| /* |
| LZ4 auto-framing library |
| Copyright (C) 2011-2016, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - LZ4 homepage : http://www.lz4.org |
| - LZ4 source repository : https://github.com/lz4/lz4 |
| */ |
| |
| /* LZ4F is a stand-alone API to create LZ4-compressed Frames |
| * in full conformance with specification v1.6.1 . |
| * This library rely upon memory management capabilities. |
| * */ |
| |
| |
| /*-************************************ |
| * Compiler Options |
| **************************************/ |
| #ifdef _MSC_VER /* Visual Studio */ |
| # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| #endif |
| |
| |
| /*-************************************ |
| * Tuning parameters |
| **************************************/ |
| /* |
| * LZ4F_HEAPMODE : |
| * Select how default compression functions will allocate memory for their hash table, |
| * in memory stack (0:default, fastest), or in memory heap (1:requires malloc()). |
| */ |
| #ifndef LZ4F_HEAPMODE |
| # define LZ4F_HEAPMODE 0 |
| #endif |
| |
| |
| /*-************************************ |
| * Memory routines |
| **************************************/ |
| #include <stdlib.h> /* malloc, calloc, free */ |
| #define ALLOC(s) malloc(s) |
| #define ALLOC_AND_ZERO(s) calloc(1,(s)) |
| #define FREEMEM(p) free(p) |
| #include <string.h> /* memset, memcpy, memmove */ |
| #define MEM_INIT memset |
| |
| |
| /*-************************************ |
| * Includes |
| **************************************/ |
| #define LZ4F_STATIC_LINKING_ONLY |
| #include "lz4frame.h" |
| #define LZ4_STATIC_LINKING_ONLY |
| #include "lz4.h" |
| #define LZ4_HC_STATIC_LINKING_ONLY |
| #include "lz4hc.h" |
| #define XXH_STATIC_LINKING_ONLY |
| #include "xxhash.h" |
| |
| |
| /*-************************************ |
| * Debug |
| **************************************/ |
| #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=1) |
| # include <assert.h> |
| #else |
| # ifndef assert |
| # define assert(condition) ((void)0) |
| # endif |
| #endif |
| |
| #define LZ4F_STATIC_ASSERT(c) { enum { LZ4F_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
| |
| #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=2) && !defined(DEBUGLOG) |
| # include <stdio.h> |
| static int g_debuglog_enable = 1; |
| # define DEBUGLOG(l, ...) { \ |
| if ((g_debuglog_enable) && (l<=LZ4_DEBUG)) { \ |
| fprintf(stderr, __FILE__ ": "); \ |
| fprintf(stderr, __VA_ARGS__); \ |
| fprintf(stderr, " \n"); \ |
| } } |
| #else |
| # define DEBUGLOG(l, ...) {} /* disabled */ |
| #endif |
| |
| |
| /*-************************************ |
| * Basic Types |
| **************************************/ |
| #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| # include <stdint.h> |
| typedef uint8_t BYTE; |
| typedef uint16_t U16; |
| typedef uint32_t U32; |
| typedef int32_t S32; |
| typedef uint64_t U64; |
| #else |
| typedef unsigned char BYTE; |
| typedef unsigned short U16; |
| typedef unsigned int U32; |
| typedef signed int S32; |
| typedef unsigned long long U64; |
| #endif |
| |
| |
| /* unoptimized version; solves endianess & alignment issues */ |
| static U32 LZ4F_readLE32 (const void* src) |
| { |
| const BYTE* const srcPtr = (const BYTE*)src; |
| U32 value32 = srcPtr[0]; |
| value32 += (srcPtr[1]<<8); |
| value32 += (srcPtr[2]<<16); |
| value32 += ((U32)srcPtr[3])<<24; |
| return value32; |
| } |
| |
| static void LZ4F_writeLE32 (void* dst, U32 value32) |
| { |
| BYTE* const dstPtr = (BYTE*)dst; |
| dstPtr[0] = (BYTE)value32; |
| dstPtr[1] = (BYTE)(value32 >> 8); |
| dstPtr[2] = (BYTE)(value32 >> 16); |
| dstPtr[3] = (BYTE)(value32 >> 24); |
| } |
| |
| static U64 LZ4F_readLE64 (const void* src) |
| { |
| const BYTE* const srcPtr = (const BYTE*)src; |
| U64 value64 = srcPtr[0]; |
| value64 += ((U64)srcPtr[1]<<8); |
| value64 += ((U64)srcPtr[2]<<16); |
| value64 += ((U64)srcPtr[3]<<24); |
| value64 += ((U64)srcPtr[4]<<32); |
| value64 += ((U64)srcPtr[5]<<40); |
| value64 += ((U64)srcPtr[6]<<48); |
| value64 += ((U64)srcPtr[7]<<56); |
| return value64; |
| } |
| |
| static void LZ4F_writeLE64 (void* dst, U64 value64) |
| { |
| BYTE* const dstPtr = (BYTE*)dst; |
| dstPtr[0] = (BYTE)value64; |
| dstPtr[1] = (BYTE)(value64 >> 8); |
| dstPtr[2] = (BYTE)(value64 >> 16); |
| dstPtr[3] = (BYTE)(value64 >> 24); |
| dstPtr[4] = (BYTE)(value64 >> 32); |
| dstPtr[5] = (BYTE)(value64 >> 40); |
| dstPtr[6] = (BYTE)(value64 >> 48); |
| dstPtr[7] = (BYTE)(value64 >> 56); |
| } |
| |
| |
| /*-************************************ |
| * Constants |
| **************************************/ |
| #define KB *(1<<10) |
| #define MB *(1<<20) |
| #define GB *(1<<30) |
| |
| #define _1BIT 0x01 |
| #define _2BITS 0x03 |
| #define _3BITS 0x07 |
| #define _4BITS 0x0F |
| #define _8BITS 0xFF |
| |
| #define LZ4F_MAGIC_SKIPPABLE_START 0x184D2A50U |
| #define LZ4F_MAGICNUMBER 0x184D2204U |
| #define LZ4F_BLOCKUNCOMPRESSED_FLAG 0x80000000U |
| #define LZ4F_BLOCKSIZEID_DEFAULT LZ4F_max64KB |
| |
| static const size_t minFHSize = 7; |
| static const size_t maxFHSize = LZ4F_HEADER_SIZE_MAX; /* 19 */ |
| static const size_t BHSize = 4; |
| |
| |
| /*-************************************ |
| * Structures and local types |
| **************************************/ |
| typedef struct LZ4F_cctx_s |
| { |
| LZ4F_preferences_t prefs; |
| U32 version; |
| U32 cStage; |
| const LZ4F_CDict* cdict; |
| size_t maxBlockSize; |
| size_t maxBufferSize; |
| BYTE* tmpBuff; |
| BYTE* tmpIn; |
| size_t tmpInSize; |
| U64 totalInSize; |
| XXH32_state_t xxh; |
| void* lz4CtxPtr; |
| U16 lz4CtxAlloc; /* sized for: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ |
| U16 lz4CtxState; /* in use as: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ |
| } LZ4F_cctx_t; |
| |
| |
| /*-************************************ |
| * Error management |
| **************************************/ |
| #define LZ4F_GENERATE_STRING(STRING) #STRING, |
| static const char* LZ4F_errorStrings[] = { LZ4F_LIST_ERRORS(LZ4F_GENERATE_STRING) }; |
| |
| |
| unsigned LZ4F_isError(LZ4F_errorCode_t code) |
| { |
| return (code > (LZ4F_errorCode_t)(-LZ4F_ERROR_maxCode)); |
| } |
| |
| const char* LZ4F_getErrorName(LZ4F_errorCode_t code) |
| { |
| static const char* codeError = "Unspecified error code"; |
| if (LZ4F_isError(code)) return LZ4F_errorStrings[-(int)(code)]; |
| return codeError; |
| } |
| |
| LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult) |
| { |
| if (!LZ4F_isError(functionResult)) return LZ4F_OK_NoError; |
| return (LZ4F_errorCodes)(-(ptrdiff_t)functionResult); |
| } |
| |
| static LZ4F_errorCode_t err0r(LZ4F_errorCodes code) |
| { |
| /* A compilation error here means sizeof(ptrdiff_t) is not large enough */ |
| LZ4F_STATIC_ASSERT(sizeof(ptrdiff_t) >= sizeof(size_t)); |
| return (LZ4F_errorCode_t)-(ptrdiff_t)code; |
| } |
| |
| unsigned LZ4F_getVersion(void) { return LZ4F_VERSION; } |
| |
| int LZ4F_compressionLevel_max(void) { return LZ4HC_CLEVEL_MAX; } |
| |
| |
| /*-************************************ |
| * Private functions |
| **************************************/ |
| #define MIN(a,b) ( (a) < (b) ? (a) : (b) ) |
| |
| static size_t LZ4F_getBlockSize(unsigned blockSizeID) |
| { |
| static const size_t blockSizes[4] = { 64 KB, 256 KB, 1 MB, 4 MB }; |
| |
| if (blockSizeID == 0) blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; |
| blockSizeID -= 4; |
| if (blockSizeID > 3) return err0r(LZ4F_ERROR_maxBlockSize_invalid); |
| return blockSizes[blockSizeID]; |
| } |
| |
| static BYTE LZ4F_headerChecksum (const void* header, size_t length) |
| { |
| U32 const xxh = XXH32(header, length, 0); |
| return (BYTE)(xxh >> 8); |
| } |
| |
| |
| /*-************************************ |
| * Simple-pass compression functions |
| **************************************/ |
| static LZ4F_blockSizeID_t LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID, |
| const size_t srcSize) |
| { |
| LZ4F_blockSizeID_t proposedBSID = LZ4F_max64KB; |
| size_t maxBlockSize = 64 KB; |
| while (requestedBSID > proposedBSID) { |
| if (srcSize <= maxBlockSize) |
| return proposedBSID; |
| proposedBSID = (LZ4F_blockSizeID_t)((int)proposedBSID + 1); |
| maxBlockSize <<= 2; |
| } |
| return requestedBSID; |
| } |
| |
| /*! LZ4F_compressBound_internal() : |
| * Provides dstCapacity given a srcSize to guarantee operation success in worst case situations. |
| * prefsPtr is optional : if NULL is provided, preferences will be set to cover worst case scenario. |
| * @return is always the same for a srcSize and prefsPtr, so it can be relied upon to size reusable buffers. |
| * When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() operations. |
| */ |
| static size_t LZ4F_compressBound_internal(size_t srcSize, |
| const LZ4F_preferences_t* preferencesPtr, |
| size_t alreadyBuffered) |
| { |
| LZ4F_preferences_t prefsNull; |
| MEM_INIT(&prefsNull, 0, sizeof(prefsNull)); |
| prefsNull.frameInfo.contentChecksumFlag = LZ4F_contentChecksumEnabled; /* worst case */ |
| { const LZ4F_preferences_t* const prefsPtr = (preferencesPtr==NULL) ? &prefsNull : preferencesPtr; |
| U32 const flush = prefsPtr->autoFlush | (srcSize==0); |
| LZ4F_blockSizeID_t const blockID = prefsPtr->frameInfo.blockSizeID; |
| size_t const blockSize = LZ4F_getBlockSize(blockID); |
| size_t const maxBuffered = blockSize - 1; |
| size_t const bufferedSize = MIN(alreadyBuffered, maxBuffered); |
| size_t const maxSrcSize = srcSize + bufferedSize; |
| unsigned const nbFullBlocks = (unsigned)(maxSrcSize / blockSize); |
| size_t const partialBlockSize = maxSrcSize & (blockSize-1); |
| size_t const lastBlockSize = flush ? partialBlockSize : 0; |
| unsigned const nbBlocks = nbFullBlocks + (lastBlockSize>0); |
| |
| size_t const blockHeaderSize = 4; |
| size_t const blockCRCSize = 4 * prefsPtr->frameInfo.blockChecksumFlag; |
| size_t const frameEnd = 4 + (prefsPtr->frameInfo.contentChecksumFlag*4); |
| |
| return ((blockHeaderSize + blockCRCSize) * nbBlocks) + |
| (blockSize * nbFullBlocks) + lastBlockSize + frameEnd; |
| } |
| } |
| |
| size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) |
| { |
| LZ4F_preferences_t prefs; |
| size_t const headerSize = maxFHSize; /* max header size, including optional fields */ |
| |
| if (preferencesPtr!=NULL) prefs = *preferencesPtr; |
| else MEM_INIT(&prefs, 0, sizeof(prefs)); |
| prefs.autoFlush = 1; |
| |
| return headerSize + LZ4F_compressBound_internal(srcSize, &prefs, 0);; |
| } |
| |
| |
| /*! LZ4F_compressFrame_usingCDict() : |
| * Compress srcBuffer using a dictionary, in a single step. |
| * cdict can be NULL, in which case, no dictionary is used. |
| * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). |
| * The LZ4F_preferences_t structure is optional : you may provide NULL as argument, |
| * however, it's the only way to provide a dictID, so it's not recommended. |
| * @return : number of bytes written into dstBuffer, |
| * or an error code if it fails (can be tested using LZ4F_isError()) |
| */ |
| size_t LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx, |
| void* dstBuffer, size_t dstCapacity, |
| const void* srcBuffer, size_t srcSize, |
| const LZ4F_CDict* cdict, |
| const LZ4F_preferences_t* preferencesPtr) |
| { |
| LZ4F_preferences_t prefs; |
| LZ4F_compressOptions_t options; |
| BYTE* const dstStart = (BYTE*) dstBuffer; |
| BYTE* dstPtr = dstStart; |
| BYTE* const dstEnd = dstStart + dstCapacity; |
| |
| if (preferencesPtr!=NULL) |
| prefs = *preferencesPtr; |
| else |
| MEM_INIT(&prefs, 0, sizeof(prefs)); |
| if (prefs.frameInfo.contentSize != 0) |
| prefs.frameInfo.contentSize = (U64)srcSize; /* auto-correct content size if selected (!=0) */ |
| |
| prefs.frameInfo.blockSizeID = LZ4F_optimalBSID(prefs.frameInfo.blockSizeID, srcSize); |
| prefs.autoFlush = 1; |
| if (srcSize <= LZ4F_getBlockSize(prefs.frameInfo.blockSizeID)) |
| prefs.frameInfo.blockMode = LZ4F_blockIndependent; /* only one block => no need for inter-block link */ |
| |
| MEM_INIT(&options, 0, sizeof(options)); |
| options.stableSrc = 1; |
| |
| if (dstCapacity < LZ4F_compressFrameBound(srcSize, &prefs)) /* condition to guarantee success */ |
| return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| |
| { size_t const headerSize = LZ4F_compressBegin_usingCDict(cctx, dstBuffer, dstCapacity, cdict, &prefs); /* write header */ |
| if (LZ4F_isError(headerSize)) return headerSize; |
| dstPtr += headerSize; /* header size */ } |
| |
| { size_t const cSize = LZ4F_compressUpdate(cctx, dstPtr, dstEnd-dstPtr, srcBuffer, srcSize, &options); |
| if (LZ4F_isError(cSize)) return cSize; |
| dstPtr += cSize; } |
| |
| { size_t const tailSize = LZ4F_compressEnd(cctx, dstPtr, dstEnd-dstPtr, &options); /* flush last block, and generate suffix */ |
| if (LZ4F_isError(tailSize)) return tailSize; |
| dstPtr += tailSize; } |
| |
| return (dstPtr - dstStart); |
| } |
| |
| |
| /*! LZ4F_compressFrame() : |
| * Compress an entire srcBuffer into a valid LZ4 frame, in a single step. |
| * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). |
| * The LZ4F_preferences_t structure is optional : you can provide NULL as argument. All preferences will be set to default. |
| * @return : number of bytes written into dstBuffer. |
| * or an error code if it fails (can be tested using LZ4F_isError()) |
| */ |
| size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity, |
| const void* srcBuffer, size_t srcSize, |
| const LZ4F_preferences_t* preferencesPtr) |
| { |
| size_t result; |
| #if (LZ4F_HEAPMODE) |
| LZ4F_cctx_t *cctxPtr; |
| result = LZ4F_createCompressionContext(&cctxPtr, LZ4F_VERSION); |
| if (LZ4F_isError(result)) return result; |
| #else |
| LZ4F_cctx_t cctx; |
| LZ4_stream_t lz4ctx; |
| LZ4F_cctx_t *cctxPtr = &cctx; |
| |
| DEBUGLOG(4, "LZ4F_compressFrame"); |
| MEM_INIT(&cctx, 0, sizeof(cctx)); |
| cctx.version = LZ4F_VERSION; |
| cctx.maxBufferSize = 5 MB; /* mess with real buffer size to prevent dynamic allocation; works only because autoflush==1 & stableSrc==1 */ |
| if (preferencesPtr == NULL || |
| preferencesPtr->compressionLevel < LZ4HC_CLEVEL_MIN) |
| { |
| LZ4_resetStream(&lz4ctx); |
| cctxPtr->lz4CtxPtr = &lz4ctx; |
| cctxPtr->lz4CtxAlloc = 1; |
| cctxPtr->lz4CtxState = 1; |
| } |
| #endif |
| |
| result = LZ4F_compressFrame_usingCDict(cctxPtr, dstBuffer, dstCapacity, |
| srcBuffer, srcSize, |
| NULL, preferencesPtr); |
| |
| #if (LZ4F_HEAPMODE) |
| LZ4F_freeCompressionContext(cctxPtr); |
| #else |
| if (preferencesPtr != NULL && |
| preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) |
| { |
| FREEMEM(cctxPtr->lz4CtxPtr); |
| } |
| #endif |
| return result; |
| } |
| |
| |
| /*-*************************************************** |
| * Dictionary compression |
| *****************************************************/ |
| |
| struct LZ4F_CDict_s { |
| void* dictContent; |
| LZ4_stream_t* fastCtx; |
| LZ4_streamHC_t* HCCtx; |
| }; /* typedef'd to LZ4F_CDict within lz4frame_static.h */ |
| |
| /*! LZ4F_createCDict() : |
| * When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once. |
| * LZ4F_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay. |
| * LZ4F_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. |
| * `dictBuffer` can be released after LZ4F_CDict creation, since its content is copied within CDict |
| * @return : digested dictionary for compression, or NULL if failed */ |
| LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize) |
| { |
| const char* dictStart = (const char*)dictBuffer; |
| LZ4F_CDict* cdict = (LZ4F_CDict*) ALLOC(sizeof(*cdict)); |
| DEBUGLOG(4, "LZ4F_createCDict"); |
| if (!cdict) return NULL; |
| if (dictSize > 64 KB) { |
| dictStart += dictSize - 64 KB; |
| dictSize = 64 KB; |
| } |
| cdict->dictContent = ALLOC(dictSize); |
| cdict->fastCtx = LZ4_createStream(); |
| cdict->HCCtx = LZ4_createStreamHC(); |
| if (!cdict->dictContent || !cdict->fastCtx || !cdict->HCCtx) { |
| LZ4F_freeCDict(cdict); |
| return NULL; |
| } |
| memcpy(cdict->dictContent, dictStart, dictSize); |
| LZ4_loadDict (cdict->fastCtx, (const char*)cdict->dictContent, (int)dictSize); |
| LZ4_setCompressionLevel(cdict->HCCtx, LZ4HC_CLEVEL_DEFAULT); |
| LZ4_loadDictHC(cdict->HCCtx, (const char*)cdict->dictContent, (int)dictSize); |
| return cdict; |
| } |
| |
| void LZ4F_freeCDict(LZ4F_CDict* cdict) |
| { |
| if (cdict==NULL) return; /* support free on NULL */ |
| FREEMEM(cdict->dictContent); |
| LZ4_freeStream(cdict->fastCtx); |
| LZ4_freeStreamHC(cdict->HCCtx); |
| FREEMEM(cdict); |
| } |
| |
| |
| /*-********************************* |
| * Advanced compression functions |
| ***********************************/ |
| |
| /*! LZ4F_createCompressionContext() : |
| * The first thing to do is to create a compressionContext object, which will be used in all compression operations. |
| * This is achieved using LZ4F_createCompressionContext(), which takes as argument a version and an LZ4F_preferences_t structure. |
| * The version provided MUST be LZ4F_VERSION. It is intended to track potential incompatible differences between different binaries. |
| * The function will provide a pointer to an allocated LZ4F_compressionContext_t object. |
| * If the result LZ4F_errorCode_t is not OK_NoError, there was an error during context creation. |
| * Object can release its memory using LZ4F_freeCompressionContext(); |
| */ |
| LZ4F_errorCode_t LZ4F_createCompressionContext(LZ4F_compressionContext_t* LZ4F_compressionContextPtr, unsigned version) |
| { |
| LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)ALLOC_AND_ZERO(sizeof(LZ4F_cctx_t)); |
| if (cctxPtr==NULL) return err0r(LZ4F_ERROR_allocation_failed); |
| |
| cctxPtr->version = version; |
| cctxPtr->cStage = 0; /* Next stage : init stream */ |
| |
| *LZ4F_compressionContextPtr = (LZ4F_compressionContext_t)cctxPtr; |
| |
| return LZ4F_OK_NoError; |
| } |
| |
| |
| LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_compressionContext_t LZ4F_compressionContext) |
| { |
| LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)LZ4F_compressionContext; |
| |
| if (cctxPtr != NULL) { /* support free on NULL */ |
| FREEMEM(cctxPtr->lz4CtxPtr); /* works because LZ4_streamHC_t and LZ4_stream_t are simple POD types */ |
| FREEMEM(cctxPtr->tmpBuff); |
| FREEMEM(LZ4F_compressionContext); |
| } |
| |
| return LZ4F_OK_NoError; |
| } |
| |
| |
| /** |
| * This function prepares the internal LZ4(HC) stream for a new compression, |
| * resetting the context and attaching the dictionary, if there is one. |
| * |
| * It needs to be called at the beginning of each independent compression |
| * stream (i.e., at the beginning of a frame in blockLinked mode, or at the |
| * beginning of each block in blockIndependent mode). |
| */ |
| static void LZ4F_initStream(void* ctx, |
| const LZ4F_CDict* cdict, |
| int level, |
| LZ4F_blockMode_t blockMode) { |
| if (level < LZ4HC_CLEVEL_MIN) { |
| if (cdict != NULL || blockMode == LZ4F_blockLinked) { |
| /* In these cases, we will call LZ4_compress_fast_continue(), |
| * which needs an already reset context. Otherwise, we'll call a |
| * one-shot API. The non-continued APIs internally perform their own |
| * resets at the beginning of their calls, where they know what |
| * tableType they need the context to be in. So in that case this |
| * would be misguided / wasted work. */ |
| LZ4_resetStream_fast((LZ4_stream_t*)ctx); |
| } |
| LZ4_attach_dictionary((LZ4_stream_t *)ctx, cdict ? cdict->fastCtx : NULL); |
| } else { |
| LZ4_resetStreamHC_fast((LZ4_streamHC_t*)ctx, level); |
| LZ4_attach_HC_dictionary((LZ4_streamHC_t *)ctx, cdict ? cdict->HCCtx : NULL); |
| } |
| } |
| |
| |
| /*! LZ4F_compressBegin_usingCDict() : |
| * init streaming compression and writes frame header into dstBuffer. |
| * dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes. |
| * @return : number of bytes written into dstBuffer for the header |
| * or an error code (can be tested using LZ4F_isError()) |
| */ |
| size_t LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctxPtr, |
| void* dstBuffer, size_t dstCapacity, |
| const LZ4F_CDict* cdict, |
| const LZ4F_preferences_t* preferencesPtr) |
| { |
| LZ4F_preferences_t prefNull; |
| BYTE* const dstStart = (BYTE*)dstBuffer; |
| BYTE* dstPtr = dstStart; |
| BYTE* headerStart; |
| |
| if (dstCapacity < maxFHSize) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| MEM_INIT(&prefNull, 0, sizeof(prefNull)); |
| if (preferencesPtr == NULL) preferencesPtr = &prefNull; |
| cctxPtr->prefs = *preferencesPtr; |
| |
| /* Ctx Management */ |
| { U16 const ctxTypeID = (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ? 1 : 2; |
| if (cctxPtr->lz4CtxAlloc < ctxTypeID) { |
| FREEMEM(cctxPtr->lz4CtxPtr); |
| if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { |
| cctxPtr->lz4CtxPtr = (void*)LZ4_createStream(); |
| } else { |
| cctxPtr->lz4CtxPtr = (void*)LZ4_createStreamHC(); |
| } |
| if (cctxPtr->lz4CtxPtr == NULL) return err0r(LZ4F_ERROR_allocation_failed); |
| cctxPtr->lz4CtxAlloc = ctxTypeID; |
| cctxPtr->lz4CtxState = ctxTypeID; |
| } else if (cctxPtr->lz4CtxState != ctxTypeID) { |
| /* otherwise, a sufficient buffer is allocated, but we need to |
| * reset it to the correct context type */ |
| if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { |
| LZ4_resetStream((LZ4_stream_t *) cctxPtr->lz4CtxPtr); |
| } else { |
| LZ4_resetStreamHC((LZ4_streamHC_t *) cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel); |
| } |
| cctxPtr->lz4CtxState = ctxTypeID; |
| } |
| } |
| |
| /* Buffer Management */ |
| if (cctxPtr->prefs.frameInfo.blockSizeID == 0) |
| cctxPtr->prefs.frameInfo.blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; |
| cctxPtr->maxBlockSize = LZ4F_getBlockSize(cctxPtr->prefs.frameInfo.blockSizeID); |
| |
| { size_t const requiredBuffSize = preferencesPtr->autoFlush ? |
| (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) * 64 KB : /* only needs windows size */ |
| cctxPtr->maxBlockSize + ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) * 128 KB); |
| |
| if (cctxPtr->maxBufferSize < requiredBuffSize) { |
| cctxPtr->maxBufferSize = 0; |
| FREEMEM(cctxPtr->tmpBuff); |
| cctxPtr->tmpBuff = (BYTE*)ALLOC_AND_ZERO(requiredBuffSize); |
| if (cctxPtr->tmpBuff == NULL) return err0r(LZ4F_ERROR_allocation_failed); |
| cctxPtr->maxBufferSize = requiredBuffSize; |
| } } |
| cctxPtr->tmpIn = cctxPtr->tmpBuff; |
| cctxPtr->tmpInSize = 0; |
| (void)XXH32_reset(&(cctxPtr->xxh), 0); |
| |
| /* context init */ |
| cctxPtr->cdict = cdict; |
| if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) { |
| /* frame init only for blockLinked : blockIndependent will be init at each block */ |
| LZ4F_initStream(cctxPtr->lz4CtxPtr, cdict, cctxPtr->prefs.compressionLevel, LZ4F_blockLinked); |
| } |
| if (preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) { |
| LZ4_favorDecompressionSpeed((LZ4_streamHC_t*)cctxPtr->lz4CtxPtr, (int)preferencesPtr->favorDecSpeed); |
| } |
| |
| /* Magic Number */ |
| LZ4F_writeLE32(dstPtr, LZ4F_MAGICNUMBER); |
| dstPtr += 4; |
| headerStart = dstPtr; |
| |
| /* FLG Byte */ |
| *dstPtr++ = (BYTE)(((1 & _2BITS) << 6) /* Version('01') */ |
| + ((cctxPtr->prefs.frameInfo.blockMode & _1BIT ) << 5) |
| + ((cctxPtr->prefs.frameInfo.blockChecksumFlag & _1BIT ) << 4) |
| + ((cctxPtr->prefs.frameInfo.contentSize > 0) << 3) |
| + ((cctxPtr->prefs.frameInfo.contentChecksumFlag & _1BIT ) << 2) |
| + (cctxPtr->prefs.frameInfo.dictID > 0) ); |
| /* BD Byte */ |
| *dstPtr++ = (BYTE)((cctxPtr->prefs.frameInfo.blockSizeID & _3BITS) << 4); |
| /* Optional Frame content size field */ |
| if (cctxPtr->prefs.frameInfo.contentSize) { |
| LZ4F_writeLE64(dstPtr, cctxPtr->prefs.frameInfo.contentSize); |
| dstPtr += 8; |
| cctxPtr->totalInSize = 0; |
| } |
| /* Optional dictionary ID field */ |
| if (cctxPtr->prefs.frameInfo.dictID) { |
| LZ4F_writeLE32(dstPtr, cctxPtr->prefs.frameInfo.dictID); |
| dstPtr += 4; |
| } |
| /* Header CRC Byte */ |
| *dstPtr = LZ4F_headerChecksum(headerStart, dstPtr - headerStart); |
| dstPtr++; |
| |
| cctxPtr->cStage = 1; /* header written, now request input data block */ |
| return (dstPtr - dstStart); |
| } |
| |
| |
| /*! LZ4F_compressBegin() : |
| * init streaming compression and writes frame header into dstBuffer. |
| * dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes. |
| * preferencesPtr can be NULL, in which case default parameters are selected. |
| * @return : number of bytes written into dstBuffer for the header |
| * or an error code (can be tested using LZ4F_isError()) |
| */ |
| size_t LZ4F_compressBegin(LZ4F_cctx* cctxPtr, |
| void* dstBuffer, size_t dstCapacity, |
| const LZ4F_preferences_t* preferencesPtr) |
| { |
| return LZ4F_compressBegin_usingCDict(cctxPtr, dstBuffer, dstCapacity, |
| NULL, preferencesPtr); |
| } |
| |
| |
| /* LZ4F_compressBound() : |
| * @return minimum capacity of dstBuffer for a given srcSize to handle worst case scenario. |
| * LZ4F_preferences_t structure is optional : if NULL, preferences will be set to cover worst case scenario. |
| * This function cannot fail. |
| */ |
| size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) |
| { |
| return LZ4F_compressBound_internal(srcSize, preferencesPtr, (size_t)-1); |
| } |
| |
| |
| typedef int (*compressFunc_t)(void* ctx, const char* src, char* dst, int srcSize, int dstSize, int level, const LZ4F_CDict* cdict); |
| |
| |
| /*! LZ4F_makeBlock(): |
| * compress a single block, add header and checksum |
| * assumption : dst buffer capacity is >= srcSize */ |
| static size_t LZ4F_makeBlock(void* dst, const void* src, size_t srcSize, |
| compressFunc_t compress, void* lz4ctx, int level, |
| const LZ4F_CDict* cdict, LZ4F_blockChecksum_t crcFlag) |
| { |
| BYTE* const cSizePtr = (BYTE*)dst; |
| U32 cSize = (U32)compress(lz4ctx, (const char*)src, (char*)(cSizePtr+4), |
| (int)(srcSize), (int)(srcSize-1), |
| level, cdict); |
| LZ4F_writeLE32(cSizePtr, cSize); |
| if (cSize == 0) { /* compression failed */ |
| cSize = (U32)srcSize; |
| LZ4F_writeLE32(cSizePtr, cSize | LZ4F_BLOCKUNCOMPRESSED_FLAG); |
| memcpy(cSizePtr+4, src, srcSize); |
| } |
| if (crcFlag) { |
| U32 const crc32 = XXH32(cSizePtr+4, cSize, 0); /* checksum of compressed data */ |
| LZ4F_writeLE32(cSizePtr+4+cSize, crc32); |
| } |
| return 4 + cSize + ((U32)crcFlag)*4; |
| } |
| |
| |
| static int LZ4F_compressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| { |
| int const acceleration = (level < 0) ? -level + 1 : 1; |
| LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); |
| if (cdict) { |
| return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); |
| } else { |
| return LZ4_compress_fast_extState_fastReset(ctx, src, dst, srcSize, dstCapacity, acceleration); |
| } |
| } |
| |
| static int LZ4F_compressBlock_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| { |
| int const acceleration = (level < 0) ? -level + 1 : 1; |
| (void)cdict; /* init once at beginning of frame */ |
| return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); |
| } |
| |
| static int LZ4F_compressBlockHC(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| { |
| LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); |
| if (cdict) { |
| return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); |
| } |
| return LZ4_compress_HC_extStateHC_fastReset(ctx, src, dst, srcSize, dstCapacity, level); |
| } |
| |
| static int LZ4F_compressBlockHC_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) |
| { |
| (void)level; (void)cdict; /* init once at beginning of frame */ |
| return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); |
| } |
| |
| static compressFunc_t LZ4F_selectCompression(LZ4F_blockMode_t blockMode, int level) |
| { |
| if (level < LZ4HC_CLEVEL_MIN) { |
| if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlock; |
| return LZ4F_compressBlock_continue; |
| } |
| if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlockHC; |
| return LZ4F_compressBlockHC_continue; |
| } |
| |
| static int LZ4F_localSaveDict(LZ4F_cctx_t* cctxPtr) |
| { |
| if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) |
| return LZ4_saveDict ((LZ4_stream_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); |
| return LZ4_saveDictHC ((LZ4_streamHC_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); |
| } |
| |
| typedef enum { notDone, fromTmpBuffer, fromSrcBuffer } LZ4F_lastBlockStatus; |
| |
| /*! LZ4F_compressUpdate() : |
| * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary. |
| * dstBuffer MUST be >= LZ4F_compressBound(srcSize, preferencesPtr). |
| * LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. |
| * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered. |
| * or an error code if it fails (which can be tested using LZ4F_isError()) |
| */ |
| size_t LZ4F_compressUpdate(LZ4F_cctx* cctxPtr, |
| void* dstBuffer, size_t dstCapacity, |
| const void* srcBuffer, size_t srcSize, |
| const LZ4F_compressOptions_t* compressOptionsPtr) |
| { |
| LZ4F_compressOptions_t cOptionsNull; |
| size_t const blockSize = cctxPtr->maxBlockSize; |
| const BYTE* srcPtr = (const BYTE*)srcBuffer; |
| const BYTE* const srcEnd = srcPtr + srcSize; |
| BYTE* const dstStart = (BYTE*)dstBuffer; |
| BYTE* dstPtr = dstStart; |
| LZ4F_lastBlockStatus lastBlockCompressed = notDone; |
| compressFunc_t const compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel); |
| |
| DEBUGLOG(4, "LZ4F_compressUpdate (srcSize=%zu)", srcSize); |
| |
| if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC); |
| if (dstCapacity < LZ4F_compressBound_internal(srcSize, &(cctxPtr->prefs), cctxPtr->tmpInSize)) |
| return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); |
| MEM_INIT(&cOptionsNull, 0, sizeof(cOptionsNull)); |
| if (compressOptionsPtr == NULL) compressOptionsPtr = &cOptionsNull; |
| |
| /* complete tmp buffer */ |
| if (cctxPtr->tmpInSize > 0) { /* some data already within tmp buffer */ |
| size_t const sizeToCopy = blockSize - cctxPtr->tmpInSize; |
| if (sizeToCopy > srcSize) { |
| /* add src to tmpIn buffer */ |
| memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, srcSize); |
| srcPtr = srcEnd; |
| cctxPtr->tmpInSize += srcSize; |
| /* still needs some CRC */ |
| } else { |
| /* complete tmpIn block and then compress it */ |
| lastBlockCompressed = fromTmpBuffer; |
| memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, sizeToCopy); |
| srcPtr += sizeToCopy; |
| |
| dstPtr += LZ4F_makeBlock(dstPtr, cctxPtr->tmpIn, blockSize, |
| compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| |
| if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += blockSize; |
| cctxPtr->tmpInSize = 0; |
| } |
| } |
| |
| while ((size_t)(srcEnd - srcPtr) >= blockSize) { |
| /* compress full blocks */ |
| lastBlockCompressed = fromSrcBuffer; |
| dstPtr += LZ4F_makeBlock(dstPtr, srcPtr, blockSize, |
| compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| srcPtr += blockSize; |
| } |
| |
| if ((cctxPtr->prefs.autoFlush) && (srcPtr < srcEnd)) { |
| /* compress remaining input < blockSize */ |
| lastBlockCompressed = fromSrcBuffer; |
| dstPtr += LZ4F_makeBlock(dstPtr, srcPtr, srcEnd - srcPtr, |
| compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| srcPtr = srcEnd; |
| } |
| |
| /* preserve dictionary if necessary */ |
| if ((cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) && (lastBlockCompressed==fromSrcBuffer)) { |
| if (compressOptionsPtr->stableSrc) { |
| cctxPtr->tmpIn = cctxPtr->tmpBuff; |
| } else { |
| int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
| if (realDictSize==0) return err0r(LZ4F_ERROR_GENERIC); |
| cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
| } |
| } |
| |
| /* keep tmpIn within limits */ |
| if ((cctxPtr->tmpIn + blockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize) /* necessarily LZ4F_blockLinked && lastBlockCompressed==fromTmpBuffer */ |
| && !(cctxPtr->prefs.autoFlush)) |
| { |
| int const realDictSize = LZ4F_localSaveDict(cctxPtr); |
| cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
| } |
| |
| /* some input data left, necessarily < blockSize */ |
| if (srcPtr < srcEnd) { |
| /* fill tmp buffer */ |
| size_t const sizeToCopy = srcEnd - srcPtr; |
| memcpy(cctxPtr->tmpIn, srcPtr, sizeToCopy); |
| cctxPtr->tmpInSize = sizeToCopy; |
| } |
| |
| if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) |
| (void)XXH32_update(&(cctxPtr->xxh), srcBuffer, srcSize); |
| |
| cctxPtr->totalInSize += srcSize; |
| return dstPtr - dstStart; |
| } |
| |
| |
| /*! LZ4F_flush() : |
| * Should you need to create compressed data immediately, without waiting for a block to be filled, |
| * you can call LZ4_flush(), which will immediately compress any remaining data stored within compressionContext. |
| * The result of the function is the number of bytes written into dstBuffer |
| * (it can be zero, this means there was no data left within compressionContext) |
| * The function outputs an error code if it fails (can be tested using LZ4F_isError()) |
| * The LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. |
| */ |
| size_t LZ4F_flush(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstCapacity, const LZ4F_compressOptions_t* compressOptionsPtr) |
| { |
| BYTE* const dstStart = (BYTE*)dstBuffer; |
| BYTE* dstPtr = dstStart; |
| compressFunc_t compress; |
| |
| if (cctxPtr->tmpInSize == 0) return 0; /* nothing to flush */ |
| if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC); |
| if (dstCapacity < (cctxPtr->tmpInSize + 4)) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall); /* +4 : block header(4) */ |
| (void)compressOptionsPtr; /* not yet useful */ |
| |
| /* select compression function */ |
| compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel); |
| |
| /* compress tmp buffer */ |
| dstPtr += LZ4F_makeBlock(dstPtr, cctxPtr->tmpIn, cctxPtr->tmpInSize, |
| compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, |
| cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); |
| if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += cctxPtr->tmpInSize; |
| cctxPtr->tmpInSize = 0; |
| |
| /* keep tmpIn within limits */ |
| if ((cctxPtr->tmpIn + cctxPtr->maxBlockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)) { /* necessarily LZ4F_blockLinked */ |
| int realDictSize = LZ4F_localSaveDict(cctxPtr); |
| cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; |
| } |
| |
| return dstPtr - dstStart; |
| } |
| |
| |
| /*! LZ4F_compressEnd() : |
| * When you want to properly finish the compressed frame, just call LZ4F_compressEnd(). |
| * It will flush whatever data remained within compressionContext (like LZ4_flush()) |
| * but also properly finalize the frame, with an endMark and a checksum. |
| * The result of the function is the number of bytes written into dstBuffer (necessarily >= 4 (endMark size)) |
| * The function outputs an error code if it fails (can be tested using LZ4F_isError()) |
| * The LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. |
| * compressionContext can then be used again, starting with LZ4F_compressBegin(). The preferences will remain the same. |
| */ |
| size_t LZ4F_compressEnd(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstMaxSize, const LZ4F_compressOptions_t* compressOptionsPtr) |
| { |
| BYTE* const dstStart = (BYTE*)dstBuffer; |
| BYTE* dstPtr = dstStart; |
| |
| size_t const flushSize = LZ4F_flush(cctxPtr, dstBuffer, dstMaxSize, compressOptionsPtr); |
| if (LZ4F_isError(flushSize)) return flushSize; |
| dstPtr += flushSize; |
| |
| LZ4F_writeLE32(dstPtr, 0); |
| dstPtr+=4; /* endMark */ |
| |
| if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) { |
| U32 const xxh = XXH32_digest(&(cctxPtr->xxh)); |
| LZ4F_writeLE32(dstPtr, xxh); |
| dstPtr+=4; /* content Checksum */ |
| } |
| |
| cctxPtr->cStage = 0; /* state is now re-usable (with identical preferences) */ |
| cctxPtr->maxBufferSize = 0; /* reuse HC context */ |
| |
| if (cctxPtr->prefs.frameInfo.contentSize) { |
| if (cctxPtr->prefs.frameInfo.contentSize != cctxPtr->totalInSize) |
| return err0r(LZ4F_ERROR_frameSize_wrong); |
| } |
| |
| return dstPtr - dstStart; |
| } |
| |
| |
| /*-*************************************************** |
| * Frame Decompression |
| *****************************************************/ |
| |
| typedef enum { |
| dstage_getFrameHeader=0, dstage_storeFrameHeader, |
| dstage_init, |
| dstage_getBlockHeader, dstage_storeBlockHeader, |
| dstage_copyDirect, dstage_getBlockChecksum, |
| dstage_getCBlock, dstage_storeCBlock, |
| dstage_flushOut, |
| dstage_getSuffix, dstage_storeSuffix, |
| dstage_getSFrameSize, dstage_storeSFrameSize, |
| dstage_skipSkippable |
| } dStage_t; |
| |
| struct LZ4F_dctx_s { |
| LZ4F_frameInfo_t frameInfo; |
| U32 version; |
| dStage_t dStage; |
| U64 frameRemainingSize; |
| size_t maxBlockSize; |
| size_t maxBufferSize; |
| BYTE* tmpIn; |
| size_t tmpInSize; |
| size_t tmpInTarget; |
| BYTE* tmpOutBuffer; |
| const BYTE* dict; |
| size_t dictSize; |
| BYTE* tmpOut; |
| size_t tmpOutSize; |
| size_t tmpOutStart; |
| XXH32_state_t xxh; |
| XXH32_state_t blockChecksum; |
| BYTE header[LZ4F_HEADER_SIZE_MAX]; |
| }; /* typedef'd to LZ4F_dctx in lz4frame.h */ |
| |
| |
| /*! LZ4F_createDecompressionContext() : |
| * Create a decompressionContext object, which will track all decompression operations. |
| * Provides a pointer to a fully allocated and initialized LZ4F_decompressionContext object. |
| * Object can later be released using LZ4F_freeDecompressionContext(). |
| * @return : if != 0, there was an error during context creation. |
| */ |
| LZ4F_errorCode_t LZ4F_createDecompressionContext(LZ4F_dctx** LZ4F_decompressionContextPtr, unsigned versionNumber) |
| { |
| LZ4F_dctx* const dctx = (LZ4F_dctx*)ALLOC_AND_ZERO(sizeof(LZ4F_dctx)); |
| if (dctx==NULL) return err0r(LZ4F_ERROR_GENERIC); |
| |
| dctx->version = versionNumber; |
| *LZ4F_decompressionContextPtr = dctx; |
| return LZ4F_OK_NoError; |
| } |
| |
| LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx) |
| { |
| LZ4F_errorCode_t result = LZ4F_OK_NoError; |
| if (dctx != NULL) { /* can accept NULL input, like free() */ |
| result = (LZ4F_errorCode_t)dctx->dStage; |
| FREEMEM(dctx->tmpIn); |
| FREEMEM(dctx->tmpOutBuffer); |
| FREEMEM(dctx); |
| } |
| return result; |
| } |
| |
| |
| /*==--- Streaming Decompression operations ---==*/ |
| |
| void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx) |
| { |
| dctx->dStage = dstage_getFrameHeader; |
| dctx->dict = NULL; |
| dctx->dictSize = 0; |
| } |
| |
| |
| /*! LZ4F_headerSize() : |
| * @return : size of frame header |
| * or an error code, which can be tested using LZ4F_isError() |
| */ |
| static size_t LZ4F_headerSize(const void* src, size_t srcSize) |
| { |
| /* minimal srcSize to determine header size */ |
| if (srcSize < 5) return err0r(LZ4F_ERROR_frameHeader_incomplete); |
| |
| /* special case : skippable frames */ |
| if ((LZ4F_readLE32(src) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) return 8; |
| |
| /* control magic number */ |
| if (LZ4F_readLE32(src) != LZ4F_MAGICNUMBER) |
| return err0r(LZ4F_ERROR_frameType_unknown); |
| |
| /* Frame Header Size */ |
| { BYTE const FLG = ((const BYTE*)src)[4]; |
| U32 const contentSizeFlag = (FLG>>3) & _1BIT; |
| U32 const dictIDFlag = FLG & _1BIT; |
| return minFHSize + (contentSizeFlag*8) + (dictIDFlag*4); |
| } |
| } |
| |
| |
| /*! LZ4F_decodeHeader() : |
| * input : `src` points at the **beginning of the frame** |
| * output : set internal values of dctx, such as |
| * dctx->frameInfo and dctx->dStage. |
| * Also allocates internal buffers. |
| * @return : nb Bytes read from src (necessarily <= srcSize) |
| * or an error code (testable with LZ4F_isError()) |
| */ |
| static size_t LZ4F_decodeHeader(LZ4F_dctx* dctx, const void* src, size_t srcSize) |
| { |
| unsigned blockMode, blockChecksumFlag, contentSizeFlag, contentChecksumFlag, dictIDFlag, blockSizeID; |
| size_t frameHeaderSize; |
| const BYTE* srcPtr = (const BYTE*)src; |
| |
| /* need to decode header to get frameInfo */ |
| if (srcSize < minFHSize) return err0r(LZ4F_ERROR_frameHeader_incomplete); /* minimal frame header size */ |
| MEM_INIT(&(dctx->frameInfo), 0, sizeof(dctx->frameInfo)); |
| |
| /* special case : skippable frames */ |
| if ((LZ4F_readLE32(srcPtr) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) { |
| dctx->frameInfo.frameType = LZ4F_skippableFrame; |
| if (src == (void*)(dctx->header)) { |
| dctx->tmpInSize = srcSize; |
| dctx->tmpInTarget = 8; |
| dctx->dStage = dstage_storeSFrameSize; |
| return srcSize; |
| } else { |
| dctx->dStage = dstage_getSFrameSize; |
| return 4; |
| } |
| } |
| |
| /* control magic number */ |
| if (LZ4F_readLE32(srcPtr) != LZ4F_MAGICNUMBER) |
| return err0r(LZ4F_ERROR_frameType_unknown); |
| dctx->frameInfo.frameType = LZ4F_frame; |
| |
| /* Flags */ |
| { U32 const FLG = srcPtr[4]; |
| U32 const version = (FLG>>6) & _2BITS; |
| blockChecksumFlag = (FLG>>4) & _1BIT; |
| blockMode = (FLG>>5) & _1BIT; |
| contentSizeFlag = (FLG>>3) & _1BIT; |
| contentChecksumFlag = (FLG>>2) & _1BIT; |
| dictIDFlag = FLG & _1BIT; |
| /* validate */ |
| if (((FLG>>1)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bit */ |
| if (version != 1) return err0r(LZ4F_ERROR_headerVersion_wrong); /* Version Number, only supported value */ |
| } |
| |
| /* Frame Header Size */ |
| frameHeaderSize = minFHSize + (contentSizeFlag*8) + (dictIDFlag*4); |
| |
| if (srcSize < frameHeaderSize) { |
| /* not enough input to fully decode frame header */ |
| if (srcPtr != dctx->header) |
| memcpy(dctx->header, srcPtr, srcSize); |
| dctx->tmpInSize = srcSize; |
| dctx->tmpInTarget = frameHeaderSize; |
| dctx->dStage = dstage_storeFrameHeader; |
| return srcSize; |
| } |
| |
| { U32 const BD = srcPtr[5]; |
| blockSizeID = (BD>>4) & _3BITS; |
| /* validate */ |
| if (((BD>>7)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bit */ |
| if (blockSizeID < 4) return err0r(LZ4F_ERROR_maxBlockSize_invalid); /* 4-7 only supported values for the time being */ |
| if (((BD>>0)&_4BITS) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bits */ |
| } |
| |
| /* check header */ |
| { BYTE const HC = LZ4F_headerChecksum(srcPtr+4, frameHeaderSize-5); |
| if (HC != srcPtr[frameHeaderSize-1]) |
| return err0r(LZ4F_ERROR_headerChecksum_invalid); |
| } |
| |
| /* save */ |
| dctx->frameInfo.blockMode = (LZ4F_blockMode_t)blockMode; |
| dctx->frameInfo.blockChecksumFlag = (LZ4F_blockChecksum_t)blockChecksumFlag; |
| dctx->frameInfo.contentChecksumFlag = (LZ4F_contentChecksum_t)contentChecksumFlag; |
| dctx->frameInfo.blockSizeID = (LZ4F_blockSizeID_t)blockSizeID; |
| dctx->maxBlockSize = LZ4F_getBlockSize(blockSizeID); |
| if (contentSizeFlag) |
| dctx->frameRemainingSize = |
| dctx->frameInfo.contentSize = LZ4F_readLE64(srcPtr+6); |
| if (dictIDFlag) |
| dctx->frameInfo.dictID = LZ4F_readLE32(srcPtr + frameHeaderSize - 5); |
| |
| dctx->dStage = dstage_init; |
| |
| return frameHeaderSize; |
| } |
| |
| |
| /*! LZ4F_getFrameInfo() : |
| * This function extracts frame parameters (max blockSize, frame checksum, etc.). |
| * Usage is optional. Objective is to provide relevant information for allocation purposes. |
| * This function works in 2 situations : |
| * - At the beginning of a new frame, in which case it will decode this information from `srcBuffer`, and start the decoding process. |
| * Amount of input data provided must be large enough to successfully decode the frame header. |
| * A header size is variable, but is guaranteed to be <= LZ4F_HEADER_SIZE_MAX bytes. It's possible to provide more input data than this minimum. |
| * - After decoding has been started. In which case, no input is read, frame parameters are extracted from dctx. |
| * The number of bytes consumed from srcBuffer will be updated within *srcSizePtr (necessarily <= original value). |
| * Decompression must resume from (srcBuffer + *srcSizePtr). |
| * @return : an hint about how many srcSize bytes LZ4F_decompress() expects for next call, |
| * or an error code which can be tested using LZ4F_isError() |
| * note 1 : in case of error, dctx is not modified. Decoding operations can resume from where they stopped. |
| * note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure. |
| */ |
| LZ4F_errorCode_t LZ4F_getFrameInfo(LZ4F_dctx* dctx, LZ4F_frameInfo_t* frameInfoPtr, |
| const void* srcBuffer, size_t* srcSizePtr) |
| { |
| if (dctx->dStage > dstage_storeFrameHeader) { /* assumption : dstage_* header enum at beginning of range */ |
| /* frameInfo already decoded */ |
| size_t o=0, i=0; |
| *srcSizePtr = 0; |
| *frameInfoPtr = dctx->frameInfo; |
| /* returns : recommended nb of bytes for LZ4F_decompress() */ |
| return LZ4F_decompress(dctx, NULL, &o, NULL, &i, NULL); |
| } else { |
| if (dctx->dStage == dstage_storeFrameHeader) { |
| /* frame decoding already started, in the middle of header => automatic fail */ |
| *srcSizePtr = 0; |
| return err0r(LZ4F_ERROR_frameDecoding_alreadyStarted); |
| } else { |
| size_t decodeResult; |
| size_t const hSize = LZ4F_headerSize(srcBuffer, *srcSizePtr); |
| if (LZ4F_isError(hSize)) { *srcSizePtr=0; return hSize; } |
| if (*srcSizePtr < hSize) { |
| *srcSizePtr=0; |
| return err0r(LZ4F_ERROR_frameHeader_incomplete); |
| } |
| |
| decodeResult = LZ4F_decodeHeader(dctx, srcBuffer, hSize); |
| if (LZ4F_isError(decodeResult)) { |
| *srcSizePtr = 0; |
| } else { |
| *srcSizePtr = decodeResult; |
| decodeResult = BHSize; /* block header size */ |
| } |
| *frameInfoPtr = dctx->frameInfo; |
| return decodeResult; |
| } } |
| } |
| |
| |
| /* LZ4F_updateDict() : |
| * only used for LZ4F_blockLinked mode */ |
| static void LZ4F_updateDict(LZ4F_dctx* dctx, |
| const BYTE* dstPtr, size_t dstSize, const BYTE* dstBufferStart, |
| unsigned withinTmp) |
| { |
| if (dctx->dictSize==0) |
| dctx->dict = (const BYTE*)dstPtr; /* priority to dictionary continuity */ |
| |
| if (dctx->dict + dctx->dictSize == dstPtr) { /* dictionary continuity, directly within dstBuffer */ |
| dctx->dictSize += dstSize; |
| return; |
| } |
| |
| if (dstPtr - dstBufferStart + dstSize >= 64 KB) { /* history in dstBuffer becomes large enough to become dictionary */ |
| dctx->dict = (const BYTE*)dstBufferStart; |
| dctx->dictSize = dstPtr - dstBufferStart + dstSize; |
| return; |
| } |
| |
| assert(dstSize < 64 KB); /* if dstSize >= 64 KB, dictionary would be set into dstBuffer directly */ |
| |
| /* dstBuffer does not contain whole useful history (64 KB), so it must be saved within tmpOut */ |
| |
| if ((withinTmp) && (dctx->dict == dctx->tmpOutBuffer)) { /* continue history within tmpOutBuffer */ |
| /* withinTmp expectation : content of [dstPtr,dstSize] is same as [dict+dictSize,dstSize], so we just extend it */ |
| assert(dctx->dict + dctx->dictSize == dctx->tmpOut + dctx->tmpOutStart); |
| dctx->dictSize += dstSize; |
| return; |
| } |
| |
| if (withinTmp) { /* copy relevant dict portion in front of tmpOut within tmpOutBuffer */ |
| size_t const preserveSize = dctx->tmpOut - dctx->tmpOutBuffer; |
| size_t copySize = 64 KB - dctx->tmpOutSize; |
| const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; |
| if (dctx->tmpOutSize > 64 KB) copySize = 0; |
| if (copySize > preserveSize) copySize = preserveSize; |
| |
| memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); |
| |
| dctx->dict = dctx->tmpOutBuffer; |
| dctx->dictSize = preserveSize + dctx->tmpOutStart + dstSize; |
| return; |
| } |
| |
| if (dctx->dict == dctx->tmpOutBuffer) { /* copy dst into tmp to complete dict */ |
| if (dctx->dictSize + dstSize > dctx->maxBufferSize) { /* tmp buffer not large enough */ |
| size_t const preserveSize = 64 KB - dstSize; |
| memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); |
| dctx->dictSize = preserveSize; |
| } |
| memcpy(dctx->tmpOutBuffer + dctx->dictSize, dstPtr, dstSize); |
| dctx->dictSize += dstSize; |
| return; |
| } |
| |
| /* join dict & dest into tmp */ |
| { size_t preserveSize = 64 KB - dstSize; |
| if (preserveSize > dctx->dictSize) preserveSize = dctx->dictSize; |
| memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); |
| memcpy(dctx->tmpOutBuffer + preserveSize, dstPtr, dstSize); |
| dctx->dict = dctx->tmpOutBuffer; |
| dctx->dictSize = preserveSize + dstSize; |
| } |
| } |
| |
| |
| |
| /*! LZ4F_decompress() : |
| * Call this function repetitively to regenerate compressed data in srcBuffer. |
| * The function will attempt to decode up to *srcSizePtr bytes from srcBuffer |
| * into dstBuffer of capacity *dstSizePtr. |
| * |
| * The number of bytes regenerated into dstBuffer will be provided within *dstSizePtr (necessarily <= original value). |
| * |
| * The number of bytes effectively read from srcBuffer will be provided within *srcSizePtr (necessarily <= original value). |
| * If number of bytes read is < number of bytes provided, then decompression operation is not complete. |
| * Remaining data will have to be presented again in a subsequent invocation. |
| * |
| * The function result is an hint of the better srcSize to use for next call to LZ4F_decompress. |
| * Schematically, it's the size of the current (or remaining) compressed block + header of next block. |
| * Respecting the hint provides a small boost to performance, since it allows less buffer shuffling. |
| * Note that this is just a hint, and it's always possible to any srcSize value. |
| * When a frame is fully decoded, @return will be 0. |
| * If decompression failed, @return is an error code which can be tested using LZ4F_isError(). |
| */ |
| size_t LZ4F_decompress(LZ4F_dctx* dctx, |
| void* dstBuffer, size_t* dstSizePtr, |
| const void* srcBuffer, size_t* srcSizePtr, |
| const LZ4F_decompressOptions_t* decompressOptionsPtr) |
| { |
| LZ4F_decompressOptions_t optionsNull; |
| const BYTE* const srcStart = (const BYTE*)srcBuffer; |
| const BYTE* const srcEnd = srcStart + *srcSizePtr; |
| const BYTE* srcPtr = srcStart; |
| BYTE* const dstStart = (BYTE*)dstBuffer; |
| BYTE* const dstEnd = dstStart + *dstSizePtr; |
| BYTE* dstPtr = dstStart; |
| const BYTE* selectedIn = NULL; |
| unsigned doAnotherStage = 1; |
| size_t nextSrcSizeHint = 1; |
| |
| |
| MEM_INIT(&optionsNull, 0, sizeof(optionsNull)); |
| if (decompressOptionsPtr==NULL) decompressOptionsPtr = &optionsNull; |
| *srcSizePtr = 0; |
| *dstSizePtr = 0; |
| |
| /* behaves as a state machine */ |
| |
| while (doAnotherStage) { |
| |
| switch(dctx->dStage) |
| { |
| |
| case dstage_getFrameHeader: |
| if ((size_t)(srcEnd-srcPtr) >= maxFHSize) { /* enough to decode - shortcut */ |
| size_t const hSize = LZ4F_decodeHeader(dctx, srcPtr, srcEnd-srcPtr); /* will update dStage appropriately */ |
| if (LZ4F_isError(hSize)) return hSize; |
| srcPtr += hSize; |
| break; |
| } |
| dctx->tmpInSize = 0; |
| if (srcEnd-srcPtr == 0) return minFHSize; /* 0-size input */ |
| dctx->tmpInTarget = minFHSize; /* minimum size to decode header */ |
| dctx->dStage = dstage_storeFrameHeader; |
| /* fall-through */ |
| |
| case dstage_storeFrameHeader: |
| { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr)); |
| memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
| dctx->tmpInSize += sizeToCopy; |
| srcPtr += sizeToCopy; |
| } |
| if (dctx->tmpInSize < dctx->tmpInTarget) { |
| nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize; /* rest of header + nextBlockHeader */ |
| doAnotherStage = 0; /* not enough src data, ask for some more */ |
| break; |
| } |
| { size_t const hSize = LZ4F_decodeHeader(dctx, dctx->header, dctx->tmpInTarget); /* will update dStage appropriately */ |
| if (LZ4F_isError(hSize)) return hSize; |
| } |
| break; |
| |
| case dstage_init: |
| if (dctx->frameInfo.contentChecksumFlag) (void)XXH32_reset(&(dctx->xxh), 0); |
| /* internal buffers allocation */ |
| { size_t const bufferNeeded = dctx->maxBlockSize |
| + ((dctx->frameInfo.blockMode==LZ4F_blockLinked) * 128 KB); |
| if (bufferNeeded > dctx->maxBufferSize) { /* tmp buffers too small */ |
| dctx->maxBufferSize = 0; /* ensure allocation will be re-attempted on next entry*/ |
| FREEMEM(dctx->tmpIn); |
| dctx->tmpIn = (BYTE*)ALLOC(dctx->maxBlockSize + 4 /* block checksum */); |
| if (dctx->tmpIn == NULL) |
| return err0r(LZ4F_ERROR_allocation_failed); |
| FREEMEM(dctx->tmpOutBuffer); |
| dctx->tmpOutBuffer= (BYTE*)ALLOC(bufferNeeded); |
| if (dctx->tmpOutBuffer== NULL) |
| return err0r(LZ4F_ERROR_allocation_failed); |
| dctx->maxBufferSize = bufferNeeded; |
| } } |
| dctx->tmpInSize = 0; |
| dctx->tmpInTarget = 0; |
| dctx->tmpOut = dctx->tmpOutBuffer; |
| dctx->tmpOutStart = 0; |
| dctx->tmpOutSize = 0; |
| |
| dctx->dStage = dstage_getBlockHeader; |
| /* fall-through */ |
| |
| case dstage_getBlockHeader: |
| if ((size_t)(srcEnd - srcPtr) >= BHSize) { |
| selectedIn = srcPtr; |
| srcPtr += BHSize; |
| } else { |
| /* not enough input to read cBlockSize field */ |
| dctx->tmpInSize = 0; |
| dctx->dStage = dstage_storeBlockHeader; |
| } |
| |
| if (dctx->dStage == dstage_storeBlockHeader) /* can be skipped */ |
| case dstage_storeBlockHeader: |
| { size_t const remainingInput = (size_t)(srcEnd - srcPtr); |
| size_t const wantedData = BHSize - dctx->tmpInSize; |
| size_t const sizeToCopy = MIN(wantedData, remainingInput); |
| memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
| srcPtr += sizeToCopy; |
| dctx->tmpInSize += sizeToCopy; |
| |
| if (dctx->tmpInSize < BHSize) { /* not enough input for cBlockSize */ |
| nextSrcSizeHint = BHSize - dctx->tmpInSize; |
| doAnotherStage = 0; |
| break; |
| } |
| selectedIn = dctx->tmpIn; |
| } /* if (dctx->dStage == dstage_storeBlockHeader) */ |
| |
| /* decode block header */ |
| { size_t const nextCBlockSize = LZ4F_readLE32(selectedIn) & 0x7FFFFFFFU; |
| size_t const crcSize = dctx->frameInfo.blockChecksumFlag * 4; |
| if (nextCBlockSize==0) { /* frameEnd signal, no more block */ |
| dctx->dStage = dstage_getSuffix; |
| break; |
| } |
| if (nextCBlockSize > dctx->maxBlockSize) |
| return err0r(LZ4F_ERROR_maxBlockSize_invalid); |
| if (LZ4F_readLE32(selectedIn) & LZ4F_BLOCKUNCOMPRESSED_FLAG) { |
| /* next block is uncompressed */ |
| dctx->tmpInTarget = nextCBlockSize; |
| if (dctx->frameInfo.blockChecksumFlag) { |
| (void)XXH32_reset(&dctx->blockChecksum, 0); |
| } |
| dctx->dStage = dstage_copyDirect; |
| break; |
| } |
| /* next block is a compressed block */ |
| dctx->tmpInTarget = nextCBlockSize + crcSize; |
| dctx->dStage = dstage_getCBlock; |
| if (dstPtr==dstEnd) { |
| nextSrcSizeHint = nextCBlockSize + crcSize + BHSize; |
| doAnotherStage = 0; |
| } |
| break; |
| } |
| |
| case dstage_copyDirect: /* uncompressed block */ |
| { size_t const minBuffSize = MIN((size_t)(srcEnd-srcPtr), (size_t)(dstEnd-dstPtr)); |
| size_t const sizeToCopy = MIN(dctx->tmpInTarget, minBuffSize); |
| memcpy(dstPtr, srcPtr, sizeToCopy); |
| if (dctx->frameInfo.blockChecksumFlag) { |
| (void)XXH32_update(&dctx->blockChecksum, srcPtr, sizeToCopy); |
| } |
| if (dctx->frameInfo.contentChecksumFlag) |
| (void)XXH32_update(&dctx->xxh, srcPtr, sizeToCopy); |
| if (dctx->frameInfo.contentSize) |
| dctx->frameRemainingSize -= sizeToCopy; |
| |
| /* history management (linked blocks only)*/ |
| if (dctx->frameInfo.blockMode == LZ4F_blockLinked) |
| LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 0); |
| |
| srcPtr += sizeToCopy; |
| dstPtr += sizeToCopy; |
| if (sizeToCopy == dctx->tmpInTarget) { /* all done */ |
| if (dctx->frameInfo.blockChecksumFlag) { |
| dctx->tmpInSize = 0; |
| dctx->dStage = dstage_getBlockChecksum; |
| } else |
| dctx->dStage = dstage_getBlockHeader; /* new block */ |
| break; |
| } |
| dctx->tmpInTarget -= sizeToCopy; /* need to copy more */ |
| nextSrcSizeHint = dctx->tmpInTarget + |
| + dctx->frameInfo.contentChecksumFlag * 4 /* block checksum */ |
| + BHSize /* next header size */; |
| doAnotherStage = 0; |
| break; |
| } |
| |
| /* check block checksum for recently transferred uncompressed block */ |
| case dstage_getBlockChecksum: |
| { const void* crcSrc; |
| if ((srcEnd-srcPtr >= 4) && (dctx->tmpInSize==0)) { |
| crcSrc = srcPtr; |
| srcPtr += 4; |
| } else { |
| size_t const stillToCopy = 4 - dctx->tmpInSize; |
| size_t const sizeToCopy = MIN(stillToCopy, (size_t)(srcEnd-srcPtr)); |
| memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
| dctx->tmpInSize += sizeToCopy; |
| srcPtr += sizeToCopy; |
| if (dctx->tmpInSize < 4) { /* all input consumed */ |
| doAnotherStage = 0; |
| break; |
| } |
| crcSrc = dctx->header; |
| } |
| { U32 const readCRC = LZ4F_readLE32(crcSrc); |
| U32 const calcCRC = XXH32_digest(&dctx->blockChecksum); |
| if (readCRC != calcCRC) |
| return err0r(LZ4F_ERROR_blockChecksum_invalid); |
| } } |
| dctx->dStage = dstage_getBlockHeader; /* new block */ |
| break; |
| |
| case dstage_getCBlock: |
| if ((size_t)(srcEnd-srcPtr) < dctx->tmpInTarget) { |
| dctx->tmpInSize = 0; |
| dctx->dStage = dstage_storeCBlock; |
| break; |
| } |
| /* input large enough to read full block directly */ |
| selectedIn = srcPtr; |
| srcPtr += dctx->tmpInTarget; |
| |
| if (0) /* jump over next block */ |
| case dstage_storeCBlock: |
| { size_t const wantedData = dctx->tmpInTarget - dctx->tmpInSize; |
| size_t const inputLeft = (size_t)(srcEnd-srcPtr); |
| size_t const sizeToCopy = MIN(wantedData, inputLeft); |
| memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
| dctx->tmpInSize += sizeToCopy; |
| srcPtr += sizeToCopy; |
| if (dctx->tmpInSize < dctx->tmpInTarget) { /* need more input */ |
| nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize; |
| doAnotherStage=0; |
| break; |
| } |
| selectedIn = dctx->tmpIn; |
| } |
| |
| /* At this stage, input is large enough to decode a block */ |
| if (dctx->frameInfo.blockChecksumFlag) { |
| dctx->tmpInTarget -= 4; |
| assert(selectedIn != NULL); /* selectedIn is defined at this stage (either srcPtr, or dctx->tmpIn) */ |
| { U32 const readBlockCrc = LZ4F_readLE32(selectedIn + dctx->tmpInTarget); |
| U32 const calcBlockCrc = XXH32(selectedIn, dctx->tmpInTarget, 0); |
| if (readBlockCrc != calcBlockCrc) |
| return err0r(LZ4F_ERROR_blockChecksum_invalid); |
| } } |
| |
| if ((size_t)(dstEnd-dstPtr) >= dctx->maxBlockSize) { |
| const char* dict = (const char*)dctx->dict; |
| size_t dictSize = dctx->dictSize; |
| int decodedSize; |
| if (dict && dictSize > 1 GB) { |
| /* the dictSize param is an int, avoid truncation / sign issues */ |
| dict += dictSize - 64 KB; |
| dictSize = 64 KB; |
| } |
| /* enough capacity in `dst` to decompress directly there */ |
| decodedSize = LZ4_decompress_safe_usingDict( |
| (const char*)selectedIn, (char*)dstPtr, |
| (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, |
| dict, (int)dictSize); |
| if (decodedSize < 0) return err0r(LZ4F_ERROR_GENERIC); /* decompression failed */ |
| if (dctx->frameInfo.contentChecksumFlag) |
| XXH32_update(&(dctx->xxh), dstPtr, decodedSize); |
| if (dctx->frameInfo.contentSize) |
| dctx->frameRemainingSize -= decodedSize; |
| |
| /* dictionary management */ |
| if (dctx->frameInfo.blockMode==LZ4F_blockLinked) |
| LZ4F_updateDict(dctx, dstPtr, decodedSize, dstStart, 0); |
| |
| dstPtr += decodedSize; |
| dctx->dStage = dstage_getBlockHeader; |
| break; |
| } |
| |
| /* not enough place into dst : decode into tmpOut */ |
| /* ensure enough place for tmpOut */ |
| if (dctx->frameInfo.blockMode == LZ4F_blockLinked) { |
| if (dctx->dict == dctx->tmpOutBuffer) { |
| if (dctx->dictSize > 128 KB) { |
| memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - 64 KB, 64 KB); |
| dctx->dictSize = 64 KB; |
| } |
| dctx->tmpOut = dctx->tmpOutBuffer + dctx->dictSize; |
| } else { /* dict not within tmp */ |
| size_t const reservedDictSpace = MIN(dctx->dictSize, 64 KB); |
| dctx->tmpOut = dctx->tmpOutBuffer + reservedDictSpace; |
| } } |
| |
| /* Decode block */ |
| { const char* dict = (const char*)dctx->dict; |
| size_t dictSize = dctx->dictSize; |
| int decodedSize; |
| if (dict && dictSize > 1 GB) { |
| /* the dictSize param is an int, avoid truncation / sign issues */ |
| dict += dictSize - 64 KB; |
| dictSize = 64 KB; |
| } |
| decodedSize = LZ4_decompress_safe_usingDict( |
| (const char*)selectedIn, (char*)dctx->tmpOut, |
| (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, |
| dict, (int)dictSize); |
| if (decodedSize < 0) /* decompression failed */ |
| return err0r(LZ4F_ERROR_decompressionFailed); |
| if (dctx->frameInfo.contentChecksumFlag) |
| XXH32_update(&(dctx->xxh), dctx->tmpOut, decodedSize); |
| if (dctx->frameInfo.contentSize) |
| dctx->frameRemainingSize -= decodedSize; |
| dctx->tmpOutSize = decodedSize; |
| dctx->tmpOutStart = 0; |
| dctx->dStage = dstage_flushOut; |
| } |
| /* fall-through */ |
| |
| case dstage_flushOut: /* flush decoded data from tmpOut to dstBuffer */ |
| { size_t const sizeToCopy = MIN(dctx->tmpOutSize - dctx->tmpOutStart, (size_t)(dstEnd-dstPtr)); |
| memcpy(dstPtr, dctx->tmpOut + dctx->tmpOutStart, sizeToCopy); |
| |
| /* dictionary management */ |
| if (dctx->frameInfo.blockMode == LZ4F_blockLinked) |
| LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 1 /*withinTmp*/); |
| |
| dctx->tmpOutStart += sizeToCopy; |
| dstPtr += sizeToCopy; |
| |
| if (dctx->tmpOutStart == dctx->tmpOutSize) { /* all flushed */ |
| dctx->dStage = dstage_getBlockHeader; /* get next block */ |
| break; |
| } |
| /* could not flush everything : stop there, just request a block header */ |
| doAnotherStage = 0; |
| nextSrcSizeHint = BHSize; |
| break; |
| } |
| |
| case dstage_getSuffix: |
| if (dctx->frameRemainingSize) |
| return err0r(LZ4F_ERROR_frameSize_wrong); /* incorrect frame size decoded */ |
| if (!dctx->frameInfo.contentChecksumFlag) { /* no checksum, frame is completed */ |
| nextSrcSizeHint = 0; |
| LZ4F_resetDecompressionContext(dctx); |
| doAnotherStage = 0; |
| break; |
| } |
| if ((srcEnd - srcPtr) < 4) { /* not enough size for entire CRC */ |
| dctx->tmpInSize = 0; |
| dctx->dStage = dstage_storeSuffix; |
| } else { |
| selectedIn = srcPtr; |
| srcPtr += 4; |
| } |
| |
| if (dctx->dStage == dstage_storeSuffix) /* can be skipped */ |
| case dstage_storeSuffix: |
| { size_t const remainingInput = (size_t)(srcEnd - srcPtr); |
| size_t const wantedData = 4 - dctx->tmpInSize; |
| size_t const sizeToCopy = MIN(wantedData, remainingInput); |
| memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); |
| srcPtr += sizeToCopy; |
| dctx->tmpInSize += sizeToCopy; |
| if (dctx->tmpInSize < 4) { /* not enough input to read complete suffix */ |
| nextSrcSizeHint = 4 - dctx->tmpInSize; |
| doAnotherStage=0; |
| break; |
| } |
| selectedIn = dctx->tmpIn; |
| } /* if (dctx->dStage == dstage_storeSuffix) */ |
| |
| /* case dstage_checkSuffix: */ /* no direct entry, avoid initialization risks */ |
| { U32 const readCRC = LZ4F_readLE32(selectedIn); |
| U32 const resultCRC = XXH32_digest(&(dctx->xxh)); |
| if (readCRC != resultCRC) |
| return err0r(LZ4F_ERROR_contentChecksum_invalid); |
| nextSrcSizeHint = 0; |
| LZ4F_resetDecompressionContext(dctx); |
| doAnotherStage = 0; |
| break; |
| } |
| |
| case dstage_getSFrameSize: |
| if ((srcEnd - srcPtr) >= 4) { |
| selectedIn = srcPtr; |
| srcPtr += 4; |
| } else { |
| /* not enough input to read cBlockSize field */ |
| dctx->tmpInSize = 4; |
| dctx->tmpInTarget = 8; |
| dctx->dStage = dstage_storeSFrameSize; |
| } |
| |
| if (dctx->dStage == dstage_storeSFrameSize) |
| case dstage_storeSFrameSize: |
| { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, |
| (size_t)(srcEnd - srcPtr) ); |
| memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); |
| srcPtr += sizeToCopy; |
| dctx->tmpInSize += sizeToCopy; |
| if (dctx->tmpInSize < dctx->tmpInTarget) { |
| /* not enough input to get full sBlockSize; wait for more */ |
| nextSrcSizeHint = dctx->tmpInTarget - dctx->tmpInSize; |
| doAnotherStage = 0; |
| break; |
| } |
| selectedIn = dctx->header + 4; |
| } /* if (dctx->dStage == dstage_storeSFrameSize) */ |
| |
| /* case dstage_decodeSFrameSize: */ /* no direct entry */ |
| { size_t const SFrameSize = LZ4F_readLE32(selectedIn); |
| dctx->frameInfo.contentSize = SFrameSize; |
| dctx->tmpInTarget = SFrameSize; |
| dctx->dStage = dstage_skipSkippable; |
| break; |
| } |
| |
| case dstage_skipSkippable: |
| { size_t const skipSize = MIN(dctx->tmpInTarget, (size_t)(srcEnd-srcPtr)); |
| srcPtr += skipSize; |
| dctx->tmpInTarget -= skipSize; |
| doAnotherStage = 0; |
| nextSrcSizeHint = dctx->tmpInTarget; |
| if (nextSrcSizeHint) break; /* still more to skip */ |
| /* frame fully skipped : prepare context for a new frame */ |
| LZ4F_resetDecompressionContext(dctx); |
| break; |
| } |
| } /* switch (dctx->dStage) */ |
| } /* while (doAnotherStage) */ |
| |
| /* preserve history within tmp whenever necessary */ |
| LZ4F_STATIC_ASSERT((unsigned)dstage_init == 2); |
| if ( (dctx->frameInfo.blockMode==LZ4F_blockLinked) /* next block will use up to 64KB from previous ones */ |
| && (dctx->dict != dctx->tmpOutBuffer) /* dictionary is not already within tmp */ |
| && (!decompressOptionsPtr->stableDst) /* cannot rely on dst data to remain there for next call */ |
| && ((unsigned)(dctx->dStage)-2 < (unsigned)(dstage_getSuffix)-2) ) /* valid stages : [init ... getSuffix[ */ |
| { |
| if (dctx->dStage == dstage_flushOut) { |
| size_t const preserveSize = dctx->tmpOut - dctx->tmpOutBuffer; |
| size_t copySize = 64 KB - dctx->tmpOutSize; |
| const BYTE* oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; |
| if (dctx->tmpOutSize > 64 KB) copySize = 0; |
| if (copySize > preserveSize) copySize = preserveSize; |
| |
| if (copySize > 0) |
| memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); |
| |
| dctx->dict = dctx->tmpOutBuffer; |
| dctx->dictSize = preserveSize + dctx->tmpOutStart; |
| } else { |
| const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize; |
| size_t const newDictSize = MIN(dctx->dictSize, 64 KB); |
| |
| if (newDictSize > 0) |
| memcpy(dctx->tmpOutBuffer, oldDictEnd - newDictSize, newDictSize); |
| |
| dctx->dict = dctx->tmpOutBuffer; |
| dctx->dictSize = newDictSize; |
| dctx->tmpOut = dctx->tmpOutBuffer + newDictSize; |
| } |
| } |
| |
| *srcSizePtr = (srcPtr - srcStart); |
| *dstSizePtr = (dstPtr - dstStart); |
| return nextSrcSizeHint; |
| } |
| |
| /*! LZ4F_decompress_usingDict() : |
| * Same as LZ4F_decompress(), using a predefined dictionary. |
| * Dictionary is used "in place", without any preprocessing. |
| * It must remain accessible throughout the entire frame decoding. |
| */ |
| size_t LZ4F_decompress_usingDict(LZ4F_dctx* dctx, |
| void* dstBuffer, size_t* dstSizePtr, |
| const void* srcBuffer, size_t* srcSizePtr, |
| const void* dict, size_t dictSize, |
| const LZ4F_decompressOptions_t* decompressOptionsPtr) |
| { |
| if (dctx->dStage <= dstage_init) { |
| dctx->dict = (const BYTE*)dict; |
| dctx->dictSize = dictSize; |
| } |
| return LZ4F_decompress(dctx, dstBuffer, dstSizePtr, |
| srcBuffer, srcSizePtr, |
| decompressOptionsPtr); |
| } |