blob: 9e2ce1e7d7513267d2dfa3e6aa6b09ba96a9221e [file] [log] [blame] [raw]
/*
fuzzer.c - Fuzzer test tool for LZ4
Copyright (C) Yann Collet 2012-2015
GPL v2 License
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You can contact the author at :
- LZ4 source mirror : https://github.com/Cyan4973/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/**************************************
* Compiler options
**************************************/
#ifdef _MSC_VER /* Visual Studio */
# define _CRT_SECURE_NO_WARNINGS /* fgets */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4146) /* disable: C4146: minus unsigned expression */
# pragma warning(disable : 4310) /* disable: C4310: constant char value > 127 */
#endif
/* S_ISREG & gettimeofday() are not supported by MSVC */
#if defined(_MSC_VER) || defined(_WIN32)
# define FUZ_LEGACY_TIMER 1
#endif
/**************************************
* Includes
**************************************/
#include <stdlib.h>
#include <stdio.h> /* fgets, sscanf */
#include <string.h> /* strcmp */
#include "lz4.h"
#include "lz4hc.h"
#include "xxhash.h"
/* Use ftime() if gettimeofday() is not available on your target */
#if defined(FUZ_LEGACY_TIMER)
# include <sys/timeb.h> /* timeb, ftime */
#else
# include <sys/time.h> /* gettimeofday */
#endif
/**************************************
* Basic Types
**************************************/
#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
#endif
/**************************************
* Constants
**************************************/
#ifndef LZ4_VERSION
# define LZ4_VERSION ""
#endif
#define NB_ATTEMPTS (1<<16)
#define COMPRESSIBLE_NOISE_LENGTH (1 << 21)
#define FUZ_MAX_BLOCK_SIZE (1 << 17)
#define FUZ_MAX_DICT_SIZE (1 << 15)
#define FUZ_COMPRESSIBILITY_DEFAULT 60
#define PRIME1 2654435761U
#define PRIME2 2246822519U
#define PRIME3 3266489917U
#define KB *(1U<<10)
#define MB *(1U<<20)
#define GB *(1U<<30)
/*****************************************
* Macros
*****************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static int g_displayLevel = 2;
static const U32 g_refreshRate = 250;
static U32 g_time = 0;
/*********************************************************
* Fuzzer functions
*********************************************************/
#if defined(FUZ_LEGACY_TIMER)
static U32 FUZ_GetMilliStart(void)
{
struct timeb tb;
U32 nCount;
ftime( &tb );
nCount = (U32) (((tb.time & 0xFFFFF) * 1000) + tb.millitm);
return nCount;
}
#else
static U32 FUZ_GetMilliStart(void)
{
struct timeval tv;
U32 nCount;
gettimeofday(&tv, NULL);
nCount = (U32) (tv.tv_usec/1000 + (tv.tv_sec & 0xfffff) * 1000);
return nCount;
}
#endif
static U32 FUZ_GetMilliSpan(U32 nTimeStart)
{
U32 nCurrent = FUZ_GetMilliStart();
U32 nSpan = nCurrent - nTimeStart;
if (nTimeStart > nCurrent)
nSpan += 0x100000 * 1000;
return nSpan;
}
static U32 FUZ_rotl32(U32 u32, U32 nbBits)
{
return ((u32 << nbBits) | (u32 >> (32 - nbBits)));
}
static U32 FUZ_rand(U32* src)
{
U32 rand32 = *src;
rand32 *= PRIME1;
rand32 += PRIME2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 3;
}
#define FUZ_RAND15BITS ((FUZ_rand(seed) >> 3) & 32767)
#define FUZ_RANDLENGTH ( ((FUZ_rand(seed) >> 7) & 3) ? (FUZ_rand(seed) % 15) : (FUZ_rand(seed) % 510) + 15)
static void FUZ_fillCompressibleNoiseBuffer(void* buffer, size_t bufferSize, double proba, U32* seed)
{
BYTE* BBuffer = (BYTE*)buffer;
size_t pos = 0;
U32 P32 = (U32)(32768 * proba);
// First Byte
BBuffer[pos++] = (BYTE)(FUZ_rand(seed));
while (pos < bufferSize)
{
// Select : Literal (noise) or copy (within 64K)
if (FUZ_RAND15BITS < P32)
{
// Copy (within 64K)
size_t match, d;
size_t length = FUZ_RANDLENGTH + 4;
size_t offset = FUZ_RAND15BITS + 1;
if (offset > pos) offset = pos;
d = pos + length;
if (d > bufferSize) d = bufferSize;
match = pos - offset;
while (pos < d) BBuffer[pos++] = BBuffer[match++];
}
else
{
// Literal (noise)
size_t d;
size_t length = FUZ_RANDLENGTH;
d = pos + length;
if (d > bufferSize) d = bufferSize;
while (pos < d) BBuffer[pos++] = (BYTE)(FUZ_rand(seed) >> 5);
}
}
}
#define MAX_NB_BUFF_I134 150
#define BLOCKSIZE_I134 (32 MB)
static int FUZ_AddressOverflow(void)
{
char* buffers[MAX_NB_BUFF_I134+1];
int i, nbBuff=0;
int highAddress = 0;
printf("Overflow tests : ");
/* Only possible in 32-bits */
if (sizeof(void*)==8)
{
printf("64 bits mode : no overflow \n");
fflush(stdout);
return 0;
}
buffers[0] = (char*)malloc(BLOCKSIZE_I134);
buffers[1] = (char*)malloc(BLOCKSIZE_I134);
if ((!buffers[0]) || (!buffers[1]))
{
printf("not enough memory for tests \n");
return 0;
}
for (nbBuff=2; nbBuff < MAX_NB_BUFF_I134; nbBuff++)
{
printf("%3i \b\b\b\b", nbBuff);
buffers[nbBuff] = (char*)malloc(BLOCKSIZE_I134);
//printf("%08X ", (U32)(size_t)(buffers[nbBuff]));
fflush(stdout);
if (((size_t)buffers[nbBuff] > (size_t)0x80000000) && (!highAddress))
{
printf("high address detected : ");
fflush(stdout);
highAddress=1;
}
if (buffers[nbBuff]==NULL) goto _endOfTests;
{
size_t sizeToGenerateOverflow = (size_t)(- ((size_t)buffers[nbBuff-1]) + 512);
int nbOf255 = (int)((sizeToGenerateOverflow / 255) + 1);
char* input = buffers[nbBuff-1];
char* output = buffers[nbBuff];
int r;
input[0] = (char)0xF0; // Literal length overflow
input[1] = (char)0xFF;
input[2] = (char)0xFF;
input[3] = (char)0xFF;
for(i = 4; i <= nbOf255+4; i++) input[i] = (char)0xff;
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) goto _overflowError;
input[0] = (char)0x1F; // Match length overflow
input[1] = (char)0x01;
input[2] = (char)0x01;
input[3] = (char)0x00;
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) goto _overflowError;
output = buffers[nbBuff-2]; // Reverse in/out pointer order
input[0] = (char)0xF0; // Literal length overflow
input[1] = (char)0xFF;
input[2] = (char)0xFF;
input[3] = (char)0xFF;
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) goto _overflowError;
input[0] = (char)0x1F; // Match length overflow
input[1] = (char)0x01;
input[2] = (char)0x01;
input[3] = (char)0x00;
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) goto _overflowError;
}
}
nbBuff++;
_endOfTests:
for (i=0 ; i<nbBuff; i++) free(buffers[i]);
if (!highAddress) printf("high address not possible \n");
else printf("all overflows correctly detected \n");
return 0;
_overflowError:
printf("Address space overflow error !! \n");
exit(1);
}
static void FUZ_displayUpdate(unsigned testNb)
{
if ((FUZ_GetMilliSpan(g_time) > g_refreshRate) || (g_displayLevel>=3))
{
g_time = FUZ_GetMilliStart();
DISPLAY("\r%5u ", testNb);
if (g_displayLevel>=3) fflush(stdout);
}
}
static int FUZ_test(U32 seed, U32 nbCycles, const U32 startCycle, const double compressibility, U32 duration)
{
unsigned long long bytes = 0;
unsigned long long cbytes = 0;
unsigned long long hcbytes = 0;
unsigned long long ccbytes = 0;
void* CNBuffer;
char* compressedBuffer;
char* decodedBuffer;
# define FUZ_max LZ4_COMPRESSBOUND(LEN)
int ret;
unsigned cycleNb;
# define FUZ_CHECKTEST(cond, ...) if (cond) { printf("Test %u : ", testNb); printf(__VA_ARGS__); \
printf(" (seed %u, cycle %u) \n", seed, cycleNb); goto _output_error; }
# define FUZ_DISPLAYTEST { testNb++; g_displayLevel<3 ? 0 : printf("%2u\b\b", testNb); if (g_displayLevel==4) fflush(stdout); }
void* stateLZ4 = malloc(LZ4_sizeofState());
void* stateLZ4HC = malloc(LZ4_sizeofStateHC());
void* LZ4continue;
LZ4_stream_t LZ4dict;
LZ4_streamHC_t LZ4dictHC;
U32 crcOrig, crcCheck;
U32 coreRandState = seed;
U32 randState = coreRandState ^ PRIME3;
int result = 0;
const U32 startTime = FUZ_GetMilliStart();
/* init */
memset(&LZ4dict, 0, sizeof(LZ4dict));
duration *= 1000;
/* Create compressible test buffer */
CNBuffer = malloc(COMPRESSIBLE_NOISE_LENGTH);
FUZ_fillCompressibleNoiseBuffer(CNBuffer, COMPRESSIBLE_NOISE_LENGTH, compressibility, &randState);
compressedBuffer = (char*)malloc(LZ4_compressBound(FUZ_MAX_BLOCK_SIZE));
decodedBuffer = (char*)malloc(FUZ_MAX_DICT_SIZE + FUZ_MAX_BLOCK_SIZE);
/* move to startCycle */
for (cycleNb = 0; cycleNb < startCycle; cycleNb++)
{
(void)FUZ_rand(&coreRandState);
if (0) /* some problems are related to dictionary re-use; in this case, enable this loop */
{
int dictSize, blockSize, blockStart;
char* dict;
char* block;
FUZ_displayUpdate(cycleNb);
randState = coreRandState ^ PRIME3;
blockSize = FUZ_rand(&randState) % FUZ_MAX_BLOCK_SIZE;
blockStart = FUZ_rand(&randState) % (COMPRESSIBLE_NOISE_LENGTH - blockSize);
dictSize = FUZ_rand(&randState) % FUZ_MAX_DICT_SIZE;
if (dictSize > blockStart) dictSize = blockStart;
block = ((char*)CNBuffer) + blockStart;
dict = block - dictSize;
LZ4_loadDict(&LZ4dict, dict, dictSize);
LZ4_compress_continue(&LZ4dict, block, compressedBuffer, blockSize);
LZ4_loadDict(&LZ4dict, dict, dictSize);
LZ4_compress_continue(&LZ4dict, block, compressedBuffer, blockSize);
LZ4_loadDict(&LZ4dict, dict, dictSize);
LZ4_compress_continue(&LZ4dict, block, compressedBuffer, blockSize);
}
}
/* Main test loop */
for (cycleNb = startCycle; (cycleNb < nbCycles) || (FUZ_GetMilliSpan(startTime) < duration) ; cycleNb++)
{
U32 testNb = 0;
char* dict;
char* block;
int dictSize, blockSize, blockStart, compressedSize, HCcompressedSize;
int blockContinueCompressedSize;
FUZ_displayUpdate(cycleNb);
(void)FUZ_rand(&coreRandState);
randState = coreRandState ^ PRIME3;
/* Select block to test */
blockSize = FUZ_rand(&randState) % FUZ_MAX_BLOCK_SIZE;
blockStart = FUZ_rand(&randState) % (COMPRESSIBLE_NOISE_LENGTH - blockSize);
dictSize = FUZ_rand(&randState) % FUZ_MAX_DICT_SIZE;
if (dictSize > blockStart) dictSize = blockStart;
block = ((char*)CNBuffer) + blockStart;
dict = block - dictSize;
/* Compression tests */
/* Test compression HC */
FUZ_DISPLAYTEST;
ret = LZ4_compressHC(block, compressedBuffer, blockSize);
FUZ_CHECKTEST(ret==0, "LZ4_compressHC() failed");
HCcompressedSize = ret;
// Test compression HC using external state
FUZ_DISPLAYTEST;
ret = LZ4_compressHC_withStateHC(stateLZ4HC, block, compressedBuffer, blockSize);
FUZ_CHECKTEST(ret==0, "LZ4_compressHC_withStateHC() failed");
// Test compression using external state
FUZ_DISPLAYTEST;
ret = LZ4_compress_withState(stateLZ4, block, compressedBuffer, blockSize);
FUZ_CHECKTEST(ret==0, "LZ4_compress_withState() failed");
// Test compression
FUZ_DISPLAYTEST;
ret = LZ4_compress(block, compressedBuffer, blockSize);
FUZ_CHECKTEST(ret==0, "LZ4_compress() failed");
compressedSize = ret;
/* Decompression tests */
crcOrig = XXH32(block, blockSize, 0);
// Test decoding with output size being exactly what's necessary => must work
FUZ_DISPLAYTEST;
ret = LZ4_decompress_fast(compressedBuffer, decodedBuffer, blockSize);
FUZ_CHECKTEST(ret<0, "LZ4_decompress_fast failed despite correct space");
FUZ_CHECKTEST(ret!=compressedSize, "LZ4_decompress_fast failed : did not fully read compressed data");
crcCheck = XXH32(decodedBuffer, blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_fast corrupted decoded data");
// Test decoding with one byte missing => must fail
FUZ_DISPLAYTEST;
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_fast(compressedBuffer, decodedBuffer, blockSize-1);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_fast should have failed, due to Output Size being too small");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_fast overrun specified output buffer");
// Test decoding with one byte too much => must fail
FUZ_DISPLAYTEST;
ret = LZ4_decompress_fast(compressedBuffer, decodedBuffer, blockSize+1);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_fast should have failed, due to Output Size being too large");
// Test decoding with output size exactly what's necessary => must work
FUZ_DISPLAYTEST;
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize, blockSize);
FUZ_CHECKTEST(ret<0, "LZ4_decompress_safe failed despite sufficient space");
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe overrun specified output buffer size");
crcCheck = XXH32(decodedBuffer, blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe corrupted decoded data");
// Test decoding with more than enough output size => must work
FUZ_DISPLAYTEST;
decodedBuffer[blockSize] = 0;
decodedBuffer[blockSize+1] = 0;
ret = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize, blockSize+1);
FUZ_CHECKTEST(ret<0, "LZ4_decompress_safe failed despite amply sufficient space");
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe did not regenerate original data");
//FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe wrote more than (unknown) target size"); // well, is that an issue ?
FUZ_CHECKTEST(decodedBuffer[blockSize+1], "LZ4_decompress_safe overrun specified output buffer size");
crcCheck = XXH32(decodedBuffer, blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe corrupted decoded data");
// Test decoding with output size being one byte too short => must fail
FUZ_DISPLAYTEST;
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize, blockSize-1);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe should have failed, due to Output Size being one byte too short");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_safe overrun specified output buffer size");
// Test decoding with output size being 10 bytes too short => must fail
FUZ_DISPLAYTEST;
if (blockSize>10)
{
decodedBuffer[blockSize-10] = 0;
ret = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize, blockSize-10);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe should have failed, due to Output Size being 10 bytes too short");
FUZ_CHECKTEST(decodedBuffer[blockSize-10], "LZ4_decompress_safe overrun specified output buffer size");
}
// Test decoding with input size being one byte too short => must fail
FUZ_DISPLAYTEST;
ret = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize-1, blockSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe should have failed, due to input size being one byte too short (blockSize=%i, ret=%i, compressedSize=%i)", blockSize, ret, compressedSize);
// Test decoding with input size being one byte too large => must fail
FUZ_DISPLAYTEST;
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize+1, blockSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe should have failed, due to input size being too large");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe overrun specified output buffer size");
// Test partial decoding with target output size being max/2 => must work
FUZ_DISPLAYTEST;
ret = LZ4_decompress_safe_partial(compressedBuffer, decodedBuffer, compressedSize, blockSize/2, blockSize);
FUZ_CHECKTEST(ret<0, "LZ4_decompress_safe_partial failed despite sufficient space");
// Test partial decoding with target output size being just below max => must work
FUZ_DISPLAYTEST;
ret = LZ4_decompress_safe_partial(compressedBuffer, decodedBuffer, compressedSize, blockSize-3, blockSize);
FUZ_CHECKTEST(ret<0, "LZ4_decompress_safe_partial failed despite sufficient space");
/* Test Compression with limited output size */
/* Test compression with output size being exactly what's necessary (should work) */
FUZ_DISPLAYTEST;
ret = LZ4_compress_limitedOutput(block, compressedBuffer, blockSize, compressedSize);
FUZ_CHECKTEST(ret==0, "LZ4_compress_limitedOutput() failed despite sufficient space");
/* Test compression with output size being exactly what's necessary and external state (should work) */
FUZ_DISPLAYTEST;
ret = LZ4_compress_limitedOutput_withState(stateLZ4, block, compressedBuffer, blockSize, compressedSize);
FUZ_CHECKTEST(ret==0, "LZ4_compress_limitedOutput_withState() failed despite sufficient space");
/* Test HC compression with output size being exactly what's necessary (should work) */
FUZ_DISPLAYTEST;
ret = LZ4_compressHC_limitedOutput(block, compressedBuffer, blockSize, HCcompressedSize);
FUZ_CHECKTEST(ret==0, "LZ4_compressHC_limitedOutput() failed despite sufficient space");
/* Test HC compression with output size being exactly what's necessary (should work) */
FUZ_DISPLAYTEST;
ret = LZ4_compressHC_limitedOutput_withStateHC(stateLZ4HC, block, compressedBuffer, blockSize, HCcompressedSize);
FUZ_CHECKTEST(ret==0, "LZ4_compressHC_limitedOutput_withStateHC() failed despite sufficient space");
/* Test compression with missing bytes into output buffer => must fail */
FUZ_DISPLAYTEST;
{
int missingBytes = (FUZ_rand(&randState) % 0x3F) + 1;
if (missingBytes >= compressedSize) missingBytes = compressedSize-1;
missingBytes += !missingBytes; /* avoid special case missingBytes==0 */
compressedBuffer[compressedSize-missingBytes] = 0;
ret = LZ4_compress_limitedOutput(block, compressedBuffer, blockSize, compressedSize-missingBytes);
FUZ_CHECKTEST(ret, "LZ4_compress_limitedOutput should have failed (output buffer too small by %i byte)", missingBytes);
FUZ_CHECKTEST(compressedBuffer[compressedSize-missingBytes], "LZ4_compress_limitedOutput overran output buffer ! (%i missingBytes)", missingBytes)
}
/* Test HC compression with missing bytes into output buffer => must fail */
FUZ_DISPLAYTEST;
{
int missingBytes = (FUZ_rand(&randState) % 0x3F) + 1;
if (missingBytes >= HCcompressedSize) missingBytes = HCcompressedSize-1;
missingBytes += !missingBytes; /* avoid special case missingBytes==0 */
compressedBuffer[HCcompressedSize-missingBytes] = 0;
ret = LZ4_compressHC_limitedOutput(block, compressedBuffer, blockSize, HCcompressedSize-missingBytes);
FUZ_CHECKTEST(ret, "LZ4_compressHC_limitedOutput should have failed (output buffer too small by %i byte)", missingBytes);
FUZ_CHECKTEST(compressedBuffer[HCcompressedSize-missingBytes], "LZ4_compressHC_limitedOutput overran output buffer ! (%i missingBytes)", missingBytes)
}
/********************/
/* Dictionary tests */
/********************/
/* Compress using dictionary */
FUZ_DISPLAYTEST;
LZ4continue = LZ4_create (dict);
LZ4_compress_continue ((LZ4_stream_t*)LZ4continue, dict, compressedBuffer, dictSize); // Just to fill hash tables
blockContinueCompressedSize = LZ4_compress_continue ((LZ4_stream_t*)LZ4continue, block, compressedBuffer, blockSize);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_continue failed");
free (LZ4continue);
/* Decompress with dictionary as prefix */
FUZ_DISPLAYTEST;
memcpy(decodedBuffer, dict, dictSize);
ret = LZ4_decompress_fast_withPrefix64k(compressedBuffer, decodedBuffer+dictSize, blockSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_decompress_fast_withPrefix64k did not read all compressed block input");
crcCheck = XXH32(decodedBuffer+dictSize, blockSize, 0);
if (crcCheck!=crcOrig)
{
int i=0;
while (block[i]==decodedBuffer[i]) i++;
printf("Wrong Byte at position %i/%i\n", i, blockSize);
}
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_fast_withPrefix64k corrupted decoded data (dict %i)", dictSize);
FUZ_DISPLAYTEST;
ret = LZ4_decompress_safe_withPrefix64k(compressedBuffer, decodedBuffer+dictSize, blockContinueCompressedSize, blockSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_withPrefix64k did not regenerate original data");
crcCheck = XXH32(decodedBuffer+dictSize, blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe_withPrefix64k corrupted decoded data");
// Compress using External dictionary
FUZ_DISPLAYTEST;
dict -= (FUZ_rand(&randState) & 0xF) + 1; // Separation, so it is an ExtDict
if (dict < (char*)CNBuffer) dict = (char*)CNBuffer;
LZ4_loadDict(&LZ4dict, dict, dictSize);
blockContinueCompressedSize = LZ4_compress_continue(&LZ4dict, block, compressedBuffer, blockSize);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_continue failed");
FUZ_DISPLAYTEST;
LZ4_loadDict(&LZ4dict, dict, dictSize);
ret = LZ4_compress_limitedOutput_continue(&LZ4dict, block, compressedBuffer, blockSize, blockContinueCompressedSize-1);
FUZ_CHECKTEST(ret>0, "LZ4_compress_limitedOutput_continue using ExtDict should fail : one missing byte for output buffer");
FUZ_DISPLAYTEST;
LZ4_loadDict(&LZ4dict, dict, dictSize);
ret = LZ4_compress_limitedOutput_continue(&LZ4dict, block, compressedBuffer, blockSize, blockContinueCompressedSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_limitedOutput_compressed size is different (%i != %i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_limitedOutput_continue should work : enough size available within output buffer");
// Decompress with dictionary as external
FUZ_DISPLAYTEST;
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_fast_usingDict(compressedBuffer, decodedBuffer, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_decompress_fast_usingDict did not read all compressed block input");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_fast_usingDict overrun specified output buffer size")
crcCheck = XXH32(decodedBuffer, blockSize, 0);
if (crcCheck!=crcOrig)
{
int i=0;
while (block[i]==decodedBuffer[i]) i++;
printf("Wrong Byte at position %i/%i\n", i, blockSize);
}
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_fast_usingDict corrupted decoded data (dict %i)", dictSize);
FUZ_DISPLAYTEST;
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe_usingDict overrun specified output buffer size")
crcCheck = XXH32(decodedBuffer, blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe_usingDict corrupted decoded data");
FUZ_DISPLAYTEST;
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_fast_usingDict(compressedBuffer, decodedBuffer, blockSize-1, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_fast_withDict should have failed : wrong original size (-1 byte)");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_fast_usingDict overrun specified output buffer size");
FUZ_DISPLAYTEST;
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize-1, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe_usingDict should have failed : not enough output size (-1 byte)");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_safe_usingDict overrun specified output buffer size");
FUZ_DISPLAYTEST;
{
U32 missingBytes = (FUZ_rand(&randState) & 0xF) + 2;
if ((U32)blockSize > missingBytes)
{
decodedBuffer[blockSize-missingBytes] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize-missingBytes, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe_usingDict should have failed : output buffer too small (-%u byte)", missingBytes);
FUZ_CHECKTEST(decodedBuffer[blockSize-missingBytes], "LZ4_decompress_safe_usingDict overrun specified output buffer size (-%u byte) (blockSize=%i)", missingBytes, blockSize);
}
}
// Compress HC using External dictionary
FUZ_DISPLAYTEST;
dict -= (FUZ_rand(&randState) & 7); // even bigger separation
if (dict < (char*)CNBuffer) dict = (char*)CNBuffer;
LZ4_resetStreamHC (&LZ4dictHC, FUZ_rand(&randState) & 0x7);
LZ4_loadDictHC(&LZ4dictHC, dict, dictSize);
blockContinueCompressedSize = LZ4_compressHC_continue(&LZ4dictHC, block, compressedBuffer, blockSize);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compressHC_continue failed");
FUZ_DISPLAYTEST;
LZ4_loadDictHC(&LZ4dictHC, dict, dictSize);
ret = LZ4_compressHC_limitedOutput_continue(&LZ4dictHC, block, compressedBuffer, blockSize, blockContinueCompressedSize-1);
FUZ_CHECKTEST(ret>0, "LZ4_compressHC_limitedOutput_continue using ExtDict should fail : one missing byte for output buffer");
FUZ_DISPLAYTEST;
LZ4_loadDictHC(&LZ4dictHC, dict, dictSize);
ret = LZ4_compressHC_limitedOutput_continue(&LZ4dictHC, block, compressedBuffer, blockSize, blockContinueCompressedSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_limitedOutput_compressed size is different (%i != %i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_limitedOutput_continue should work : enough size available within output buffer");
FUZ_DISPLAYTEST;
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe_usingDict overrun specified output buffer size")
crcCheck = XXH32(decodedBuffer, blockSize, 0);
if (crcCheck!=crcOrig)
{
int i=0;
while (block[i]==decodedBuffer[i]) i++;
printf("Wrong Byte at position %i/%i\n", i, blockSize);
}
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe_usingDict corrupted decoded data");
/* ***** End of tests *** */
/* Fill stats */
bytes += blockSize;
cbytes += compressedSize;
hcbytes += HCcompressedSize;
ccbytes += blockContinueCompressedSize;
}
if (nbCycles<=1) nbCycles = cycleNb;
printf("\r%7u /%7u - ", cycleNb, nbCycles);
printf("all tests completed successfully \n");
printf("compression ratio: %0.3f%%\n", (double)cbytes/bytes*100);
printf("HC compression ratio: %0.3f%%\n", (double)hcbytes/bytes*100);
printf("ratio with dict: %0.3f%%\n", (double)ccbytes/bytes*100);
/* release memory */
{
_exit:
free(CNBuffer);
free(compressedBuffer);
free(decodedBuffer);
free(stateLZ4);
free(stateLZ4HC);
return result;
_output_error:
result = 1;
goto _exit;
}
}
#define testInputSize (192 KB)
#define testCompressedSize (128 KB)
#define ringBufferSize (8 KB)
static void FUZ_unitTests(void)
{
const unsigned testNb = 0;
const unsigned seed = 0;
const unsigned cycleNb= 0;
char testInput[testInputSize];
char testCompressed[testCompressedSize];
char testVerify[testInputSize];
char ringBuffer[ringBufferSize];
U32 randState = 1;
// Init
FUZ_fillCompressibleNoiseBuffer(testInput, testInputSize, 0.50, &randState);
// 32-bits address space overflow test
FUZ_AddressOverflow();
// LZ4 streaming tests
{
LZ4_stream_t* statePtr;
LZ4_stream_t streamingState;
U64 crcOrig;
U64 crcNew;
int result;
// Allocation test
statePtr = LZ4_createStream();
FUZ_CHECKTEST(statePtr==NULL, "LZ4_createStream() allocation failed");
LZ4_freeStream(statePtr);
// simple compression test
crcOrig = XXH64(testInput, testCompressedSize, 0);
LZ4_resetStream(&streamingState);
result = LZ4_compress_limitedOutput_continue(&streamingState, testInput, testCompressed, testCompressedSize, testCompressedSize-1);
FUZ_CHECKTEST(result==0, "LZ4_compress_limitedOutput_continue() compression failed");
result = LZ4_decompress_safe(testCompressed, testVerify, result, testCompressedSize);
FUZ_CHECKTEST(result!=(int)testCompressedSize, "LZ4_decompress_safe() decompression failed");
crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() decompression corruption");
// ring buffer test
{
XXH64_state_t xxhOrig;
XXH64_state_t xxhNew;
LZ4_streamDecode_t decodeState;
const U32 maxMessageSizeLog = 10;
const U32 maxMessageSizeMask = (1<<maxMessageSizeLog) - 1;
U32 messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
U32 iNext = 0;
U32 rNext = 0;
U32 dNext = 0;
const U32 dBufferSize = ringBufferSize + maxMessageSizeMask;
XXH64_reset(&xxhOrig, 0);
XXH64_reset(&xxhNew, 0);
LZ4_resetStream(&streamingState);
LZ4_setStreamDecode(&decodeState, NULL, 0);
while (iNext + messageSize < testCompressedSize)
{
XXH64_update(&xxhOrig, testInput + iNext, messageSize);
crcOrig = XXH64_digest(&xxhOrig);
memcpy (ringBuffer + rNext, testInput + iNext, messageSize);
result = LZ4_compress_limitedOutput_continue(&streamingState, ringBuffer + rNext, testCompressed, messageSize, testCompressedSize-ringBufferSize);
FUZ_CHECKTEST(result==0, "LZ4_compress_limitedOutput_continue() compression failed");
result = LZ4_decompress_safe_continue(&decodeState, testCompressed, testVerify + dNext, result, messageSize);
FUZ_CHECKTEST(result!=(int)messageSize, "ringBuffer : LZ4_decompress_safe() test failed");
XXH64_update(&xxhNew, testVerify + dNext, messageSize);
crcNew = XXH64_digest(&xxhNew);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() decompression corruption");
// prepare next message
iNext += messageSize;
rNext += messageSize;
dNext += messageSize;
messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
if (rNext + messageSize > ringBufferSize) rNext = 0;
if (dNext + messageSize > dBufferSize) dNext = 0;
}
}
}
// LZ4 HC streaming tests
{
LZ4_streamHC_t* sp;
LZ4_streamHC_t sHC;
//XXH64_state_t xxh;
U64 crcOrig;
U64 crcNew;
int result;
// Allocation test
sp = LZ4_createStreamHC();
FUZ_CHECKTEST(sp==NULL, "LZ4_createStreamHC() allocation failed");
LZ4_freeStreamHC(sp);
// simple compression test
crcOrig = XXH64(testInput, testCompressedSize, 0);
LZ4_resetStreamHC(&sHC, 0);
result = LZ4_compressHC_limitedOutput_continue(&sHC, testInput, testCompressed, testCompressedSize, testCompressedSize-1);
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() compression failed");
result = LZ4_decompress_safe(testCompressed, testVerify, result, testCompressedSize);
FUZ_CHECKTEST(result!=(int)testCompressedSize, "LZ4_decompress_safe() decompression failed");
crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() decompression corruption");
// simple dictionary compression test
crcOrig = XXH64(testInput + 64 KB, testCompressedSize, 0);
LZ4_resetStreamHC(&sHC, 0);
LZ4_loadDictHC(&sHC, testInput, 64 KB);
result = LZ4_compressHC_limitedOutput_continue(&sHC, testInput + 64 KB, testCompressed, testCompressedSize, testCompressedSize-1);
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : result = %i", result);
result = LZ4_decompress_safe_usingDict(testCompressed, testVerify, result, testCompressedSize, testInput, 64 KB);
FUZ_CHECKTEST(result!=(int)testCompressedSize, "LZ4_decompress_safe() simple dictionary decompression test failed");
crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() simple dictionary decompression test : corruption");
/* multiple HC compression test with dictionary */
{
int result1, result2;
int segSize = testCompressedSize / 2;
crcOrig = XXH64(testInput + segSize, testCompressedSize, 0);
LZ4_resetStreamHC(&sHC, 0);
LZ4_loadDictHC(&sHC, testInput, segSize);
result1 = LZ4_compressHC_limitedOutput_continue(&sHC, testInput + segSize, testCompressed, segSize, segSize -1);
FUZ_CHECKTEST(result1==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : result = %i", result1);
result2 = LZ4_compressHC_limitedOutput_continue(&sHC, testInput + 2*segSize, testCompressed+result1, segSize, segSize-1);
FUZ_CHECKTEST(result2==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : result = %i", result2);
result = LZ4_decompress_safe_usingDict(testCompressed, testVerify, result1, segSize, testInput, segSize);
FUZ_CHECKTEST(result!=segSize, "LZ4_decompress_safe() dictionary decompression part 1 failed");
result = LZ4_decompress_safe_usingDict(testCompressed+result1, testVerify+segSize, result2, segSize, testInput, 2*segSize);
FUZ_CHECKTEST(result!=segSize, "LZ4_decompress_safe() dictionary decompression part 2 failed");
crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() dictionary decompression corruption");
}
// remote dictionary HC compression test
crcOrig = XXH64(testInput + 64 KB, testCompressedSize, 0);
LZ4_resetStreamHC(&sHC, 0);
LZ4_loadDictHC(&sHC, testInput, 32 KB);
result = LZ4_compressHC_limitedOutput_continue(&sHC, testInput + 64 KB, testCompressed, testCompressedSize, testCompressedSize-1);
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() remote dictionary failed : result = %i", result);
result = LZ4_decompress_safe_usingDict(testCompressed, testVerify, result, testCompressedSize, testInput, 32 KB);
FUZ_CHECKTEST(result!=(int)testCompressedSize, "LZ4_decompress_safe_usingDict() decompression failed following remote dictionary HC compression test");
crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe_usingDict() decompression corruption");
/* multiple HC compression with ext. dictionary */
{
XXH64_state_t crcOrigState;
XXH64_state_t crcNewState;
const char* dict = testInput + 3;
int dictSize = (FUZ_rand(&randState) & 8191);
char* dst = testVerify;
size_t segStart = dictSize + 7;
int segSize = (FUZ_rand(&randState) & 8191);
int segNb = 1;
LZ4_resetStreamHC(&sHC, 0);
LZ4_loadDictHC(&sHC, dict, dictSize);
XXH64_reset(&crcOrigState, 0);
XXH64_reset(&crcNewState, 0);
while (segStart + segSize < testInputSize)
{
XXH64_update(&crcOrigState, testInput + segStart, segSize);
crcOrig = XXH64_digest(&crcOrigState);
result = LZ4_compressHC_limitedOutput_continue(&sHC, testInput + segStart, testCompressed, segSize, LZ4_compressBound(segSize));
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : result = %i", result);
result = LZ4_decompress_safe_usingDict(testCompressed, dst, result, segSize, dict, dictSize);
FUZ_CHECKTEST(result!=segSize, "LZ4_decompress_safe_usingDict() dictionary decompression part %i failed", segNb);
XXH64_update(&crcNewState, dst, segSize);
crcNew = XXH64_digest(&crcNewState);
if (crcOrig!=crcNew)
{
size_t c=0;
while (dst[c] == testInput[segStart+c]) c++;
DISPLAY("Bad decompression at %u / %u \n", (U32)c, (U32)segSize);
}
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe_usingDict() part %i corruption", segNb);
dict = dst;
//dict = testInput + segStart;
dictSize = segSize;
dst += segSize + 1;
segNb ++;
segStart += segSize + (FUZ_rand(&randState) & 0xF) + 1;
segSize = (FUZ_rand(&randState) & 8191);
}
}
/* ring buffer test */
{
XXH64_state_t xxhOrig;
XXH64_state_t xxhNew;
LZ4_streamDecode_t decodeState;
const U32 maxMessageSizeLog = 10;
const U32 maxMessageSizeMask = (1<<maxMessageSizeLog) - 1;
U32 messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
U32 iNext = 0;
U32 rNext = 0;
U32 dNext = 0;
const U32 dBufferSize = ringBufferSize + maxMessageSizeMask;
XXH64_reset(&xxhOrig, 0);
XXH64_reset(&xxhNew, 0);
LZ4_resetStreamHC(&sHC, 0);
LZ4_setStreamDecode(&decodeState, NULL, 0);
while (iNext + messageSize < testCompressedSize)
{
XXH64_update(&xxhOrig, testInput + iNext, messageSize);
crcOrig = XXH64_digest(&xxhOrig);
memcpy (ringBuffer + rNext, testInput + iNext, messageSize);
result = LZ4_compressHC_limitedOutput_continue(&sHC, ringBuffer + rNext, testCompressed, messageSize, testCompressedSize-ringBufferSize);
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() compression failed");
result = LZ4_decompress_safe_continue(&decodeState, testCompressed, testVerify + dNext, result, messageSize);
FUZ_CHECKTEST(result!=(int)messageSize, "ringBuffer : LZ4_decompress_safe() test failed");
XXH64_update(&xxhNew, testVerify + dNext, messageSize);
crcNew = XXH64_digest(&xxhNew);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() decompression corruption");
// prepare next message
iNext += messageSize;
rNext += messageSize;
dNext += messageSize;
messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
if (rNext + messageSize > ringBufferSize) rNext = 0;
if (dNext + messageSize > dBufferSize) dNext = 0;
}
}
/* small decoder-side ring buffer test */
{
XXH64_state_t xxhOrig;
XXH64_state_t xxhNew;
LZ4_streamDecode_t decodeState;
const U32 maxMessageSizeLog = 10;
const U32 maxMessageSizeMask = (1<<maxMessageSizeLog) - 1;
U32 messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
U32 totalMessageSize = 0;
U32 iNext = 0;
U32 dNext = 0;
const U32 dBufferSize = 64 KB + maxMessageSizeMask;
XXH64_reset(&xxhOrig, 0);
XXH64_reset(&xxhNew, 0);
LZ4_resetStreamHC(&sHC, 0);
LZ4_setStreamDecode(&decodeState, NULL, 0);
while (totalMessageSize < 9 MB)
{
XXH64_update(&xxhOrig, testInput + iNext, messageSize);
crcOrig = XXH64_digest(&xxhOrig);
result = LZ4_compressHC_limitedOutput_continue(&sHC, testInput + iNext, testCompressed, messageSize, testCompressedSize-ringBufferSize);
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() compression failed");
result = LZ4_decompress_safe_continue(&decodeState, testCompressed, testVerify + dNext, result, messageSize);
FUZ_CHECKTEST(result!=(int)messageSize, "ringBuffer : LZ4_decompress_safe() test failed");
XXH64_update(&xxhNew, testVerify + dNext, messageSize);
crcNew = XXH64_digest(&xxhNew);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() decompression corruption");
/* prepare next message */
dNext += messageSize;
totalMessageSize += messageSize;
messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
iNext = (FUZ_rand(&randState) & 65535);
if (dNext + messageSize > dBufferSize) dNext = 0;
}
}
}
printf("All unit tests completed successfully \n");
return;
_output_error:
exit(1);
}
static int FUZ_usage(char* programName)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [args]\n", programName);
DISPLAY( "\n");
DISPLAY( "Arguments :\n");
DISPLAY( " -i# : Nb of tests (default:%i) \n", NB_ATTEMPTS);
DISPLAY( " -T# : Duration of tests (default: use Nb of tests) \n");
DISPLAY( " -s# : Select seed (default:prompt user)\n");
DISPLAY( " -t# : Select starting test number (default:0)\n");
DISPLAY( " -P# : Select compressibility in %% (default:%i%%)\n", FUZ_COMPRESSIBILITY_DEFAULT);
DISPLAY( " -v : verbose\n");
DISPLAY( " -p : pause at the end\n");
DISPLAY( " -h : display help and exit\n");
return 0;
}
int main(int argc, char** argv)
{
U32 seed=0;
int seedset=0;
int argNb;
int nbTests = NB_ATTEMPTS;
int testNb = 0;
int proba = FUZ_COMPRESSIBILITY_DEFAULT;
int pause = 0;
char* programName = argv[0];
U32 duration = 0;
/* Check command line */
for(argNb=1; argNb<argc; argNb++)
{
char* argument = argv[argNb];
if(!argument) continue; // Protection if argument empty
// Decode command (note : aggregated commands are allowed)
if (argument[0]=='-')
{
if (!strcmp(argument, "--no-prompt")) { pause=0; seedset=1; g_displayLevel=1; continue; }
argument++;
while (*argument!=0)
{
switch(*argument)
{
case 'h': /* display help */
return FUZ_usage(programName);
case 'v': /* verbose mode */
argument++;
g_displayLevel=4;
break;
case 'p': /* pause at the end */
argument++;
pause=1;
break;
case 'i':
argument++;
nbTests = 0; duration = 0;
while ((*argument>='0') && (*argument<='9'))
{
nbTests *= 10;
nbTests += *argument - '0';
argument++;
}
break;
case 'T':
argument++;
nbTests = 0; duration = 0;
for (;;)
{
if (argument[0]=='m')
{
duration *= 60;
argument++;
continue;
}
if (argument[0]=='n')
{
argument++;
continue;
}
if ((*argument>='0') && (*argument<='9'))
{
duration *= 10;
duration += *argument - '0';
argument++;
continue;
}
break;
}
break;
case 's':
argument++;
seed=0; seedset=1;
while ((*argument>='0') && (*argument<='9'))
{
seed *= 10;
seed += *argument - '0';
argument++;
}
break;
case 't': /* select starting test nb */
argument++;
testNb=0;
while ((*argument>='0') && (*argument<='9'))
{
testNb *= 10;
testNb += *argument - '0';
argument++;
}
break;
case 'P': /* change probability */
argument++;
proba=0;
while ((*argument>='0') && (*argument<='9'))
{
proba *= 10;
proba += *argument - '0';
argument++;
}
if (proba<0) proba=0;
if (proba>100) proba=100;
break;
default: ;
}
}
}
}
printf("Starting LZ4 fuzzer (%i-bits, %s)\n", (int)(sizeof(size_t)*8), LZ4_VERSION);
if (!seedset) seed = FUZ_GetMilliStart() % 10000;
printf("Seed = %u\n", seed);
if (proba!=FUZ_COMPRESSIBILITY_DEFAULT) printf("Compressibility : %i%%\n", proba);
if ((seedset==0) && (testNb==0)) FUZ_unitTests();
if (nbTests<=0) nbTests=1;
{
int result = FUZ_test(seed, nbTests, testNb, ((double)proba) / 100, duration);
if (pause)
{
DISPLAY("press enter ... \n");
getchar();
}
return result;
}
}