/* | |
xxHash - Fast Hash algorithm | |
Copyright (C) 2012-2013, Yann Collet. | |
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions are | |
met: | |
* Redistributions of source code must retain the above copyright | |
notice, this list of conditions and the following disclaimer. | |
* Redistributions in binary form must reproduce the above | |
copyright notice, this list of conditions and the following disclaimer | |
in the documentation and/or other materials provided with the | |
distribution. | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
You can contact the author at : | |
- xxHash source repository : http://code.google.com/p/xxhash/ | |
*/ | |
//************************************** | |
// Tuning parameters | |
//************************************** | |
// Unaligned memory access is automatically enabled for "common" CPU, such as x86. | |
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected. | |
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance. | |
// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32). | |
#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) | |
# define XXH_USE_UNALIGNED_ACCESS 1 | |
#endif | |
// XXH_ACCEPT_NULL_INPUT_POINTER : | |
// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. | |
// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. | |
// This option has a very small performance cost (only measurable on small inputs). | |
// By default, this option is disabled. To enable it, uncomment below define : | |
//#define XXH_ACCEPT_NULL_INPUT_POINTER 1 | |
// XXH_FORCE_NATIVE_FORMAT : | |
// By default, xxHash library provides endian-independant Hash values, based on little-endian convention. | |
// Results are therefore identical for little-endian and big-endian CPU. | |
// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. | |
// Should endian-independance be of no importance for your application, you may set the #define below to 1. | |
// It will improve speed for Big-endian CPU. | |
// This option has no impact on Little_Endian CPU. | |
#define XXH_FORCE_NATIVE_FORMAT 0 | |
//************************************** | |
// Compiler Specific Options | |
//************************************** | |
// Disable some Visual warning messages | |
#ifdef _MSC_VER // Visual Studio | |
# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant | |
#endif | |
#ifdef _MSC_VER // Visual Studio | |
# define forceinline static __forceinline | |
#else | |
# ifdef __GNUC__ | |
# define forceinline static inline __attribute__((always_inline)) | |
# else | |
# define forceinline static inline | |
# endif | |
#endif | |
//************************************** | |
// Includes & Memory related functions | |
//************************************** | |
#include "xxhash.h" | |
// Modify the local functions below should you wish to use some other memory related routines | |
// for malloc(), free() | |
#include <stdlib.h> | |
forceinline void* XXH_malloc(size_t s) { return malloc(s); } | |
forceinline void XXH_free (void* p) { free(p); } | |
// for memcpy() | |
#include <string.h> | |
forceinline void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } | |
//************************************** | |
// Basic Types | |
//************************************** | |
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99 | |
# include <stdint.h> | |
typedef uint8_t BYTE; | |
typedef uint16_t U16; | |
typedef uint32_t U32; | |
typedef int32_t S32; | |
typedef uint64_t U64; | |
#else | |
typedef unsigned char BYTE; | |
typedef unsigned short U16; | |
typedef unsigned int U32; | |
typedef signed int S32; | |
typedef unsigned long long U64; | |
#endif | |
#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS) | |
# define _PACKED __attribute__ ((packed)) | |
#else | |
# define _PACKED | |
#endif | |
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) | |
# ifdef __IBMC__ | |
# pragma pack(1) | |
# else | |
# pragma pack(push, 1) | |
# endif | |
#endif | |
typedef struct _U32_S { U32 v; } _PACKED U32_S; | |
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) | |
# pragma pack(pop) | |
#endif | |
#define A32(x) (((U32_S *)(x))->v) | |
//*************************************** | |
// Compiler-specific Functions and Macros | |
//*************************************** | |
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) | |
// Note : although _rotl exists for minGW (GCC under windows), performance seems poor | |
#if defined(_MSC_VER) | |
# define XXH_rotl32(x,r) _rotl(x,r) | |
#else | |
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) | |
#endif | |
#if defined(_MSC_VER) // Visual Studio | |
# define XXH_swap32 _byteswap_ulong | |
#elif GCC_VERSION >= 403 | |
# define XXH_swap32 __builtin_bswap32 | |
#else | |
static inline U32 XXH_swap32 (U32 x) { | |
return ((x << 24) & 0xff000000 ) | | |
((x << 8) & 0x00ff0000 ) | | |
((x >> 8) & 0x0000ff00 ) | | |
((x >> 24) & 0x000000ff );} | |
#endif | |
//************************************** | |
// Constants | |
//************************************** | |
#define PRIME32_1 2654435761U | |
#define PRIME32_2 2246822519U | |
#define PRIME32_3 3266489917U | |
#define PRIME32_4 668265263U | |
#define PRIME32_5 374761393U | |
//************************************** | |
// Architecture Macros | |
//************************************** | |
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; | |
#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch | |
static const int one = 1; | |
# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one)) | |
#endif | |
//************************************** | |
// Macros | |
//************************************** | |
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations | |
//**************************** | |
// Memory reads | |
//**************************** | |
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; | |
forceinline U32 XXH_readLE32_align(const U32* ptr, XXH_endianess endian, XXH_alignment align) | |
{ | |
if (align==XXH_unaligned) | |
return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr)); | |
else | |
return endian==XXH_littleEndian ? *ptr : XXH_swap32(*ptr); | |
} | |
forceinline U32 XXH_readLE32(const U32* ptr, XXH_endianess endian) { return XXH_readLE32_align(ptr, endian, XXH_unaligned); } | |
//**************************** | |
// Simple Hash Functions | |
//**************************** | |
forceinline U32 XXH32_endian_align(const void* input, int len, U32 seed, XXH_endianess endian, XXH_alignment align) | |
{ | |
const BYTE* p = (const BYTE*)input; | |
const BYTE* const bEnd = p + len; | |
U32 h32; | |
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | |
if (p==NULL) { len=0; p=(const BYTE*)(size_t)16; } | |
#endif | |
if (len>=16) | |
{ | |
const BYTE* const limit = bEnd - 16; | |
U32 v1 = seed + PRIME32_1 + PRIME32_2; | |
U32 v2 = seed + PRIME32_2; | |
U32 v3 = seed + 0; | |
U32 v4 = seed - PRIME32_1; | |
do | |
{ | |
v1 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; | |
v2 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; | |
v3 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; | |
v4 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; | |
} while (p<=limit); | |
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); | |
} | |
else | |
{ | |
h32 = seed + PRIME32_5; | |
} | |
h32 += (U32) len; | |
while (p<=bEnd-4) | |
{ | |
h32 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_3; | |
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; | |
p+=4; | |
} | |
while (p<bEnd) | |
{ | |
h32 += (*p) * PRIME32_5; | |
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; | |
p++; | |
} | |
h32 ^= h32 >> 15; | |
h32 *= PRIME32_2; | |
h32 ^= h32 >> 13; | |
h32 *= PRIME32_3; | |
h32 ^= h32 >> 16; | |
return h32; | |
} | |
U32 XXH32(const void* input, int len, U32 seed) | |
{ | |
#if 0 | |
// Simple version, good for code maintenance, but unfortunately slow for small inputs | |
void* state = XXH32_init(seed); | |
XXH32_update(state, input, len); | |
return XXH32_digest(state); | |
#else | |
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | |
# if !defined(XXH_USE_UNALIGNED_ACCESS) | |
if ((((size_t)input) & 3)) // Input is aligned, let's leverage the speed advantage | |
{ | |
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | |
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); | |
else | |
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); | |
} | |
# endif | |
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | |
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); | |
else | |
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); | |
#endif | |
} | |
//**************************** | |
// Advanced Hash Functions | |
//**************************** | |
struct XXH_state32_t | |
{ | |
U64 total_len; | |
U32 seed; | |
U32 v1; | |
U32 v2; | |
U32 v3; | |
U32 v4; | |
int memsize; | |
char memory[16]; | |
}; | |
int XXH32_sizeofState() | |
{ | |
XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough | |
return sizeof(struct XXH_state32_t); | |
} | |
XXH_errorcode XXH32_resetState(void* state_in, U32 seed) | |
{ | |
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; | |
state->seed = seed; | |
state->v1 = seed + PRIME32_1 + PRIME32_2; | |
state->v2 = seed + PRIME32_2; | |
state->v3 = seed + 0; | |
state->v4 = seed - PRIME32_1; | |
state->total_len = 0; | |
state->memsize = 0; | |
return XXH_OK; | |
} | |
void* XXH32_init (U32 seed) | |
{ | |
void* state = XXH_malloc (sizeof(struct XXH_state32_t)); | |
XXH32_resetState(state, seed); | |
return state; | |
} | |
forceinline XXH_errorcode XXH32_update_endian (void* state_in, const void* input, int len, XXH_endianess endian) | |
{ | |
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; | |
const BYTE* p = (const BYTE*)input; | |
const BYTE* const bEnd = p + len; | |
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | |
if (input==NULL) return XXH_ERROR; | |
#endif | |
state->total_len += len; | |
if (state->memsize + len < 16) // fill in tmp buffer | |
{ | |
XXH_memcpy(state->memory + state->memsize, input, len); | |
state->memsize += len; | |
return XXH_OK; | |
} | |
if (state->memsize) // some data left from previous update | |
{ | |
XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize); | |
{ | |
const U32* p32 = (const U32*)state->memory; | |
state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++; | |
state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++; | |
state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++; | |
state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++; | |
} | |
p += 16-state->memsize; | |
state->memsize = 0; | |
} | |
if (p <= bEnd-16) | |
{ | |
const BYTE* const limit = bEnd - 16; | |
U32 v1 = state->v1; | |
U32 v2 = state->v2; | |
U32 v3 = state->v3; | |
U32 v4 = state->v4; | |
do | |
{ | |
v1 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; | |
v2 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; | |
v3 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; | |
v4 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; | |
} while (p<=limit); | |
state->v1 = v1; | |
state->v2 = v2; | |
state->v3 = v3; | |
state->v4 = v4; | |
} | |
if (p < bEnd) | |
{ | |
XXH_memcpy(state->memory, p, bEnd-p); | |
state->memsize = (int)(bEnd-p); | |
} | |
return XXH_OK; | |
} | |
XXH_errorcode XXH32_update (void* state_in, const void* input, int len) | |
{ | |
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | |
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | |
return XXH32_update_endian(state_in, input, len, XXH_littleEndian); | |
else | |
return XXH32_update_endian(state_in, input, len, XXH_bigEndian); | |
} | |
forceinline U32 XXH32_intermediateDigest_endian (void* state_in, XXH_endianess endian) | |
{ | |
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; | |
const BYTE * p = (const BYTE*)state->memory; | |
BYTE* bEnd = (BYTE*)state->memory + state->memsize; | |
U32 h32; | |
if (state->total_len >= 16) | |
{ | |
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); | |
} | |
else | |
{ | |
h32 = state->seed + PRIME32_5; | |
} | |
h32 += (U32) state->total_len; | |
while (p<=bEnd-4) | |
{ | |
h32 += XXH_readLE32((const U32*)p, endian) * PRIME32_3; | |
h32 = XXH_rotl32(h32, 17) * PRIME32_4; | |
p+=4; | |
} | |
while (p<bEnd) | |
{ | |
h32 += (*p) * PRIME32_5; | |
h32 = XXH_rotl32(h32, 11) * PRIME32_1; | |
p++; | |
} | |
h32 ^= h32 >> 15; | |
h32 *= PRIME32_2; | |
h32 ^= h32 >> 13; | |
h32 *= PRIME32_3; | |
h32 ^= h32 >> 16; | |
return h32; | |
} | |
U32 XXH32_intermediateDigest (void* state_in) | |
{ | |
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | |
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | |
return XXH32_intermediateDigest_endian(state_in, XXH_littleEndian); | |
else | |
return XXH32_intermediateDigest_endian(state_in, XXH_bigEndian); | |
} | |
U32 XXH32_digest (void* state_in) | |
{ | |
U32 h32 = XXH32_intermediateDigest(state_in); | |
XXH_free(state_in); | |
return h32; | |
} |