| /*
|
| xxHash - Fast Hash algorithm
|
| Copyright (C) 2012-2014, Yann Collet.
|
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
| Redistribution and use in source and binary forms, with or without
|
| modification, are permitted provided that the following conditions are
|
| met:
|
|
|
| * Redistributions of source code must retain the above copyright
|
| notice, this list of conditions and the following disclaimer.
|
| * Redistributions in binary form must reproduce the above
|
| copyright notice, this list of conditions and the following disclaimer
|
| in the documentation and/or other materials provided with the
|
| distribution.
|
|
|
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
| You can contact the author at :
|
| - xxHash source repository : http://code.google.com/p/xxhash/
|
| */
|
|
|
|
|
| //**************************************
|
| // Tuning parameters
|
| //**************************************
|
| // Unaligned memory access is automatically enabled for "common" CPU, such as x86.
|
| // For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
|
| // If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
|
| // You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
|
| #if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
|
| # define XXH_USE_UNALIGNED_ACCESS 1
|
| #endif
|
|
|
| // XXH_ACCEPT_NULL_INPUT_POINTER :
|
| // If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
|
| // When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
|
| // This option has a very small performance cost (only measurable on small inputs).
|
| // By default, this option is disabled. To enable it, uncomment below define :
|
| // #define XXH_ACCEPT_NULL_INPUT_POINTER 1
|
|
|
| // XXH_FORCE_NATIVE_FORMAT :
|
| // By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
|
| // Results are therefore identical for little-endian and big-endian CPU.
|
| // This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
|
| // Should endian-independance be of no importance for your application, you may set the #define below to 1.
|
| // It will improve speed for Big-endian CPU.
|
| // This option has no impact on Little_Endian CPU.
|
| #define XXH_FORCE_NATIVE_FORMAT 0
|
|
|
| //**************************************
|
| // Compiler Specific Options
|
| //**************************************
|
| // Disable some Visual warning messages
|
| #ifdef _MSC_VER // Visual Studio
|
| # pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
|
| #endif
|
|
|
| #ifdef _MSC_VER // Visual Studio
|
| # define FORCE_INLINE static __forceinline
|
| #else
|
| # ifdef __GNUC__
|
| # define FORCE_INLINE static inline __attribute__((always_inline))
|
| # else
|
| # define FORCE_INLINE static inline
|
| # endif
|
| #endif
|
|
|
| //**************************************
|
| // Includes & Memory related functions
|
| //**************************************
|
| #include "xxhash.h"
|
| // Modify the local functions below should you wish to use some other memory related routines
|
| // for malloc(), free()
|
| #include <stdlib.h>
|
| FORCE_INLINE void* XXH_malloc(size_t s) { return malloc(s); }
|
| FORCE_INLINE void XXH_free (void* p) { free(p); }
|
| // for memcpy()
|
| #include <string.h>
|
| FORCE_INLINE void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
|
|
|
|
|
| //**************************************
|
| // Basic Types
|
| //**************************************
|
| #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
|
| # include <stdint.h>
|
| typedef uint8_t BYTE;
|
| typedef uint16_t U16;
|
| typedef uint32_t U32;
|
| typedef int32_t S32;
|
| typedef uint64_t U64;
|
| #else
|
| typedef unsigned char BYTE;
|
| typedef unsigned short U16;
|
| typedef unsigned int U32;
|
| typedef signed int S32;
|
| typedef unsigned long long U64;
|
| #endif
|
|
|
| #if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
|
| # define _PACKED __attribute__ ((packed))
|
| #else
|
| # define _PACKED
|
| #endif
|
|
|
| #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
|
| # ifdef __IBMC__
|
| # pragma pack(1)
|
| # else
|
| # pragma pack(push, 1)
|
| # endif
|
| #endif
|
|
|
| typedef struct _U32_S { U32 v; } _PACKED U32_S;
|
| typedef struct _U64_S { U64 v; } _PACKED U64_S;
|
|
|
| #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
|
| # pragma pack(pop)
|
| #endif
|
|
|
| #define A32(x) (((U32_S *)(x))->v)
|
| #define A64(x) (((U64_S *)(x))->v)
|
|
|
|
|
| //***************************************
|
| // Compiler-specific Functions and Macros
|
| //***************************************
|
| #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
|
| // Note : although _rotl exists for minGW (GCC under windows), performance seems poor
|
| #if defined(_MSC_VER)
|
| # define XXH_rotl32(x,r) _rotl(x,r)
|
| # define XXH_rotl64(x,r) _rotl64(x,r)
|
| #else
|
| # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
|
| # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
|
| #endif
|
|
|
| #if defined(_MSC_VER) // Visual Studio
|
| # define XXH_swap32 _byteswap_ulong
|
| # define XXH_swap64 _byteswap_uint64
|
| #elif GCC_VERSION >= 403
|
| # define XXH_swap32 __builtin_bswap32
|
| # define XXH_swap64 __builtin_bswap64
|
| #else
|
| static inline U32 XXH_swap32 (U32 x) {
|
| return ((x << 24) & 0xff000000 ) |
|
| ((x << 8) & 0x00ff0000 ) |
|
| ((x >> 8) & 0x0000ff00 ) |
|
| ((x >> 24) & 0x000000ff );}
|
| static inline U64 XXH_swap64 (U64 x) {
|
| return ((x << 56) & 0xff00000000000000ULL) |
|
| ((x << 40) & 0x00ff000000000000ULL) |
|
| ((x << 24) & 0x0000ff0000000000ULL) |
|
| ((x << 8) & 0x000000ff00000000ULL) |
|
| ((x >> 8) & 0x00000000ff000000ULL) |
|
| ((x >> 24) & 0x0000000000ff0000ULL) |
|
| ((x >> 40) & 0x000000000000ff00ULL) |
|
| ((x >> 56) & 0x00000000000000ffULL);}
|
| #endif
|
|
|
|
|
| //**************************************
|
| // Constants
|
| //**************************************
|
| #define PRIME32_1 2654435761U
|
| #define PRIME32_2 2246822519U
|
| #define PRIME32_3 3266489917U
|
| #define PRIME32_4 668265263U
|
| #define PRIME32_5 374761393U
|
|
|
| #define PRIME64_1 11400714785074694791ULL
|
| #define PRIME64_2 14029467366897019727ULL
|
| #define PRIME64_3 1609587929392839161ULL
|
| #define PRIME64_4 9650029242287828579ULL
|
| #define PRIME64_5 2870177450012600261ULL
|
|
|
| //**************************************
|
| // Architecture Macros
|
| //**************************************
|
| typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
|
| #ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
|
| static const int one = 1;
|
| # define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
|
| #endif
|
|
|
|
|
| //**************************************
|
| // Macros
|
| //**************************************
|
| #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
|
|
|
|
|
| //****************************
|
| // Memory reads
|
| //****************************
|
| typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
|
|
|
| FORCE_INLINE U32 XXH_readLE32_align(const U32* ptr, XXH_endianess endian, XXH_alignment align)
|
| {
|
| if (align==XXH_unaligned)
|
| return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
|
| else
|
| return endian==XXH_littleEndian ? *ptr : XXH_swap32(*ptr);
|
| }
|
|
|
| FORCE_INLINE U32 XXH_readLE32(const U32* ptr, XXH_endianess endian) { return XXH_readLE32_align(ptr, endian, XXH_unaligned); }
|
|
|
| FORCE_INLINE U64 XXH_readLE64_align(const U64* ptr, XXH_endianess endian, XXH_alignment align)
|
| {
|
| if (align==XXH_unaligned)
|
| return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
|
| else
|
| return endian==XXH_littleEndian ? *ptr : XXH_swap64(*ptr);
|
| }
|
|
|
| FORCE_INLINE U64 XXH_readLE64(const U64* ptr, XXH_endianess endian) { return XXH_readLE64_align(ptr, endian, XXH_unaligned); }
|
|
|
|
|
| //****************************
|
| // Simple Hash Functions
|
| //****************************
|
| FORCE_INLINE U32 XXH32_endian_align(const void* input, unsigned int len, U32 seed, XXH_endianess endian, XXH_alignment align)
|
| {
|
| const BYTE* p = (const BYTE*)input;
|
| const BYTE* bEnd = p + len; |
| U32 h32;
|
| #define XXH_get32bits(p) XXH_readLE32_align((const U32*)p, endian, align)
|
|
|
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
| if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)16; }
|
| #endif
|
|
|
| if (len>=16)
|
| {
|
| const BYTE* const limit = bEnd - 16;
|
| U32 v1 = seed + PRIME32_1 + PRIME32_2;
|
| U32 v2 = seed + PRIME32_2;
|
| U32 v3 = seed + 0;
|
| U32 v4 = seed - PRIME32_1;
|
|
|
| do
|
| {
|
| v1 += XXH_get32bits(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
|
| v2 += XXH_get32bits(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
|
| v3 += XXH_get32bits(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
|
| v4 += XXH_get32bits(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
|
| } while (p<=limit);
|
|
|
| h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
|
| }
|
| else
|
| {
|
| h32 = seed + PRIME32_5;
|
| }
|
|
|
| h32 += (U32) len;
|
|
|
| while (p+4<=bEnd)
|
| {
|
| h32 += XXH_get32bits(p) * PRIME32_3;
|
| h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
|
| p+=4;
|
| }
|
|
|
| while (p<bEnd)
|
| {
|
| h32 += (*p) * PRIME32_5;
|
| h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
|
| p++;
|
| }
|
|
|
| h32 ^= h32 >> 15;
|
| h32 *= PRIME32_2;
|
| h32 ^= h32 >> 13;
|
| h32 *= PRIME32_3;
|
| h32 ^= h32 >> 16;
|
|
|
| return h32;
|
| }
|
|
|
|
|
| U32 XXH32(const void* input, unsigned int len, U32 seed)
|
| {
|
| #if 0
|
| // Simple version, good for code maintenance, but unfortunately slow for small inputs
|
| void* state = XXH32_init(seed);
|
| XXH32_update(state, input, len);
|
| return XXH32_digest(state);
|
| #else
|
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
| # if !defined(XXH_USE_UNALIGNED_ACCESS)
|
| if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
|
| {
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
|
| else
|
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
| }
|
| # endif
|
|
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
|
| else
|
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
| #endif
|
| }
|
|
|
| FORCE_INLINE U64 XXH64_endian_align(const void* input, unsigned int len, U64 seed, XXH_endianess endian, XXH_alignment align)
|
| {
|
| const BYTE* p = (const BYTE*)input;
|
| const BYTE* bEnd = p + len;
|
| U64 h64; |
| #define XXH_get64bits(p) XXH_readLE64_align((const U64*)p, endian, align)
|
|
|
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
| if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)32; }
|
| #endif
|
|
|
| if (len>=32)
|
| {
|
| const BYTE* const limit = bEnd - 32;
|
| U64 v1 = seed + PRIME64_1 + PRIME64_2;
|
| U64 v2 = seed + PRIME64_2;
|
| U64 v3 = seed + 0;
|
| U64 v4 = seed - PRIME64_1;
|
|
|
| do
|
| { |
| v1 += XXH_get64bits(p) * PRIME64_2; p+=8; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1;
|
| v2 += XXH_get64bits(p) * PRIME64_2; p+=8; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1;
|
| v3 += XXH_get64bits(p) * PRIME64_2; p+=8; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1;
|
| v4 += XXH_get64bits(p) * PRIME64_2; p+=8; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; |
| } while (p<=limit);
|
|
|
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
|
|
| v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;
|
| h64 = h64 * PRIME64_1 + PRIME64_4;
|
|
|
| v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;
|
| h64 = h64 * PRIME64_1 + PRIME64_4;
|
|
|
| v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;
|
| h64 = h64 * PRIME64_1 + PRIME64_4;
|
|
|
| v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;
|
| h64 = h64 * PRIME64_1 + PRIME64_4;
|
| }
|
| else
|
| {
|
| h64 = seed + PRIME64_5;
|
| }
|
|
|
| h64 += (U64) len;
|
|
|
| while (p+8<=bEnd)
|
| {
|
| U64 k1 = XXH_get64bits(p);
|
| k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;
|
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8;
|
| }
|
| |
| if (p+4<=bEnd)
|
| {
|
| h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
|
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4;
|
| }
|
| |
| while (p<bEnd)
|
| {
|
| h64 ^= (*p) * PRIME64_5;
|
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| } |
|
|
| h64 ^= h64 >> 33;
|
| h64 *= PRIME64_2;
|
| h64 ^= h64 >> 29;
|
| h64 *= PRIME64_3;
|
| h64 ^= h64 >> 32;
|
|
|
| return h64;
|
| }
|
| |
|
|
| unsigned long long XXH64(const void* input, unsigned int len, unsigned long long seed)
|
| {
|
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
| # if !defined(XXH_USE_UNALIGNED_ACCESS)
|
| if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
|
| {
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
|
| else
|
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
| }
|
| # endif
|
|
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
|
| else
|
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
| }
|
|
|
| //****************************
|
| // Advanced Hash Functions
|
| //****************************
|
|
|
| struct XXH_state32_t
|
| {
|
| U64 total_len;
|
| U32 seed;
|
| U32 v1;
|
| U32 v2;
|
| U32 v3;
|
| U32 v4;
|
| int memsize;
|
| char memory[16];
|
| };
|
|
|
| struct XXH_state64_t
|
| {
|
| U64 total_len;
|
| U64 seed;
|
| U64 v1;
|
| U64 v2;
|
| U64 v3;
|
| U64 v4;
|
| int memsize;
|
| char memory[32];
|
| };
|
|
|
|
|
| int XXH32_sizeofState(void)
|
| {
|
| XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough
|
| return sizeof(struct XXH_state32_t);
|
| }
|
|
|
| int XXH64_sizeofState(void)
|
| {
|
| XXH_STATIC_ASSERT(XXH64_SIZEOFSTATE >= sizeof(struct XXH_state64_t)); // A compilation error here means XXH64_SIZEOFSTATE is not large enough
|
| return sizeof(struct XXH_state64_t);
|
| }
|
|
|
|
|
| XXH_errorcode XXH32_resetState(void* state_in, U32 seed)
|
| {
|
| struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
|
| state->seed = seed;
|
| state->v1 = seed + PRIME32_1 + PRIME32_2;
|
| state->v2 = seed + PRIME32_2;
|
| state->v3 = seed + 0;
|
| state->v4 = seed - PRIME32_1;
|
| state->total_len = 0;
|
| state->memsize = 0;
|
| return XXH_OK;
|
| }
|
|
|
| XXH_errorcode XXH64_resetState(void* state_in, unsigned long long seed)
|
| {
|
| struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
|
| state->seed = seed;
|
| state->v1 = seed + PRIME64_1 + PRIME64_2;
|
| state->v2 = seed + PRIME64_2;
|
| state->v3 = seed + 0;
|
| state->v4 = seed - PRIME64_1;
|
| state->total_len = 0;
|
| state->memsize = 0;
|
| return XXH_OK;
|
| }
|
|
|
|
|
| void* XXH32_init (U32 seed)
|
| {
|
| void* state = XXH_malloc (sizeof(struct XXH_state32_t));
|
| if (state != NULL) XXH32_resetState(state, seed); |
| return state;
|
| }
|
|
|
| void* XXH64_init (unsigned long long seed)
|
| {
|
| void* state = XXH_malloc (sizeof(struct XXH_state64_t));
|
| if (state != NULL) XXH64_resetState(state, seed);
|
| return state;
|
| }
|
|
|
|
|
| FORCE_INLINE XXH_errorcode XXH32_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)
|
| {
|
| struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
|
| const BYTE* p = (const BYTE*)input;
|
| const BYTE* const bEnd = p + len;
|
|
|
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
| if (input==NULL) return XXH_ERROR;
|
| #endif
|
|
|
| state->total_len += len;
|
|
|
| if (state->memsize + len < 16) // fill in tmp buffer
|
| {
|
| XXH_memcpy(state->memory + state->memsize, input, len);
|
| state->memsize += len;
|
| return XXH_OK;
|
| }
|
|
|
| if (state->memsize) // some data left from previous update
|
| {
|
| XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize);
|
| {
|
| const U32* p32 = (const U32*)state->memory;
|
| state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++;
|
| state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++;
|
| state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++;
|
| state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++;
|
| }
|
| p += 16-state->memsize;
|
| state->memsize = 0;
|
| }
|
|
|
| if (p <= bEnd-16)
|
| {
|
| const BYTE* const limit = bEnd - 16;
|
| U32 v1 = state->v1;
|
| U32 v2 = state->v2;
|
| U32 v3 = state->v3;
|
| U32 v4 = state->v4;
|
|
|
| do
|
| {
|
| v1 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
|
| v2 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
|
| v3 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
|
| v4 += XXH_readLE32((const U32*)p, endian) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
|
| } while (p<=limit);
|
|
|
| state->v1 = v1;
|
| state->v2 = v2;
|
| state->v3 = v3;
|
| state->v4 = v4;
|
| }
|
|
|
| if (p < bEnd)
|
| {
|
| XXH_memcpy(state->memory, p, bEnd-p);
|
| state->memsize = (int)(bEnd-p);
|
| }
|
|
|
| return XXH_OK;
|
| }
|
|
|
| XXH_errorcode XXH32_update (void* state_in, const void* input, unsigned int len)
|
| {
|
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
|
| else
|
| return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
|
| }
|
|
|
|
|
|
|
| FORCE_INLINE U32 XXH32_intermediateDigest_endian (void* state_in, XXH_endianess endian)
|
| {
|
| struct XXH_state32_t * state = (struct XXH_state32_t *) state_in;
|
| const BYTE * p = (const BYTE*)state->memory;
|
| BYTE* bEnd = (BYTE*)state->memory + state->memsize;
|
| U32 h32;
|
|
|
| if (state->total_len >= 16)
|
| {
|
| h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
|
| }
|
| else
|
| {
|
| h32 = state->seed + PRIME32_5;
|
| }
|
|
|
| h32 += (U32) state->total_len;
|
|
|
| while (p+4<=bEnd)
|
| {
|
| h32 += XXH_readLE32((const U32*)p, endian) * PRIME32_3;
|
| h32 = XXH_rotl32(h32, 17) * PRIME32_4;
|
| p+=4;
|
| }
|
|
|
| while (p<bEnd)
|
| {
|
| h32 += (*p) * PRIME32_5;
|
| h32 = XXH_rotl32(h32, 11) * PRIME32_1;
|
| p++;
|
| }
|
|
|
| h32 ^= h32 >> 15;
|
| h32 *= PRIME32_2;
|
| h32 ^= h32 >> 13;
|
| h32 *= PRIME32_3;
|
| h32 ^= h32 >> 16;
|
|
|
| return h32;
|
| }
|
|
|
|
|
| U32 XXH32_intermediateDigest (void* state_in)
|
| {
|
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH32_intermediateDigest_endian(state_in, XXH_littleEndian);
|
| else
|
| return XXH32_intermediateDigest_endian(state_in, XXH_bigEndian);
|
| }
|
|
|
|
|
| U32 XXH32_digest (void* state_in)
|
| {
|
| U32 h32 = XXH32_intermediateDigest(state_in);
|
|
|
| XXH_free(state_in);
|
|
|
| return h32;
|
| }
|
|
|
|
|
| FORCE_INLINE XXH_errorcode XXH64_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)
|
| {
|
| struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
|
| const BYTE* p = (const BYTE*)input;
|
| const BYTE* const bEnd = p + len;
|
|
|
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
| if (input==NULL) return XXH_ERROR;
|
| #endif
|
|
|
| state->total_len += len;
|
|
|
| if (state->memsize + len < 32) // fill in tmp buffer
|
| {
|
| XXH_memcpy(state->memory + state->memsize, input, len);
|
| state->memsize += len;
|
| return XXH_OK;
|
| }
|
|
|
| if (state->memsize) // some data left from previous update
|
| {
|
| XXH_memcpy(state->memory + state->memsize, input, 32-state->memsize);
|
| {
|
| const U64* p64 = (const U64*)state->memory;
|
| state->v1 += XXH_readLE64(p64, endian) * PRIME64_2; state->v1 = XXH_rotl64(state->v1, 31); state->v1 *= PRIME64_1; p64++;
|
| state->v2 += XXH_readLE64(p64, endian) * PRIME64_2; state->v2 = XXH_rotl64(state->v2, 31); state->v2 *= PRIME64_1; p64++;
|
| state->v3 += XXH_readLE64(p64, endian) * PRIME64_2; state->v3 = XXH_rotl64(state->v3, 31); state->v3 *= PRIME64_1; p64++;
|
| state->v4 += XXH_readLE64(p64, endian) * PRIME64_2; state->v4 = XXH_rotl64(state->v4, 31); state->v4 *= PRIME64_1; p64++;
|
| }
|
| p += 32-state->memsize;
|
| state->memsize = 0;
|
| }
|
|
|
| if (p+32 <= bEnd)
|
| {
|
| const BYTE* const limit = bEnd - 32;
|
| U64 v1 = state->v1;
|
| U64 v2 = state->v2;
|
| U64 v3 = state->v3;
|
| U64 v4 = state->v4;
|
|
|
| do
|
| {
|
| v1 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; p+=8;
|
| v2 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; p+=8;
|
| v3 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; p+=8;
|
| v4 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; p+=8;
|
| } while (p<=limit);
|
|
|
| state->v1 = v1;
|
| state->v2 = v2;
|
| state->v3 = v3;
|
| state->v4 = v4;
|
| }
|
|
|
| if (p < bEnd)
|
| {
|
| XXH_memcpy(state->memory, p, bEnd-p);
|
| state->memsize = (int)(bEnd-p);
|
| }
|
|
|
| return XXH_OK;
|
| }
|
|
|
| XXH_errorcode XXH64_update (void* state_in, const void* input, unsigned int len)
|
| {
|
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
|
| else
|
| return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
|
| }
|
|
|
|
|
|
|
| FORCE_INLINE U64 XXH64_intermediateDigest_endian (void* state_in, XXH_endianess endian)
|
| {
|
| struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
|
| const BYTE * p = (const BYTE*)state->memory;
|
| BYTE* bEnd = (BYTE*)state->memory + state->memsize;
|
| U64 h64;
|
|
|
| if (state->total_len >= 32)
|
| {
|
| U64 v1 = state->v1;
|
| U64 v2 = state->v2;
|
| U64 v3 = state->v3;
|
| U64 v4 = state->v4;
|
|
|
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
|
|
| v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;
|
| h64 = h64*PRIME64_1 + PRIME64_4;
|
|
|
| v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;
|
| h64 = h64*PRIME64_1 + PRIME64_4;
|
|
|
| v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;
|
| h64 = h64*PRIME64_1 + PRIME64_4;
|
|
|
| v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;
|
| h64 = h64*PRIME64_1 + PRIME64_4;
|
| }
|
| else
|
| {
|
| h64 = state->seed + PRIME64_5;
|
| }
|
|
|
| h64 += (U64) state->total_len;
|
|
|
| while (p+8<=bEnd)
|
| {
|
| U64 k1 = XXH_readLE64((const U64*)p, endian);
|
| k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;
|
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8;
|
| }
|
|
|
| if (p+4<=bEnd)
|
| {
|
| h64 ^= (U64)(XXH_readLE32((const U32*)p, endian)) * PRIME64_1;
|
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4;
|
| }
|
| |
| while (p<bEnd)
|
| {
|
| h64 ^= (*p) * PRIME64_5;
|
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| }
|
|
|
| h64 ^= h64 >> 33;
|
| h64 *= PRIME64_2;
|
| h64 ^= h64 >> 29;
|
| h64 *= PRIME64_3;
|
| h64 ^= h64 >> 32;
|
|
|
| return h64;
|
| }
|
|
|
|
|
| unsigned long long XXH64_intermediateDigest (void* state_in)
|
| {
|
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
|
|
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
| return XXH64_intermediateDigest_endian(state_in, XXH_littleEndian);
|
| else
|
| return XXH64_intermediateDigest_endian(state_in, XXH_bigEndian);
|
| }
|
|
|
|
|
| unsigned long long XXH64_digest (void* state_in)
|
| {
|
| U64 h64 = XXH64_intermediateDigest(state_in);
|
|
|
| XXH_free(state_in);
|
|
|
| return h64;
|
| }
|
|
|