/* | |
xxHash - Fast Hash algorithm | |
Copyright (C) 2012-2013, Yann Collet. | |
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions are | |
met: | |
* Redistributions of source code must retain the above copyright | |
notice, this list of conditions and the following disclaimer. | |
* Redistributions in binary form must reproduce the above | |
copyright notice, this list of conditions and the following disclaimer | |
in the documentation and/or other materials provided with the | |
distribution. | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
You can contact the author at : | |
- xxHash source repository : http://code.google.com/p/xxhash/ | |
*/ | |
//************************************** | |
// Tuning parameters | |
//************************************** | |
// Unaligned memory access is automatically enabled for "common" CPU, such as x86. | |
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected. | |
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance. | |
// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32). | |
#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) | |
# define XXH_USE_UNALIGNED_ACCESS 1 | |
#endif | |
// XXH_ACCEPT_NULL_INPUT_POINTER : | |
// If the input pointer is a null pointer, xxHash default behavior is to crash, since it is a bad input. | |
// If this option is enabled, xxHash output for null input pointers will be the same as a null-length input. | |
// This option has a very small performance cost (only measurable on small inputs). | |
// By default, this option is disabled. To enable it, uncomment below define : | |
//#define XXH_ACCEPT_NULL_INPUT_POINTER 1 | |
// XXH_FORCE_NATIVE_FORMAT : | |
// By default, xxHash library provides endian-independant Hash values, based on little-endian convention. | |
// Results are therefore identical for little-endian and big-endian CPU. | |
// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. | |
// Should endian-independance be of no importance for your application, you may uncomment the #define below. | |
// It will improve speed for Big-endian CPU. | |
// This option has no impact on Little_Endian CPU. | |
//#define XXH_FORCE_NATIVE_FORMAT 1 | |
//************************************** | |
// Compiler Options | |
//************************************** | |
#if defined(_MSC_VER) && !defined(__cplusplus) // Visual Studio | |
# define inline __inline // Visual C is not C99, but supports some kind of inline | |
#endif | |
//************************************** | |
// Includes & Memory related functions | |
//************************************** | |
#include "xxhash.h" | |
// Modify the local functions below should you wish to use some other memory related routines | |
// for malloc(), free() | |
#include <stdlib.h> | |
static inline void* XXH_malloc(size_t s) { return malloc(s); } | |
static inline void XXH_free (void* p) { free(p); } | |
// for memcpy() | |
#include <string.h> | |
static inline void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } | |
//************************************** | |
// CPU Feature Detection | |
//************************************** | |
// Little Endian or Big Endian ? | |
// You can overwrite the #define below if you know your architecture endianess | |
#if defined(XXH_FORCE_NATIVE_FORMAT) && (XXH_FORCE_NATIVE_FORMAT==1) | |
// Force native format. The result will be endian dependant. | |
# define XXH_BIG_ENDIAN 0 | |
#elif defined (__GLIBC__) | |
# include <endian.h> | |
# if (__BYTE_ORDER == __BIG_ENDIAN) | |
# define XXH_BIG_ENDIAN 1 | |
# endif | |
#elif (defined(__BIG_ENDIAN__) || defined(__BIG_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN) || defined(_LITTLE_ENDIAN)) | |
# define XXH_BIG_ENDIAN 1 | |
#elif defined(__sparc) || defined(__sparc__) \ | |
|| defined(__powerpc__) || defined(__ppc__) || defined(__PPC__) \ | |
|| defined(__hpux) || defined(__hppa) \ | |
|| defined(_MIPSEB) || defined(__s390__) | |
# define XXH_BIG_ENDIAN 1 | |
#endif | |
#if !defined(XXH_BIG_ENDIAN) | |
// Little Endian assumed. PDP Endian and other very rare endian format are unsupported. | |
# define XXH_BIG_ENDIAN 0 | |
#endif | |
//************************************** | |
// Basic Types | |
//************************************** | |
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99 | |
# include <stdint.h> | |
typedef uint8_t BYTE; | |
typedef uint16_t U16; | |
typedef uint32_t U32; | |
typedef int32_t S32; | |
typedef uint64_t U64; | |
#else | |
typedef unsigned char BYTE; | |
typedef unsigned short U16; | |
typedef unsigned int U32; | |
typedef signed int S32; | |
typedef unsigned long long U64; | |
#endif | |
#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS) | |
# define _PACKED __attribute__ ((packed)) | |
#else | |
# define _PACKED | |
#endif | |
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) | |
# pragma pack(push, 1) | |
#endif | |
typedef struct _U32_S { U32 v; } _PACKED U32_S; | |
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) | |
# pragma pack(pop) | |
#endif | |
#define A32(x) (((U32_S *)(x))->v) | |
//*************************************** | |
// Compiler-specific Functions and Macros | |
//*************************************** | |
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) | |
// Note : although _rotl exists for minGW (GCC under windows), performance seems poor | |
#if defined(_MSC_VER) | |
# define XXH_rotl32(x,r) _rotl(x,r) | |
#else | |
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) | |
#endif | |
#if defined(_MSC_VER) // Visual Studio | |
# define XXH_swap32 _byteswap_ulong | |
#elif GCC_VERSION >= 403 | |
# define XXH_swap32 __builtin_bswap32 | |
#else | |
static inline U32 XXH_swap32 (U32 x) { | |
return ((x << 24) & 0xff000000 ) | | |
((x << 8) & 0x00ff0000 ) | | |
((x >> 8) & 0x0000ff00 ) | | |
((x >> 24) & 0x000000ff );} | |
#endif | |
//************************************** | |
// Constants | |
//************************************** | |
#define PRIME32_1 2654435761U | |
#define PRIME32_2 2246822519U | |
#define PRIME32_3 3266489917U | |
#define PRIME32_4 668265263U | |
#define PRIME32_5 374761393U | |
//************************************** | |
// Macros | |
//************************************** | |
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations | |
#define XXH_LE32(p) (XXH_BIG_ENDIAN ? XXH_swap32(A32(p)) : A32(p)) | |
#define XXH_alignedLE32(p) (XXH_BIG_ENDIAN ? XXH_swap32(*(U32*)(p)) : *(U32*)(p)) | |
//**************************** | |
// Simple Hash Functions | |
//**************************** | |
#if !defined(XXH_USE_UNALIGNED_ACCESS) | |
// Specific version, for aligned 32-bits input. Useless for CPU supporting unaligned access. | |
static U32 XXH32_alignedInput(const void* input, int len, U32 seed) | |
{ | |
const BYTE* p = (const BYTE*)input; | |
const BYTE* const bEnd = p + len; | |
U32 h32; | |
if (len>=16) | |
{ | |
const BYTE* const limit = bEnd - 16; | |
U32 v1 = seed + PRIME32_1 + PRIME32_2; | |
U32 v2 = seed + PRIME32_2; | |
U32 v3 = seed + 0; | |
U32 v4 = seed - PRIME32_1; | |
do | |
{ | |
v1 += XXH_alignedLE32(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; | |
v2 += XXH_alignedLE32(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; | |
v3 += XXH_alignedLE32(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; | |
v4 += XXH_alignedLE32(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; | |
} while (p<=limit); | |
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); | |
} | |
else { h32 = seed + PRIME32_5; } | |
h32 += (U32) len; | |
while (p<=bEnd-4) | |
{ | |
h32 += XXH_alignedLE32(p) * PRIME32_3; | |
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; | |
p+=4; | |
} | |
while (p<bEnd) | |
{ | |
h32 += (*p) * PRIME32_5; | |
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; | |
p++; | |
} | |
h32 ^= h32 >> 15; | |
h32 *= PRIME32_2; | |
h32 ^= h32 >> 13; | |
h32 *= PRIME32_3; | |
h32 ^= h32 >> 16; | |
return h32; | |
} | |
#endif | |
U32 XXH32(const void* input, int len, U32 seed) | |
{ | |
#if 0 | |
// Simple version, good for code maintenance, but unfortunately slow for small inputs | |
void* state = XXH32_init(seed); | |
XXH32_update(state, input, len); | |
return XXH32_digest(state); | |
#else | |
const BYTE* p = (const BYTE*)input; | |
const BYTE* const bEnd = p + len; | |
U32 h32; | |
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | |
if (p==NULL) { len=0; p=(const BYTE*)16; } | |
#endif | |
#if !defined(XXH_USE_UNALIGNED_ACCESS) | |
if ((((U32)p) & 3) == 0) return XXH32_alignedInput(input, len, seed); // Input is aligned, let's leverage the speed advantage | |
#endif | |
if (len>=16) | |
{ | |
const BYTE* const limit = bEnd - 16; | |
U32 v1 = seed + PRIME32_1 + PRIME32_2; | |
U32 v2 = seed + PRIME32_2; | |
U32 v3 = seed + 0; | |
U32 v4 = seed - PRIME32_1; | |
do | |
{ | |
v1 += XXH_LE32(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; | |
v2 += XXH_LE32(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; | |
v3 += XXH_LE32(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; | |
v4 += XXH_LE32(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; | |
} while (p<=limit); | |
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); | |
} | |
else | |
{ | |
h32 = seed + PRIME32_5; | |
} | |
h32 += (U32) len; | |
while (p<=bEnd-4) | |
{ | |
h32 += XXH_LE32(p) * PRIME32_3; | |
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; | |
p+=4; | |
} | |
while (p<bEnd) | |
{ | |
h32 += (*p) * PRIME32_5; | |
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; | |
p++; | |
} | |
h32 ^= h32 >> 15; | |
h32 *= PRIME32_2; | |
h32 ^= h32 >> 13; | |
h32 *= PRIME32_3; | |
h32 ^= h32 >> 16; | |
return h32; | |
#endif | |
} | |
//**************************** | |
// Advanced Hash Functions | |
//**************************** | |
struct XXH_state32_t | |
{ | |
U64 total_len; | |
U32 seed; | |
U32 v1; | |
U32 v2; | |
U32 v3; | |
U32 v4; | |
int memsize; | |
char memory[16]; | |
}; | |
int XXH32_sizeofState() | |
{ | |
XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough | |
return sizeof(struct XXH_state32_t); | |
} | |
XXH_errorcode XXH32_resetState(void* state_in, U32 seed) | |
{ | |
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; | |
state->seed = seed; | |
state->v1 = seed + PRIME32_1 + PRIME32_2; | |
state->v2 = seed + PRIME32_2; | |
state->v3 = seed + 0; | |
state->v4 = seed - PRIME32_1; | |
state->total_len = 0; | |
state->memsize = 0; | |
return XXH_OK; | |
} | |
void* XXH32_init (U32 seed) | |
{ | |
void* state = XXH_malloc (sizeof(struct XXH_state32_t)); | |
XXH32_resetState(state, seed); | |
return state; | |
} | |
XXH_errorcode XXH32_update (void* state_in, const void* input, int len) | |
{ | |
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; | |
const BYTE* p = (const BYTE*)input; | |
const BYTE* const bEnd = p + len; | |
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | |
if (input==NULL) return XXH_ERROR; | |
#endif | |
state->total_len += len; | |
if (state->memsize + len < 16) // fill in tmp buffer | |
{ | |
XXH_memcpy(state->memory + state->memsize, input, len); | |
state->memsize += len; | |
return XXH_OK; | |
} | |
if (state->memsize) // some data left from previous update | |
{ | |
XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize); | |
{ | |
const U32* p32 = (const U32*)state->memory; | |
state->v1 += XXH_LE32(p32) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++; | |
state->v2 += XXH_LE32(p32) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++; | |
state->v3 += XXH_LE32(p32) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++; | |
state->v4 += XXH_LE32(p32) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++; | |
} | |
p += 16-state->memsize; | |
state->memsize = 0; | |
} | |
if (p <= bEnd-16) | |
{ | |
const BYTE* const limit = bEnd - 16; | |
U32 v1 = state->v1; | |
U32 v2 = state->v2; | |
U32 v3 = state->v3; | |
U32 v4 = state->v4; | |
do | |
{ | |
v1 += XXH_LE32(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; | |
v2 += XXH_LE32(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; | |
v3 += XXH_LE32(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; | |
v4 += XXH_LE32(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; | |
} while (p<=limit); | |
state->v1 = v1; | |
state->v2 = v2; | |
state->v3 = v3; | |
state->v4 = v4; | |
} | |
if (p < bEnd) | |
{ | |
XXH_memcpy(state->memory, p, bEnd-p); | |
state->memsize = (int)(bEnd-p); | |
} | |
return XXH_OK; | |
} | |
U32 XXH32_intermediateDigest (void* state_in) | |
{ | |
struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; | |
BYTE * p = (BYTE*)state->memory; | |
BYTE* bEnd = (BYTE*)state->memory + state->memsize; | |
U32 h32; | |
if (state->total_len >= 16) | |
{ | |
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); | |
} | |
else | |
{ | |
h32 = state->seed + PRIME32_5; | |
} | |
h32 += (U32) state->total_len; | |
while (p<=bEnd-4) | |
{ | |
h32 += XXH_LE32(p) * PRIME32_3; | |
h32 = XXH_rotl32(h32, 17) * PRIME32_4; | |
p+=4; | |
} | |
while (p<bEnd) | |
{ | |
h32 += (*p) * PRIME32_5; | |
h32 = XXH_rotl32(h32, 11) * PRIME32_1; | |
p++; | |
} | |
h32 ^= h32 >> 15; | |
h32 *= PRIME32_2; | |
h32 ^= h32 >> 13; | |
h32 *= PRIME32_3; | |
h32 ^= h32 >> 16; | |
return h32; | |
} | |
U32 XXH32_digest (void* state_in) | |
{ | |
U32 h32 = XXH32_intermediateDigest(state_in); | |
XXH_free(state_in); | |
return h32; | |
} |