| /* |
| xxHash - Fast Hash algorithm |
| Copyright (C) 2012-2014, Yann Collet. |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - xxHash source repository : http://code.google.com/p/xxhash/ |
| - public discussion board : https://groups.google.com/forum/#!forum/lz4c |
| */ |
| |
| |
| //************************************** |
| // Tuning parameters |
| //************************************** |
| // Unaligned memory access is automatically enabled for "common" CPU, such as x86. |
| // For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected. |
| // If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance. |
| // You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32). |
| #if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
| # define XXH_USE_UNALIGNED_ACCESS 1 |
| #endif |
| |
| // XXH_ACCEPT_NULL_INPUT_POINTER : |
| // If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. |
| // When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. |
| // This option has a very small performance cost (only measurable on small inputs). |
| // By default, this option is disabled. To enable it, uncomment below define : |
| // #define XXH_ACCEPT_NULL_INPUT_POINTER 1 |
| |
| // XXH_FORCE_NATIVE_FORMAT : |
| // By default, xxHash library provides endian-independant Hash values, based on little-endian convention. |
| // Results are therefore identical for little-endian and big-endian CPU. |
| // This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. |
| // Should endian-independance be of no importance for your application, you may set the #define below to 1. |
| // It will improve speed for Big-endian CPU. |
| // This option has no impact on Little_Endian CPU. |
| #define XXH_FORCE_NATIVE_FORMAT 0 |
| |
| //************************************** |
| // Compiler Specific Options |
| //************************************** |
| // Disable some Visual warning messages |
| #ifdef _MSC_VER // Visual Studio |
| # pragma warning(disable : 4127) // disable: C4127: conditional expression is constant |
| #endif |
| |
| #ifdef _MSC_VER // Visual Studio |
| # define FORCE_INLINE static __forceinline |
| #else |
| # ifdef __GNUC__ |
| # define FORCE_INLINE static inline __attribute__((always_inline)) |
| # else |
| # define FORCE_INLINE static inline |
| # endif |
| #endif |
| |
| //************************************** |
| // Includes & Memory related functions |
| //************************************** |
| #include "xxhash.h" |
| // Modify the local functions below should you wish to use some other memory routines |
| // for malloc(), free() |
| #include <stdlib.h> |
| static void* XXH_malloc(size_t s) { return malloc(s); } |
| static void XXH_free (void* p) { free(p); } |
| // for memcpy() |
| #include <string.h> |
| static void* XXH_memcpy(void* dest, const void* src, size_t size) |
| { |
| return memcpy(dest,src,size); |
| } |
| |
| |
| //************************************** |
| // Basic Types |
| //************************************** |
| #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99 |
| # include <stdint.h> |
| typedef uint8_t BYTE; |
| typedef uint16_t U16; |
| typedef uint32_t U32; |
| typedef int32_t S32; |
| typedef uint64_t U64; |
| #else |
| typedef unsigned char BYTE; |
| typedef unsigned short U16; |
| typedef unsigned int U32; |
| typedef signed int S32; |
| typedef unsigned long long U64; |
| #endif |
| |
| #if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS) |
| # define _PACKED __attribute__ ((packed)) |
| #else |
| # define _PACKED |
| #endif |
| |
| #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) |
| # ifdef __IBMC__ |
| # pragma pack(1) |
| # else |
| # pragma pack(push, 1) |
| # endif |
| #endif |
| |
| typedef struct _U32_S |
| { |
| U32 v; |
| } _PACKED U32_S; |
| typedef struct _U64_S |
| { |
| U64 v; |
| } _PACKED U64_S; |
| |
| #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) |
| # pragma pack(pop) |
| #endif |
| |
| #define A32(x) (((U32_S *)(x))->v) |
| #define A64(x) (((U64_S *)(x))->v) |
| |
| |
| //*************************************** |
| // Compiler-specific Functions and Macros |
| //*************************************** |
| #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
| |
| // Note : although _rotl exists for minGW (GCC under windows), performance seems poor |
| #if defined(_MSC_VER) |
| # define XXH_rotl32(x,r) _rotl(x,r) |
| # define XXH_rotl64(x,r) _rotl64(x,r) |
| #else |
| # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
| # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
| #endif |
| |
| #if defined(_MSC_VER) // Visual Studio |
| # define XXH_swap32 _byteswap_ulong |
| # define XXH_swap64 _byteswap_uint64 |
| #elif GCC_VERSION >= 403 |
| # define XXH_swap32 __builtin_bswap32 |
| # define XXH_swap64 __builtin_bswap64 |
| #else |
| static inline U32 XXH_swap32 (U32 x) |
| { |
| return ((x << 24) & 0xff000000 ) | |
| ((x << 8) & 0x00ff0000 ) | |
| ((x >> 8) & 0x0000ff00 ) | |
| ((x >> 24) & 0x000000ff ); |
| } |
| static inline U64 XXH_swap64 (U64 x) |
| { |
| return ((x << 56) & 0xff00000000000000ULL) | |
| ((x << 40) & 0x00ff000000000000ULL) | |
| ((x << 24) & 0x0000ff0000000000ULL) | |
| ((x << 8) & 0x000000ff00000000ULL) | |
| ((x >> 8) & 0x00000000ff000000ULL) | |
| ((x >> 24) & 0x0000000000ff0000ULL) | |
| ((x >> 40) & 0x000000000000ff00ULL) | |
| ((x >> 56) & 0x00000000000000ffULL); |
| } |
| #endif |
| |
| |
| //************************************** |
| // Constants |
| //************************************** |
| #define PRIME32_1 2654435761U |
| #define PRIME32_2 2246822519U |
| #define PRIME32_3 3266489917U |
| #define PRIME32_4 668265263U |
| #define PRIME32_5 374761393U |
| |
| #define PRIME64_1 11400714785074694791ULL |
| #define PRIME64_2 14029467366897019727ULL |
| #define PRIME64_3 1609587929392839161ULL |
| #define PRIME64_4 9650029242287828579ULL |
| #define PRIME64_5 2870177450012600261ULL |
| |
| //************************************** |
| // Architecture Macros |
| //************************************** |
| typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
| #ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch |
| static const int one = 1; |
| # define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one)) |
| #endif |
| |
| |
| //************************************** |
| // Macros |
| //************************************** |
| #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations |
| |
| |
| //**************************** |
| // Memory reads |
| //**************************** |
| typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
| |
| FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) |
| return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr)); |
| else |
| return endian==XXH_littleEndian ? *(U32*)ptr : XXH_swap32(*(U32*)ptr); |
| } |
| |
| FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) |
| { |
| return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
| } |
| |
| FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) |
| return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr)); |
| else |
| return endian==XXH_littleEndian ? *(U64*)ptr : XXH_swap64(*(U64*)ptr); |
| } |
| |
| FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) |
| { |
| return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
| } |
| |
| |
| //**************************** |
| // Simple Hash Functions |
| //**************************** |
| FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* bEnd = p + len; |
| U32 h32; |
| #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (p==NULL) |
| { |
| len=0; |
| bEnd=p=(const BYTE*)(size_t)16; |
| } |
| #endif |
| |
| if (len>=16) |
| { |
| const BYTE* const limit = bEnd - 16; |
| U32 v1 = seed + PRIME32_1 + PRIME32_2; |
| U32 v2 = seed + PRIME32_2; |
| U32 v3 = seed + 0; |
| U32 v4 = seed - PRIME32_1; |
| |
| do |
| { |
| v1 += XXH_get32bits(p) * PRIME32_2; |
| v1 = XXH_rotl32(v1, 13); |
| v1 *= PRIME32_1; |
| p+=4; |
| v2 += XXH_get32bits(p) * PRIME32_2; |
| v2 = XXH_rotl32(v2, 13); |
| v2 *= PRIME32_1; |
| p+=4; |
| v3 += XXH_get32bits(p) * PRIME32_2; |
| v3 = XXH_rotl32(v3, 13); |
| v3 *= PRIME32_1; |
| p+=4; |
| v4 += XXH_get32bits(p) * PRIME32_2; |
| v4 = XXH_rotl32(v4, 13); |
| v4 *= PRIME32_1; |
| p+=4; |
| } |
| while (p<=limit); |
| |
| h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
| } |
| else |
| { |
| h32 = seed + PRIME32_5; |
| } |
| |
| h32 += (U32) len; |
| |
| while (p+4<=bEnd) |
| { |
| h32 += XXH_get32bits(p) * PRIME32_3; |
| h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
| p+=4; |
| } |
| |
| while (p<bEnd) |
| { |
| h32 += (*p) * PRIME32_5; |
| h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
| p++; |
| } |
| |
| h32 ^= h32 >> 15; |
| h32 *= PRIME32_2; |
| h32 ^= h32 >> 13; |
| h32 *= PRIME32_3; |
| h32 ^= h32 >> 16; |
| |
| return h32; |
| } |
| |
| |
| unsigned int XXH32 (const void* input, size_t len, unsigned seed) |
| { |
| #if 0 |
| // Simple version, good for code maintenance, but unfortunately slow for small inputs |
| XXH32_state_t state; |
| XXH32_reset(&state, seed); |
| XXH32_update(&state, input, len); |
| return XXH32_digest(&state); |
| #else |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| # if !defined(XXH_USE_UNALIGNED_ACCESS) |
| if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage |
| { |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| else |
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| } |
| # endif |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| else |
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| #endif |
| } |
| |
| FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* bEnd = p + len; |
| U64 h64; |
| #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (p==NULL) |
| { |
| len=0; |
| bEnd=p=(const BYTE*)(size_t)32; |
| } |
| #endif |
| |
| if (len>=32) |
| { |
| const BYTE* const limit = bEnd - 32; |
| U64 v1 = seed + PRIME64_1 + PRIME64_2; |
| U64 v2 = seed + PRIME64_2; |
| U64 v3 = seed + 0; |
| U64 v4 = seed - PRIME64_1; |
| |
| do |
| { |
| v1 += XXH_get64bits(p) * PRIME64_2; |
| p+=8; |
| v1 = XXH_rotl64(v1, 31); |
| v1 *= PRIME64_1; |
| v2 += XXH_get64bits(p) * PRIME64_2; |
| p+=8; |
| v2 = XXH_rotl64(v2, 31); |
| v2 *= PRIME64_1; |
| v3 += XXH_get64bits(p) * PRIME64_2; |
| p+=8; |
| v3 = XXH_rotl64(v3, 31); |
| v3 *= PRIME64_1; |
| v4 += XXH_get64bits(p) * PRIME64_2; |
| p+=8; |
| v4 = XXH_rotl64(v4, 31); |
| v4 *= PRIME64_1; |
| } |
| while (p<=limit); |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| |
| v1 *= PRIME64_2; |
| v1 = XXH_rotl64(v1, 31); |
| v1 *= PRIME64_1; |
| h64 ^= v1; |
| h64 = h64 * PRIME64_1 + PRIME64_4; |
| |
| v2 *= PRIME64_2; |
| v2 = XXH_rotl64(v2, 31); |
| v2 *= PRIME64_1; |
| h64 ^= v2; |
| h64 = h64 * PRIME64_1 + PRIME64_4; |
| |
| v3 *= PRIME64_2; |
| v3 = XXH_rotl64(v3, 31); |
| v3 *= PRIME64_1; |
| h64 ^= v3; |
| h64 = h64 * PRIME64_1 + PRIME64_4; |
| |
| v4 *= PRIME64_2; |
| v4 = XXH_rotl64(v4, 31); |
| v4 *= PRIME64_1; |
| h64 ^= v4; |
| h64 = h64 * PRIME64_1 + PRIME64_4; |
| } |
| else |
| { |
| h64 = seed + PRIME64_5; |
| } |
| |
| h64 += (U64) len; |
| |
| while (p+8<=bEnd) |
| { |
| U64 k1 = XXH_get64bits(p); |
| k1 *= PRIME64_2; |
| k1 = XXH_rotl64(k1,31); |
| k1 *= PRIME64_1; |
| h64 ^= k1; |
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8; |
| } |
| |
| if (p+4<=bEnd) |
| { |
| h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; |
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4; |
| } |
| |
| while (p<bEnd) |
| { |
| h64 ^= (*p) * PRIME64_5; |
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| } |
| |
| h64 ^= h64 >> 33; |
| h64 *= PRIME64_2; |
| h64 ^= h64 >> 29; |
| h64 *= PRIME64_3; |
| h64 ^= h64 >> 32; |
| |
| return h64; |
| } |
| |
| |
| unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) |
| { |
| #if 0 |
| // Simple version, good for code maintenance, but unfortunately slow for small inputs |
| XXH64_state_t state; |
| XXH64_reset(&state, seed); |
| XXH64_update(&state, input, len); |
| return XXH64_digest(&state); |
| #else |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| # if !defined(XXH_USE_UNALIGNED_ACCESS) |
| if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage |
| { |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| else |
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| } |
| # endif |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| else |
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| #endif |
| } |
| |
| /**************************************************** |
| * Advanced Hash Functions |
| ****************************************************/ |
| |
| /*** Allocation ***/ |
| typedef struct |
| { |
| U64 total_len; |
| U32 seed; |
| U32 v1; |
| U32 v2; |
| U32 v3; |
| U32 v4; |
| U32 mem32[4]; /* defined as U32 for alignment */ |
| U32 memsize; |
| } XXH_istate32_t; |
| |
| typedef struct |
| { |
| U64 total_len; |
| U64 seed; |
| U64 v1; |
| U64 v2; |
| U64 v3; |
| U64 v4; |
| U64 mem64[4]; /* defined as U64 for alignment */ |
| U32 memsize; |
| } XXH_istate64_t; |
| |
| |
| XXH32_state_t* XXH32_createState(void) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); // A compilation error here means XXH32_state_t is not large enough |
| return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
| } |
| XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| }; |
| |
| XXH64_state_t* XXH64_createState(void) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); // A compilation error here means XXH64_state_t is not large enough |
| return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
| } |
| XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| }; |
| |
| |
| /*** Hash feed ***/ |
| |
| XXH_errorcode XXH32_reset(XXH32_state_t* state_in, U32 seed) |
| { |
| XXH_istate32_t* state = (XXH_istate32_t*) state_in; |
| state->seed = seed; |
| state->v1 = seed + PRIME32_1 + PRIME32_2; |
| state->v2 = seed + PRIME32_2; |
| state->v3 = seed + 0; |
| state->v4 = seed - PRIME32_1; |
| state->total_len = 0; |
| state->memsize = 0; |
| return XXH_OK; |
| } |
| |
| XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed) |
| { |
| XXH_istate64_t* state = (XXH_istate64_t*) state_in; |
| state->seed = seed; |
| state->v1 = seed + PRIME64_1 + PRIME64_2; |
| state->v2 = seed + PRIME64_2; |
| state->v3 = seed + 0; |
| state->v4 = seed - PRIME64_1; |
| state->total_len = 0; |
| state->memsize = 0; |
| return XXH_OK; |
| } |
| |
| |
| FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianess endian) |
| { |
| XXH_istate32_t* state = (XXH_istate32_t *) state_in; |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (input==NULL) return XXH_ERROR; |
| #endif |
| |
| state->total_len += len; |
| |
| if (state->memsize + len < 16) // fill in tmp buffer |
| { |
| XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); |
| state->memsize += (U32)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) // some data left from previous update |
| { |
| XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); |
| { |
| const U32* p32 = state->mem32; |
| state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; |
| state->v1 = XXH_rotl32(state->v1, 13); |
| state->v1 *= PRIME32_1; |
| p32++; |
| state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; |
| state->v2 = XXH_rotl32(state->v2, 13); |
| state->v2 *= PRIME32_1; |
| p32++; |
| state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; |
| state->v3 = XXH_rotl32(state->v3, 13); |
| state->v3 *= PRIME32_1; |
| p32++; |
| state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; |
| state->v4 = XXH_rotl32(state->v4, 13); |
| state->v4 *= PRIME32_1; |
| p32++; |
| } |
| p += 16-state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p <= bEnd-16) |
| { |
| const BYTE* const limit = bEnd - 16; |
| U32 v1 = state->v1; |
| U32 v2 = state->v2; |
| U32 v3 = state->v3; |
| U32 v4 = state->v4; |
| |
| do |
| { |
| v1 += XXH_readLE32(p, endian) * PRIME32_2; |
| v1 = XXH_rotl32(v1, 13); |
| v1 *= PRIME32_1; |
| p+=4; |
| v2 += XXH_readLE32(p, endian) * PRIME32_2; |
| v2 = XXH_rotl32(v2, 13); |
| v2 *= PRIME32_1; |
| p+=4; |
| v3 += XXH_readLE32(p, endian) * PRIME32_2; |
| v3 = XXH_rotl32(v3, 13); |
| v3 *= PRIME32_1; |
| p+=4; |
| v4 += XXH_readLE32(p, endian) * PRIME32_2; |
| v4 = XXH_rotl32(v4, 13); |
| v4 *= PRIME32_1; |
| p+=4; |
| } |
| while (p<=limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| } |
| |
| if (p < bEnd) |
| { |
| XXH_memcpy(state->mem32, p, bEnd-p); |
| state->memsize = (int)(bEnd-p); |
| } |
| |
| return XXH_OK; |
| } |
| |
| XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
| else |
| return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
| } |
| |
| |
| |
| FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianess endian) |
| { |
| XXH_istate32_t* state = (XXH_istate32_t*) state_in; |
| const BYTE * p = (const BYTE*)state->mem32; |
| BYTE* bEnd = (BYTE*)(state->mem32) + state->memsize; |
| U32 h32; |
| |
| if (state->total_len >= 16) |
| { |
| h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
| } |
| else |
| { |
| h32 = state->seed + PRIME32_5; |
| } |
| |
| h32 += (U32) state->total_len; |
| |
| while (p+4<=bEnd) |
| { |
| h32 += XXH_readLE32(p, endian) * PRIME32_3; |
| h32 = XXH_rotl32(h32, 17) * PRIME32_4; |
| p+=4; |
| } |
| |
| while (p<bEnd) |
| { |
| h32 += (*p) * PRIME32_5; |
| h32 = XXH_rotl32(h32, 11) * PRIME32_1; |
| p++; |
| } |
| |
| h32 ^= h32 >> 15; |
| h32 *= PRIME32_2; |
| h32 ^= h32 >> 13; |
| h32 *= PRIME32_3; |
| h32 ^= h32 >> 16; |
| |
| return h32; |
| } |
| |
| |
| U32 XXH32_digest (const XXH32_state_t* state_in) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_digest_endian(state_in, XXH_littleEndian); |
| else |
| return XXH32_digest_endian(state_in, XXH_bigEndian); |
| } |
| |
| |
| FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianess endian) |
| { |
| XXH_istate64_t * state = (XXH_istate64_t *) state_in; |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (input==NULL) return XXH_ERROR; |
| #endif |
| |
| state->total_len += len; |
| |
| if (state->memsize + len < 32) // fill in tmp buffer |
| { |
| XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); |
| state->memsize += (U32)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) // some data left from previous update |
| { |
| XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); |
| { |
| const U64* p64 = state->mem64; |
| state->v1 += XXH_readLE64(p64, endian) * PRIME64_2; |
| state->v1 = XXH_rotl64(state->v1, 31); |
| state->v1 *= PRIME64_1; |
| p64++; |
| state->v2 += XXH_readLE64(p64, endian) * PRIME64_2; |
| state->v2 = XXH_rotl64(state->v2, 31); |
| state->v2 *= PRIME64_1; |
| p64++; |
| state->v3 += XXH_readLE64(p64, endian) * PRIME64_2; |
| state->v3 = XXH_rotl64(state->v3, 31); |
| state->v3 *= PRIME64_1; |
| p64++; |
| state->v4 += XXH_readLE64(p64, endian) * PRIME64_2; |
| state->v4 = XXH_rotl64(state->v4, 31); |
| state->v4 *= PRIME64_1; |
| p64++; |
| } |
| p += 32-state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p+32 <= bEnd) |
| { |
| const BYTE* const limit = bEnd - 32; |
| U64 v1 = state->v1; |
| U64 v2 = state->v2; |
| U64 v3 = state->v3; |
| U64 v4 = state->v4; |
| |
| do |
| { |
| v1 += XXH_readLE64(p, endian) * PRIME64_2; |
| v1 = XXH_rotl64(v1, 31); |
| v1 *= PRIME64_1; |
| p+=8; |
| v2 += XXH_readLE64(p, endian) * PRIME64_2; |
| v2 = XXH_rotl64(v2, 31); |
| v2 *= PRIME64_1; |
| p+=8; |
| v3 += XXH_readLE64(p, endian) * PRIME64_2; |
| v3 = XXH_rotl64(v3, 31); |
| v3 *= PRIME64_1; |
| p+=8; |
| v4 += XXH_readLE64(p, endian) * PRIME64_2; |
| v4 = XXH_rotl64(v4, 31); |
| v4 *= PRIME64_1; |
| p+=8; |
| } |
| while (p<=limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| } |
| |
| if (p < bEnd) |
| { |
| XXH_memcpy(state->mem64, p, bEnd-p); |
| state->memsize = (int)(bEnd-p); |
| } |
| |
| return XXH_OK; |
| } |
| |
| XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
| else |
| return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
| } |
| |
| |
| |
| FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianess endian) |
| { |
| XXH_istate64_t * state = (XXH_istate64_t *) state_in; |
| const BYTE * p = (const BYTE*)state->mem64; |
| BYTE* bEnd = (BYTE*)state->mem64 + state->memsize; |
| U64 h64; |
| |
| if (state->total_len >= 32) |
| { |
| U64 v1 = state->v1; |
| U64 v2 = state->v2; |
| U64 v3 = state->v3; |
| U64 v4 = state->v4; |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| |
| v1 *= PRIME64_2; |
| v1 = XXH_rotl64(v1, 31); |
| v1 *= PRIME64_1; |
| h64 ^= v1; |
| h64 = h64*PRIME64_1 + PRIME64_4; |
| |
| v2 *= PRIME64_2; |
| v2 = XXH_rotl64(v2, 31); |
| v2 *= PRIME64_1; |
| h64 ^= v2; |
| h64 = h64*PRIME64_1 + PRIME64_4; |
| |
| v3 *= PRIME64_2; |
| v3 = XXH_rotl64(v3, 31); |
| v3 *= PRIME64_1; |
| h64 ^= v3; |
| h64 = h64*PRIME64_1 + PRIME64_4; |
| |
| v4 *= PRIME64_2; |
| v4 = XXH_rotl64(v4, 31); |
| v4 *= PRIME64_1; |
| h64 ^= v4; |
| h64 = h64*PRIME64_1 + PRIME64_4; |
| } |
| else |
| { |
| h64 = state->seed + PRIME64_5; |
| } |
| |
| h64 += (U64) state->total_len; |
| |
| while (p+8<=bEnd) |
| { |
| U64 k1 = XXH_readLE64(p, endian); |
| k1 *= PRIME64_2; |
| k1 = XXH_rotl64(k1,31); |
| k1 *= PRIME64_1; |
| h64 ^= k1; |
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8; |
| } |
| |
| if (p+4<=bEnd) |
| { |
| h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; |
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4; |
| } |
| |
| while (p<bEnd) |
| { |
| h64 ^= (*p) * PRIME64_5; |
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| } |
| |
| h64 ^= h64 >> 33; |
| h64 *= PRIME64_2; |
| h64 ^= h64 >> 29; |
| h64 *= PRIME64_3; |
| h64 ^= h64 >> 32; |
| |
| return h64; |
| } |
| |
| |
| unsigned long long XXH64_digest (const XXH64_state_t* state_in) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_digest_endian(state_in, XXH_littleEndian); |
| else |
| return XXH64_digest_endian(state_in, XXH_bigEndian); |
| } |
| |
| |