %s is busy and cannot be deleted",
mfi_volume_name(fd, target_id));
close(fd);
return (EBUSY);
}
mbox_store_ldref(mbox, &info.ld_config.properties.ld);
if (mfi_dcmd_command(fd, MFI_DCMD_LD_DELETE, NULL, 0, mbox,
sizeof(mbox), NULL) < 0) {
error = errno;
warn("Failed to delete volume");
close(fd);
return (error);
}
close(fd);
return (0);
}
MFI_COMMAND(top, delete, delete_volume);
static int
add_spare(int ac, char **av)
{
struct mfi_pd_info info;
struct mfi_config_data *config;
struct mfi_array *ar;
struct mfi_ld_config *ld;
struct mfi_spare *spare;
uint16_t device_id;
uint8_t target_id;
char *p;
int error, fd, i;
if (ac < 2) {
warnx("add spare: drive required");
return (EINVAL);
}
fd = mfi_open(mfi_unit, O_RDWR);
if (fd < 0) {
error = errno;
warn("mfi_open");
return (error);
}
config = NULL;
spare = NULL;
error = mfi_lookup_drive(fd, av[1], &device_id);
if (error)
goto error;
if (mfi_pd_get_info(fd, device_id, &info, NULL) < 0) {
error = errno;
warn("Failed to fetch drive info");
goto error;
}
if (info.fw_state != MFI_PD_STATE_UNCONFIGURED_GOOD) {
warnx("Drive %u is not available", device_id);
error = EINVAL;
goto error;
}
if (ac > 2) {
if (mfi_lookup_volume(fd, av[2], &target_id) < 0) {
error = errno;
warn("Invalid volume %s", av[2]);
goto error;
}
}
if (mfi_config_read(fd, &config) < 0) {
error = errno;
warn("Failed to read configuration");
goto error;
}
spare = malloc(sizeof(struct mfi_spare) + sizeof(uint16_t) *
config->array_count);
if (spare == NULL) {
warnx("malloc failed");
error = ENOMEM;
goto error;
}
memset(spare, 0, sizeof(struct mfi_spare));
spare->ref = info.ref;
if (ac == 2) {
/* Global spare backs all arrays. */
p = (char *)config->array;
for (i = 0; i < config->array_count; i++) {
ar = (struct mfi_array *)p;
if (ar->size > info.coerced_size) {
warnx("Spare isn't large enough for array %u",
ar->array_ref);
error = EINVAL;
goto error;
}
p += config->array_size;
}
spare->array_count = 0;
} else {
/*
* Dedicated spares only back the arrays for a
* specific volume.
*/
ld = mfi_config_lookup_volume(config, target_id);
if (ld == NULL) {
warnx("Did not find volume %d", target_id);
error = EINVAL;
goto error;
}
spare->spare_type |= MFI_SPARE_DEDICATED;
spare->array_count = ld->params.span_depth;
for (i = 0; i < ld->params.span_depth; i++) {
ar = mfi_config_lookup_array(config,
ld->span[i].array_ref);
if (ar == NULL) {
warnx("Missing array; inconsistent config?");
error = ENXIO;
goto error;
}
if (ar->size > info.coerced_size) {
warnx("Spare isn't large enough for array %u",
ar->array_ref);
error = EINVAL;
goto error;
}
spare->array_ref[i] = ar->array_ref;
}
}
if (mfi_dcmd_command(fd, MFI_DCMD_CFG_MAKE_SPARE, spare,
sizeof(struct mfi_spare) + sizeof(uint16_t) * spare->array_count,
NULL, 0, NULL) < 0) {
error = errno;
warn("Failed to assign spare");
/* FALLTHROUGH. */
}
error:
free(spare);
free(config);
close(fd);
return (error);
}
MFI_COMMAND(top, add, add_spare);
static int
remove_spare(int ac, char **av)
{
struct mfi_pd_info info;
int error, fd;
uint16_t device_id;
uint8_t mbox[4];
if (ac != 2) {
warnx("remove spare: drive required");
return (EINVAL);
}
fd = mfi_open(mfi_unit, O_RDWR);
if (fd < 0) {
error = errno;
warn("mfi_open");
return (error);
}
error = mfi_lookup_drive(fd, av[1], &device_id);
if (error) {
close(fd);
return (error);
}
/* Get the info for this drive. */
if (mfi_pd_get_info(fd, device_id, &info, NULL) < 0) {
error = errno;
warn("Failed to fetch info for drive %u", device_id);
close(fd);
return (error);
}
if (info.fw_state != MFI_PD_STATE_HOT_SPARE) {
warnx("Drive %u is not a hot spare", device_id);
close(fd);
return (EINVAL);
}
mbox_store_pdref(mbox, &info.ref);
if (mfi_dcmd_command(fd, MFI_DCMD_CFG_REMOVE_SPARE, NULL, 0, mbox,
sizeof(mbox), NULL) < 0) {
error = errno;
warn("Failed to delete spare");
close(fd);
return (error);
}
close(fd);
return (0);
}
MFI_COMMAND(top, remove, remove_spare);
/* Display raw data about a config. */
void
dump_config(int fd, struct mfi_config_data *config, const char *msg_prefix)
{
struct mfi_array *ar;
struct mfi_ld_config *ld;
struct mfi_spare *sp;
struct mfi_pd_info pinfo;
uint16_t device_id;
char *p;
int i, j;
if (NULL == msg_prefix)
msg_prefix = "Configuration (Debug)";
printf(
"mfi%d %s: %d arrays, %d volumes, %d spares\n", mfi_unit,
msg_prefix, config->array_count, config->log_drv_count,
config->spares_count);
printf(" array size: %u\n", config->array_size);
printf(" volume size: %u\n", config->log_drv_size);
printf(" spare size: %u\n", config->spares_size);
p = (char *)config->array;
for (i = 0; i < config->array_count; i++) {
ar = (struct mfi_array *)p;
printf(" array %u of %u drives:\n", ar->array_ref,
ar->num_drives);
printf(" size = %ju\n", (uintmax_t)ar->size);
for (j = 0; j < ar->num_drives; j++) {
device_id = ar->pd[j].ref.v.device_id;
if (device_id == 0xffff)
printf(" drive MISSING\n");
else {
printf(" drive %u %s\n", device_id,
mfi_pdstate(ar->pd[j].fw_state));
if (mfi_pd_get_info(fd, device_id, &pinfo,
NULL) >= 0) {
printf(" raw size: %ju\n",
(uintmax_t)pinfo.raw_size);
printf(" non-coerced size: %ju\n",
(uintmax_t)pinfo.non_coerced_size);
printf(" coerced size: %ju\n",
(uintmax_t)pinfo.coerced_size);
}
}
}
p += config->array_size;
}
for (i = 0; i < config->log_drv_count; i++) {
ld = (struct mfi_ld_config *)p;
printf(" volume %s ",
mfi_volume_name(fd, ld->properties.ld.v.target_id));
printf("%s %s",
mfi_raid_level(ld->params.primary_raid_level,
ld->params.secondary_raid_level),
mfi_ldstate(ld->params.state));
if (ld->properties.name[0] != '\0')
printf(" <%s>", ld->properties.name);
printf("\n");
printf(" primary raid level: %u\n",
ld->params.primary_raid_level);
printf(" raid level qualifier: %u\n",
ld->params.raid_level_qualifier);
printf(" secondary raid level: %u\n",
ld->params.secondary_raid_level);
printf(" stripe size: %u\n", ld->params.stripe_size);
printf(" num drives: %u\n", ld->params.num_drives);
printf(" init state: %u\n", ld->params.init_state);
printf(" consistent: %u\n", ld->params.is_consistent);
printf(" no bgi: %u\n", ld->properties.no_bgi);
printf(" spans:\n");
for (j = 0; j < ld->params.span_depth; j++) {
printf(" array %u @ ", ld->span[j].array_ref);
printf("%ju : %ju\n",
(uintmax_t)ld->span[j].start_block,
(uintmax_t)ld->span[j].num_blocks);
}
p += config->log_drv_size;
}
for (i = 0; i < config->spares_count; i++) {
sp = (struct mfi_spare *)p;
printf(" %s spare %u ",
sp->spare_type & MFI_SPARE_DEDICATED ? "dedicated" :
"global", sp->ref.v.device_id);
printf("%s", mfi_pdstate(MFI_PD_STATE_HOT_SPARE));
printf(" backs:\n");
for (j = 0; j < sp->array_count; j++)
printf(" array %u\n", sp->array_ref[j]);
p += config->spares_size;
}
}
#ifdef DEBUG
static int
debug_config(int ac, char **av)
{
struct mfi_config_data *config;
int error, fd;
if (ac != 1) {
warnx("debug: extra arguments");
return (EINVAL);
}
fd = mfi_open(mfi_unit, O_RDWR);
if (fd < 0) {
error = errno;
warn("mfi_open");
return (error);
}
/* Get the config from the controller. */
if (mfi_config_read(fd, &config) < 0) {
error = errno;
warn("Failed to get config");
close(fd);
return (error);
}
/* Dump out the configuration. */
dump_config(fd, config, NULL);
free(config);
close(fd);
return (0);
}
MFI_COMMAND(top, debug, debug_config);
#if defined HAVE_MFI_DRIVER && defined __FreeBSD_kernel__
static int
dump(int ac, char **av)
{
struct mfi_config_data *config;
char buf[64];
size_t len;
int error, fd;
if (ac != 1) {
warnx("dump: extra arguments");
return (EINVAL);
}
if(!use_mfi) {
warnx("dump: mfi driver required");
return EOPNOTSUPP;
}
fd = mfi_open(mfi_unit, O_RDWR);
if (fd < 0) {
error = errno;
warn("mfi_open");
return (error);
}
/* Get the stashed copy of the last dcmd from the driver. */
snprintf(buf, sizeof(buf), "dev.mfi.%d.debug_command", mfi_unit);
if (sysctlbyname(buf, NULL, &len, NULL, 0) < 0) {
error = errno;
warn("Failed to read debug command");
if (error == ENOENT)
error = EOPNOTSUPP;
close(fd);
return (error);
}
config = malloc(len);
if (config == NULL) {
warnx("malloc failed");
close(fd);
return (ENOMEM);
}
if (sysctlbyname(buf, config, &len, NULL, 0) < 0) {
error = errno;
warn("Failed to read debug command");
free(config);
close(fd);
return (error);
}
dump_config(fd, config, NULL);
free(config);
close(fd);
return (0);
}
MFI_COMMAND(top, dump, dump);
#endif
#endif