/* | |
LZ4 - Fast LZ compression algorithm | |
Copyright (C) 2011-2012, Yann Collet. | |
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions are | |
met: | |
* Redistributions of source code must retain the above copyright | |
notice, this list of conditions and the following disclaimer. | |
* Redistributions in binary form must reproduce the above | |
copyright notice, this list of conditions and the following disclaimer | |
in the documentation and/or other materials provided with the | |
distribution. | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
You can contact the author at : | |
- LZ4 homepage : http://fastcompression.blogspot.com/p/lz4.html | |
- LZ4 source repository : http://code.google.com/p/lz4/ | |
*/ | |
//************************************** | |
// Tuning parameters | |
//************************************** | |
// MEMORY_USAGE : | |
// Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) | |
// Increasing memory usage improves compression ratio | |
// Reduced memory usage can improve speed, due to cache effect | |
// Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache | |
#define MEMORY_USAGE 14 | |
// NOTCOMPRESSIBLE_DETECTIONLEVEL : | |
// Decreasing this value will make the algorithm skip faster data segments considered "incompressible" | |
// This may decrease compression ratio dramatically, but will be faster on incompressible data | |
// Increasing this value will make the algorithm search more before declaring a segment "incompressible" | |
// This could improve compression a bit, but will be slower on incompressible data | |
// The default value (6) is recommended | |
#define NOTCOMPRESSIBLE_DETECTIONLEVEL 6 | |
// BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE : | |
// This will provide a small boost to performance for big endian cpu, but the resulting compressed stream will be incompatible with little-endian CPU. | |
// You can set this option to 1 in situations where data will remain within closed environment | |
// This option is useless on Little_Endian CPU (such as x86) | |
//#define BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE 1 | |
//************************************** | |
// CPU Feature Detection | |
//************************************** | |
// 32 or 64 bits ? | |
#if (defined(__x86_64__) || defined(__x86_64) || defined(__amd64__) || defined(__amd64) || defined(__ppc64__) || defined(_WIN64) || defined(__LP64__) || defined(_LP64) ) // Detects 64 bits mode | |
# define LZ4_ARCH64 1 | |
#else | |
# define LZ4_ARCH64 0 | |
#endif | |
// Little Endian or Big Endian ? | |
// Note : overwrite the below #define if you know your architecture endianess | |
#if (defined(__BIG_ENDIAN__) || defined(__BIG_ENDIAN) || defined(_BIG_ENDIAN) || defined(_ARCH_PPC) || defined(__PPC__) || defined(__PPC) || defined(PPC) || defined(__powerpc__) || defined(__powerpc) || defined(powerpc) || ((defined(__BYTE_ORDER__)&&(__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))) ) | |
# define LZ4_BIG_ENDIAN 1 | |
#else | |
// Little Endian assumed. PDP Endian and other very rare endian format are unsupported. | |
#endif | |
// Unaligned memory access is automatically enabled for "common" CPU, such as x86. | |
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected | |
// If you know your target CPU supports unaligned memory access, you may want to force this option manually to improve performance | |
#if defined(__ARM_FEATURE_UNALIGNED) | |
# define LZ4_FORCE_UNALIGNED_ACCESS 1 | |
#endif | |
// Define this parameter if your target system or compiler does not support hardware bit count | |
#if defined(_MSC_VER) && defined(_WIN32_WCE) // Visual Studio for Windows CE does not support Hardware bit count | |
# define LZ4_FORCE_SW_BITCOUNT | |
#endif | |
//************************************** | |
// Compiler Options | |
//************************************** | |
#if __STDC_VERSION__ >= 199901L // C99 | |
/* "restrict" is a known keyword */ | |
#else | |
# define restrict // Disable restrict | |
#endif | |
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) | |
#ifdef _MSC_VER // Visual Studio | |
# define inline __forceinline // Visual is not C99, but supports some kind of inline | |
# if LZ4_ARCH64 // 64-bit | |
# pragma intrinsic(_BitScanForward64) // For Visual 2005 | |
# pragma intrinsic(_BitScanReverse64) // For Visual 2005 | |
# else | |
# pragma intrinsic(_BitScanForward) // For Visual 2005 | |
# pragma intrinsic(_BitScanReverse) // For Visual 2005 | |
# endif | |
#endif | |
#ifdef _MSC_VER | |
# define lz4_bswap16(x) _byteswap_ushort(x) | |
#else | |
# define lz4_bswap16(x) ((unsigned short int) ((((x) >> 8) & 0xffu) | (((x) & 0xffu) << 8))) | |
#endif | |
#if (GCC_VERSION >= 302) || (__INTEL_COMPILER >= 800) || defined(__clang__) | |
# define expect(expr,value) (__builtin_expect ((expr),(value)) ) | |
#else | |
# define expect(expr,value) (expr) | |
#endif | |
#define likely(expr) expect((expr) != 0, 1) | |
#define unlikely(expr) expect((expr) != 0, 0) | |
//************************************** | |
// Includes | |
//************************************** | |
#include <stdlib.h> // for malloc | |
#include <string.h> // for memset | |
#include "lz4.h" | |
//************************************** | |
// Basic Types | |
//************************************** | |
#if defined(_MSC_VER) // Visual Studio does not support 'stdint' natively | |
# define BYTE unsigned __int8 | |
# define U16 unsigned __int16 | |
# define U32 unsigned __int32 | |
# define S32 __int32 | |
# define U64 unsigned __int64 | |
#else | |
# include <stdint.h> | |
# define BYTE uint8_t | |
# define U16 uint16_t | |
# define U32 uint32_t | |
# define S32 int32_t | |
# define U64 uint64_t | |
#endif | |
#ifndef LZ4_FORCE_UNALIGNED_ACCESS | |
# pragma pack(push, 1) | |
#endif | |
typedef struct _U16_S { U16 v; } U16_S; | |
typedef struct _U32_S { U32 v; } U32_S; | |
typedef struct _U64_S { U64 v; } U64_S; | |
#ifndef LZ4_FORCE_UNALIGNED_ACCESS | |
# pragma pack(pop) | |
#endif | |
#define A64(x) (((U64_S *)(x))->v) | |
#define A32(x) (((U32_S *)(x))->v) | |
#define A16(x) (((U16_S *)(x))->v) | |
//************************************** | |
// Constants | |
//************************************** | |
#define MINMATCH 4 | |
#define HASH_LOG (MEMORY_USAGE-2) | |
#define HASHTABLESIZE (1 << HASH_LOG) | |
#define HASH_MASK (HASHTABLESIZE - 1) | |
#define SKIPSTRENGTH (NOTCOMPRESSIBLE_DETECTIONLEVEL>2?NOTCOMPRESSIBLE_DETECTIONLEVEL:2) | |
#define STACKLIMIT 13 | |
#define HEAPMODE (HASH_LOG>STACKLIMIT) // Defines if memory is allocated into the stack (local variable), or into the heap (malloc()). | |
#define COPYLENGTH 8 | |
#define LASTLITERALS 5 | |
#define MFLIMIT (COPYLENGTH+MINMATCH) | |
#define MINLENGTH (MFLIMIT+1) | |
#define MAXD_LOG 16 | |
#define MAX_DISTANCE ((1 << MAXD_LOG) - 1) | |
#define ML_BITS 4 | |
#define ML_MASK ((1U<<ML_BITS)-1) | |
#define RUN_BITS (8-ML_BITS) | |
#define RUN_MASK ((1U<<RUN_BITS)-1) | |
//************************************** | |
// Architecture-specific macros | |
//************************************** | |
#if LZ4_ARCH64 // 64-bit | |
# define STEPSIZE 8 | |
# define UARCH U64 | |
# define AARCH A64 | |
# define LZ4_COPYSTEP(s,d) A64(d) = A64(s); d+=8; s+=8; | |
# define LZ4_COPYPACKET(s,d) LZ4_COPYSTEP(s,d) | |
# define LZ4_SECURECOPY(s,d,e) if (d<e) LZ4_WILDCOPY(s,d,e) | |
# define HTYPE U32 | |
# define INITBASE(base) const BYTE* const base = ip | |
#else // 32-bit | |
# define STEPSIZE 4 | |
# define UARCH U32 | |
# define AARCH A32 | |
# define LZ4_COPYSTEP(s,d) A32(d) = A32(s); d+=4; s+=4; | |
# define LZ4_COPYPACKET(s,d) LZ4_COPYSTEP(s,d); LZ4_COPYSTEP(s,d); | |
# define LZ4_SECURECOPY LZ4_WILDCOPY | |
# define HTYPE const BYTE* | |
# define INITBASE(base) const int base = 0 | |
#endif | |
#if (defined(LZ4_BIG_ENDIAN) && !defined(BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE)) | |
# define LZ4_READ_LITTLEENDIAN_16(d,s,p) { U16 v = A16(p); v = lz4_bswap16(v); d = (s) - v; } | |
# define LZ4_WRITE_LITTLEENDIAN_16(p,i) { U16 v = (U16)(i); v = lz4_bswap16(v); A16(p) = v; p+=2; } | |
#else // Little Endian | |
# define LZ4_READ_LITTLEENDIAN_16(d,s,p) { d = (s) - A16(p); } | |
# define LZ4_WRITE_LITTLEENDIAN_16(p,v) { A16(p) = v; p+=2; } | |
#endif | |
//************************************** | |
// Local structures | |
//************************************** | |
struct refTables | |
{ | |
HTYPE hashTable[HASHTABLESIZE]; | |
}; | |
//************************************** | |
// Macros | |
//************************************** | |
#define LZ4_HASH_FUNCTION(i) (((i) * 2654435761U) >> ((MINMATCH*8)-HASH_LOG)) | |
#define LZ4_HASH_VALUE(p) LZ4_HASH_FUNCTION(A32(p)) | |
#define LZ4_WILDCOPY(s,d,e) do { LZ4_COPYPACKET(s,d) } while (d<e); | |
#define LZ4_BLINDCOPY(s,d,l) { BYTE* e=(d)+l; LZ4_WILDCOPY(s,d,e); d=e; } | |
//**************************** | |
// Private functions | |
//**************************** | |
#if LZ4_ARCH64 | |
inline int LZ4_NbCommonBytes (register U64 val) | |
{ | |
#if defined(LZ4_BIG_ENDIAN) | |
#if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
unsigned long r = 0; | |
_BitScanReverse64( &r, val ); | |
return (int)(r>>3); | |
#elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
return (__builtin_clzll(val) >> 3); | |
#else | |
int r; | |
if (!(val>>32)) { r=4; } else { r=0; val>>=32; } | |
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } | |
r += (!val); | |
return r; | |
#endif | |
#else | |
#if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
unsigned long r = 0; | |
_BitScanForward64( &r, val ); | |
return (int)(r>>3); | |
#elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
return (__builtin_ctzll(val) >> 3); | |
#else | |
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 }; | |
return DeBruijnBytePos[((U64)((val & -val) * 0x0218A392CDABBD3F)) >> 58]; | |
#endif | |
#endif | |
} | |
#else | |
inline int LZ4_NbCommonBytes (register U32 val) | |
{ | |
#if defined(LZ4_BIG_ENDIAN) | |
#if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
unsigned long r = 0; | |
_BitScanReverse( &r, val ); | |
return (int)(r>>3); | |
#elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
return (__builtin_clz(val) >> 3); | |
#else | |
int r; | |
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } | |
r += (!val); | |
return r; | |
#endif | |
#else | |
#if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
unsigned long r = 0; | |
_BitScanForward( &r, val ); | |
return (int)(r>>3); | |
#elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT) | |
return (__builtin_ctz(val) >> 3); | |
#else | |
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 }; | |
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; | |
#endif | |
#endif | |
} | |
#endif | |
//****************************** | |
// Compression functions | |
//****************************** | |
inline int LZ4_compressCtx(void** ctx, | |
const char* source, | |
char* dest, | |
int isize, | |
int maxOutputSize) | |
{ | |
#if HEAPMODE | |
struct refTables *srt = (struct refTables *) (*ctx); | |
HTYPE* HashTable; | |
#else | |
HTYPE HashTable[HASHTABLESIZE] = {0}; | |
#endif | |
const BYTE* ip = (BYTE*) source; | |
INITBASE(base); | |
const BYTE* anchor = ip; | |
const BYTE* const iend = ip + isize; | |
const BYTE* const mflimit = iend - MFLIMIT; | |
#define matchlimit (iend - LASTLITERALS) | |
BYTE* op = (BYTE*) dest; | |
BYTE* const oend = op + maxOutputSize; | |
int len, length; | |
const int skipStrength = SKIPSTRENGTH; | |
U32 forwardH; | |
// Init | |
if (isize<MINLENGTH) goto _last_literals; | |
#if HEAPMODE | |
if (*ctx == NULL) | |
{ | |
srt = (struct refTables *) malloc ( sizeof(struct refTables) ); | |
*ctx = (void*) srt; | |
} | |
HashTable = (HTYPE*)(srt->hashTable); | |
memset((void*)HashTable, 0, sizeof(srt->hashTable)); | |
#else | |
(void) ctx; | |
#endif | |
// First Byte | |
HashTable[LZ4_HASH_VALUE(ip)] = ip - base; | |
ip++; forwardH = LZ4_HASH_VALUE(ip); | |
// Main Loop | |
for ( ; ; ) | |
{ | |
int findMatchAttempts = (1U << skipStrength) + 3; | |
const BYTE* forwardIp = ip; | |
const BYTE* ref; | |
BYTE* token; | |
// Find a match | |
do { | |
U32 h = forwardH; | |
int step = findMatchAttempts++ >> skipStrength; | |
ip = forwardIp; | |
forwardIp = ip + step; | |
if unlikely(forwardIp > mflimit) { goto _last_literals; } | |
forwardH = LZ4_HASH_VALUE(forwardIp); | |
ref = base + HashTable[h]; | |
HashTable[h] = ip - base; | |
} while ((ref < ip - MAX_DISTANCE) || (A32(ref) != A32(ip))); | |
// Catch up | |
while ((ip>anchor) && (ref>(BYTE*)source) && unlikely(ip[-1]==ref[-1])) { ip--; ref--; } | |
// Encode Literal length | |
length = ip - anchor; | |
token = op++; | |
if unlikely(op + length + (2 + 1 + LASTLITERALS) + (length>>8) >= oend) return 0; // Check output limit | |
if (length>=(int)RUN_MASK) { *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *op++ = 255; *op++ = (BYTE)len; } | |
else *token = (length<<ML_BITS); | |
// Copy Literals | |
LZ4_BLINDCOPY(anchor, op, length); | |
_next_match: | |
// Encode Offset | |
LZ4_WRITE_LITTLEENDIAN_16(op,ip-ref); | |
// Start Counting | |
ip+=MINMATCH; ref+=MINMATCH; // MinMatch verified | |
anchor = ip; | |
while likely(ip<matchlimit-(STEPSIZE-1)) | |
{ | |
UARCH diff = AARCH(ref) ^ AARCH(ip); | |
if (!diff) { ip+=STEPSIZE; ref+=STEPSIZE; continue; } | |
ip += LZ4_NbCommonBytes(diff); | |
goto _endCount; | |
} | |
if (LZ4_ARCH64) if ((ip<(matchlimit-3)) && (A32(ref) == A32(ip))) { ip+=4; ref+=4; } | |
if ((ip<(matchlimit-1)) && (A16(ref) == A16(ip))) { ip+=2; ref+=2; } | |
if ((ip<matchlimit) && (*ref == *ip)) ip++; | |
_endCount: | |
// Encode MatchLength | |
len = (ip - anchor); | |
if (len>=(int)ML_MASK) { *token+=ML_MASK; len-=ML_MASK; for(; len > 509 ; len-=510) { *op++ = 255; *op++ = 255; } if (len > 254) { len-=255; *op++ = 255; } *op++ = (BYTE)len; } | |
else *token += len; | |
// Test end of chunk | |
if (ip > mflimit) { anchor = ip; break; } | |
// Fill table | |
HashTable[LZ4_HASH_VALUE(ip-2)] = ip - 2 - base; | |
// Test next position | |
ref = base + HashTable[LZ4_HASH_VALUE(ip)]; | |
HashTable[LZ4_HASH_VALUE(ip)] = ip - base; | |
if ((ref > ip - (MAX_DISTANCE + 1)) && (A32(ref) == A32(ip))) { token = op++; *token=0; goto _next_match; } | |
// Prepare next loop | |
anchor = ip++; | |
forwardH = LZ4_HASH_VALUE(ip); | |
} | |
_last_literals: | |
// Encode Last Literals | |
{ | |
int lastRun = iend - anchor; | |
if (op + lastRun + 1 + ((lastRun-15)/255) >= oend) return 0; | |
if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; } | |
else *op++ = (lastRun<<ML_BITS); | |
memcpy(op, anchor, iend - anchor); | |
op += iend-anchor; | |
} | |
// End | |
return (int) (((char*)op)-dest); | |
} | |
// Note : this function is valid only if isize < LZ4_64KLIMIT | |
#define LZ4_64KLIMIT ((1<<16) + (MFLIMIT-1)) | |
#define HASHLOG64K (HASH_LOG+1) | |
#define HASH64KTABLESIZE (1U<<HASHLOG64K) | |
#define LZ4_HASH64K_FUNCTION(i) (((i) * 2654435761U) >> ((MINMATCH*8)-HASHLOG64K)) | |
#define LZ4_HASH64K_VALUE(p) LZ4_HASH64K_FUNCTION(A32(p)) | |
inline int LZ4_compress64kCtx(void** ctx, | |
const char* source, | |
char* dest, | |
int isize, | |
int maxOutputSize) | |
{ | |
#if HEAPMODE | |
struct refTables *srt = (struct refTables *) (*ctx); | |
U16* HashTable; | |
#else | |
U16 HashTable[HASH64KTABLESIZE] = {0}; | |
#endif | |
const BYTE* ip = (BYTE*) source; | |
const BYTE* anchor = ip; | |
const BYTE* const base = ip; | |
const BYTE* const iend = ip + isize; | |
const BYTE* const mflimit = iend - MFLIMIT; | |
#define matchlimit (iend - LASTLITERALS) | |
BYTE* op = (BYTE*) dest; | |
BYTE* const oend = op + maxOutputSize; | |
int len, length; | |
const int skipStrength = SKIPSTRENGTH; | |
U32 forwardH; | |
// Init | |
if (isize<MINLENGTH) goto _last_literals; | |
#if HEAPMODE | |
if (*ctx == NULL) | |
{ | |
srt = (struct refTables *) malloc ( sizeof(struct refTables) ); | |
*ctx = (void*) srt; | |
} | |
HashTable = (U16*)(srt->hashTable); | |
memset((void*)HashTable, 0, sizeof(srt->hashTable)); | |
#else | |
(void) ctx; | |
#endif | |
// First Byte | |
ip++; forwardH = LZ4_HASH64K_VALUE(ip); | |
// Main Loop | |
for ( ; ; ) | |
{ | |
int findMatchAttempts = (1U << skipStrength) + 3; | |
const BYTE* forwardIp = ip; | |
const BYTE* ref; | |
BYTE* token; | |
// Find a match | |
do { | |
U32 h = forwardH; | |
int step = findMatchAttempts++ >> skipStrength; | |
ip = forwardIp; | |
forwardIp = ip + step; | |
if (forwardIp > mflimit) { goto _last_literals; } | |
forwardH = LZ4_HASH64K_VALUE(forwardIp); | |
ref = base + HashTable[h]; | |
HashTable[h] = ip - base; | |
} while (A32(ref) != A32(ip)); | |
// Catch up | |
while ((ip>anchor) && (ref>(BYTE*)source) && (ip[-1]==ref[-1])) { ip--; ref--; } | |
// Encode Literal length | |
length = ip - anchor; | |
token = op++; | |
if unlikely(op + length + (2 + 1 + LASTLITERALS) + (length>>8) >= oend) return 0; // Check output limit | |
if (length>=(int)RUN_MASK) { *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *op++ = 255; *op++ = (BYTE)len; } | |
else *token = (length<<ML_BITS); | |
// Copy Literals | |
LZ4_BLINDCOPY(anchor, op, length); | |
_next_match: | |
// Encode Offset | |
LZ4_WRITE_LITTLEENDIAN_16(op,ip-ref); | |
// Start Counting | |
ip+=MINMATCH; ref+=MINMATCH; // MinMatch verified | |
anchor = ip; | |
while (ip<matchlimit-(STEPSIZE-1)) | |
{ | |
UARCH diff = AARCH(ref) ^ AARCH(ip); | |
if (!diff) { ip+=STEPSIZE; ref+=STEPSIZE; continue; } | |
ip += LZ4_NbCommonBytes(diff); | |
goto _endCount; | |
} | |
if (LZ4_ARCH64) if ((ip<(matchlimit-3)) && (A32(ref) == A32(ip))) { ip+=4; ref+=4; } | |
if ((ip<(matchlimit-1)) && (A16(ref) == A16(ip))) { ip+=2; ref+=2; } | |
if ((ip<matchlimit) && (*ref == *ip)) ip++; | |
_endCount: | |
// Encode MatchLength | |
len = (ip - anchor); | |
if (len>=(int)ML_MASK) { *token+=ML_MASK; len-=ML_MASK; for(; len > 509 ; len-=510) { *op++ = 255; *op++ = 255; } if (len > 254) { len-=255; *op++ = 255; } *op++ = (BYTE)len; } | |
else *token += len; | |
// Test end of chunk | |
if (ip > mflimit) { anchor = ip; break; } | |
// Fill table | |
HashTable[LZ4_HASH64K_VALUE(ip-2)] = ip - 2 - base; | |
// Test next position | |
ref = base + HashTable[LZ4_HASH64K_VALUE(ip)]; | |
HashTable[LZ4_HASH64K_VALUE(ip)] = ip - base; | |
if (A32(ref) == A32(ip)) { token = op++; *token=0; goto _next_match; } | |
// Prepare next loop | |
anchor = ip++; | |
forwardH = LZ4_HASH64K_VALUE(ip); | |
} | |
_last_literals: | |
// Encode Last Literals | |
{ | |
int lastRun = iend - anchor; | |
if (op + lastRun + 1 + ((lastRun-15)/255) >= oend) return 0; | |
if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; } | |
else *op++ = (lastRun<<ML_BITS); | |
memcpy(op, anchor, iend - anchor); | |
op += iend-anchor; | |
} | |
// End | |
return (int) (((char*)op)-dest); | |
} | |
int LZ4_compress_limitedOutput(const char* source, | |
char* dest, | |
int isize, | |
int maxOutputSize) | |
{ | |
#if HEAPMODE | |
void* ctx = malloc(sizeof(struct refTables)); | |
int result; | |
if (isize < LZ4_64KLIMIT) | |
result = LZ4_compress64kCtx(&ctx, source, dest, isize, maxOutputSize); | |
else result = LZ4_compressCtx(&ctx, source, dest, isize, maxOutputSize); | |
free(ctx); | |
return result; | |
#else | |
if (isize < (int)LZ4_64KLIMIT) return LZ4_compress64kCtx(NULL, source, dest, isize, maxOutputSize); | |
return LZ4_compressCtx(NULL, source, dest, isize, maxOutputSize); | |
#endif | |
} | |
int LZ4_compress(const char* source, | |
char* dest, | |
int isize) | |
{ | |
return LZ4_compress_limitedOutput(source, dest, isize, LZ4_compressBound(isize)); | |
} | |
//**************************** | |
// Decompression functions | |
//**************************** | |
// Note : The decoding functions LZ4_uncompress() and LZ4_uncompress_unknownOutputSize() | |
// are safe against "buffer overflow" attack type. | |
// They will never write nor read outside of the provided output buffers. | |
// LZ4_uncompress_unknownOutputSize() also insures that it will never read outside of the input buffer. | |
// A corrupted input will produce an error result, a negative int, indicating the position of the error within input stream. | |
int LZ4_uncompress(const char* source, | |
char* dest, | |
int osize) | |
{ | |
// Local Variables | |
const BYTE* restrict ip = (const BYTE*) source; | |
const BYTE* restrict ref; | |
BYTE* restrict op = (BYTE*) dest; | |
BYTE* const oend = op + osize; | |
BYTE* cpy; | |
BYTE token; | |
int len, length; | |
size_t dec[] ={0, 3, 2, 3, 0, 0, 0, 0}; | |
// Main Loop | |
while (1) | |
{ | |
// get runlength | |
token = *ip++; | |
if ((length=(token>>ML_BITS)) == RUN_MASK) { for (;(len=*ip++)==255;length+=255){} length += len; } | |
// copy literals | |
cpy = op+length; | |
if unlikely(cpy>oend-COPYLENGTH) | |
{ | |
if (cpy > oend) goto _output_error; // Error : request to write beyond destination buffer | |
memcpy(op, ip, length); | |
ip += length; | |
break; // Necessarily EOF | |
} | |
LZ4_WILDCOPY(ip, op, cpy); ip -= (op-cpy); op = cpy; | |
// get offset | |
LZ4_READ_LITTLEENDIAN_16(ref,cpy,ip); ip+=2; | |
if (ref < (BYTE* const)dest) goto _output_error; // Error : offset create reference outside destination buffer | |
// get matchlength | |
if ((length=(token&ML_MASK)) == ML_MASK) { for (;*ip==255;length+=255) {ip++;} length += *ip++; } | |
// copy repeated sequence | |
if unlikely(op-ref<STEPSIZE) | |
{ | |
#if LZ4_ARCH64 | |
size_t dec2table[]={0, 0, 0, -1, 0, 1, 2, 3}; | |
size_t dec2 = dec2table[op-ref]; | |
#else | |
const int dec2 = 0; | |
#endif | |
*op++ = *ref++; | |
*op++ = *ref++; | |
*op++ = *ref++; | |
*op++ = *ref++; | |
ref -= dec[op-ref]; | |
A32(op)=A32(ref); op += STEPSIZE-4; | |
ref -= dec2; | |
} else { LZ4_COPYSTEP(ref,op); } | |
cpy = op + length - (STEPSIZE-4); | |
if (cpy>oend-COPYLENGTH) | |
{ | |
if (cpy > oend) goto _output_error; // Error : request to write beyond destination buffer | |
LZ4_SECURECOPY(ref, op, (oend-COPYLENGTH)); | |
while(op<cpy) *op++=*ref++; | |
op=cpy; | |
if (op == oend) break; // Check EOF (should never happen, since last 5 bytes are supposed to be literals) | |
continue; | |
} | |
LZ4_SECURECOPY(ref, op, cpy); | |
op=cpy; // correction | |
} | |
// end of decoding | |
return (int) (((char*)ip)-source); | |
// write overflow error detected | |
_output_error: | |
return (int) (-(((char*)ip)-source)); | |
} | |
int LZ4_uncompress_unknownOutputSize( | |
const char* source, | |
char* dest, | |
int isize, | |
int maxOutputSize) | |
{ | |
// Local Variables | |
const BYTE* restrict ip = (const BYTE*) source; | |
const BYTE* const iend = ip + isize; | |
const BYTE* restrict ref; | |
BYTE* restrict op = (BYTE*) dest; | |
BYTE* const oend = op + maxOutputSize; | |
BYTE* cpy; | |
size_t dec[] ={0, 3, 2, 3, 0, 0, 0, 0}; | |
// Main Loop | |
while (ip<iend) | |
{ | |
BYTE token; | |
int length; | |
// get runlength | |
token = *ip++; | |
if ((length=(token>>ML_BITS)) == RUN_MASK) { int s=255; while ((ip<iend) && (s==255)) { s=*ip++; length += s; } } | |
// copy literals | |
cpy = op+length; | |
if ((cpy>oend-COPYLENGTH) || (ip+length>iend-COPYLENGTH)) | |
{ | |
if (cpy > oend) goto _output_error; // Error : request to write beyond destination buffer | |
if (ip+length > iend) goto _output_error; // Error : request to read beyond source buffer | |
memcpy(op, ip, length); | |
op += length; | |
ip += length; | |
if (ip<iend) goto _output_error; // Error : LZ4 format violation | |
break; // Necessarily EOF, due to parsing restrictions | |
} | |
LZ4_WILDCOPY(ip, op, cpy); ip -= (op-cpy); op = cpy; | |
// get offset | |
LZ4_READ_LITTLEENDIAN_16(ref,cpy,ip); ip+=2; | |
if (ref < (BYTE* const)dest) goto _output_error; // Error : offset creates reference outside of destination buffer | |
// get matchlength | |
if ((length=(token&ML_MASK)) == ML_MASK) { while (ip<iend) { int s = *ip++; length +=s; if (s==255) continue; break; } } | |
// copy repeated sequence | |
if unlikely(op-ref<STEPSIZE) | |
{ | |
#if LZ4_ARCH64 | |
size_t dec2table[]={0, 0, 0, -1, 0, 1, 2, 3}; | |
size_t dec2 = dec2table[op-ref]; | |
#else | |
const int dec2 = 0; | |
#endif | |
*op++ = *ref++; | |
*op++ = *ref++; | |
*op++ = *ref++; | |
*op++ = *ref++; | |
ref -= dec[op-ref]; | |
A32(op)=A32(ref); op += STEPSIZE-4; | |
ref -= dec2; | |
} else { LZ4_COPYSTEP(ref,op); } | |
cpy = op + length - (STEPSIZE-4); | |
if (cpy>oend-COPYLENGTH) | |
{ | |
if (cpy > oend) goto _output_error; // Error : request to write outside of destination buffer | |
LZ4_SECURECOPY(ref, op, (oend-COPYLENGTH)); | |
while(op<cpy) *op++=*ref++; | |
op=cpy; | |
if (op == oend) break; // Check EOF (should never happen, since last 5 bytes are supposed to be literals) | |
continue; | |
} | |
LZ4_SECURECOPY(ref, op, cpy); | |
op=cpy; // correction | |
} | |
// end of decoding | |
return (int) (((char*)op)-dest); | |
// write overflow error detected | |
_output_error: | |
return (int) (-(((char*)ip)-source)); | |
} | |