blob: e86ebb60a1bac384f2d4baf5228ec119bd810ac8 [file] [log] [blame] [raw]
/*
htop - openbsd/OpenBSDProcessList.c
(C) 2014 Hisham H. Muhammad
(C) 2015 Michael McConville
Released under the GNU GPL, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h"
#include "ProcessList.h"
#include "OpenBSDProcessList.h"
#include "OpenBSDProcess.h"
#include "CRT.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <unistd.h>
#include <err.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
/*{
#include <kvm.h>
typedef struct CPUData_ {
unsigned long long int totalTime;
unsigned long long int userTime;
unsigned long long int niceTime;
unsigned long long int sysTime;
unsigned long long int sysAllTime;
unsigned long long int spinTime;
unsigned long long int intrTime;
unsigned long long int idleTime;
unsigned long long int totalPeriod;
unsigned long long int userPeriod;
unsigned long long int nicePeriod;
unsigned long long int sysPeriod;
unsigned long long int sysAllPeriod;
unsigned long long int spinPeriod;
unsigned long long int intrPeriod;
unsigned long long int idlePeriod;
} CPUData;
typedef struct OpenBSDProcessList_ {
ProcessList super;
kvm_t* kd;
CPUData* cpus;
} OpenBSDProcessList;
}*/
/*
* avoid relying on or conflicting with MIN() and MAX() in sys/param.h
*/
#ifndef MINIMUM
#define MINIMUM(x, y) ((x) > (y) ? (y) : (x))
#endif
#ifndef MAXIMUM
#define MAXIMUM(x, y) ((x) > (y) ? (x) : (y))
#endif
#ifndef CLAMP
#define CLAMP(x, low, high) (((x) > (high)) ? (high) : MAXIMUM(x, low))
#endif
static int fscale;
static unsigned int maxslp;
ProcessList* ProcessList_new(UsersTable* usersTable, const Hashtable *pidWhiteList, uid_t userId) {
int i;
OpenBSDProcessList *opl = xCalloc(1, sizeof(OpenBSDProcessList));
ProcessList *pl = (ProcessList*) opl;
ProcessList_init(pl, Class(OpenBSDProcess), usersTable, pidWhiteList, userId);
int mib[] = { CTL_HW, HW_NCPU };
size_t size = sizeof(pl->cpuCount);
if(sysctl(mib, 2, &pl->cpuCount, &size, NULL, 0) < 0 || pl->cpuCount < 1) {
pl->cpuCount = 1;
}
opl->cpus = xCalloc(1 + pl->cpuCount, sizeof(CPUData));
mib[0] = CTL_KERN;
mib[1] = KERN_FSCALE;
size = sizeof(fscale);
if (sysctl(mib, 2, &fscale, &size, NULL, 0) < 0) {
err(1, "fscale sysctl call failed");
}
mib[0] = CTL_VM;
mib[1] = VM_MAXSLP;
size = sizeof maxslp;
if(sysctl(mib, 2, &maxslp, &size, NULL, 0) < 0) maxslp = 20;
for (i = 0; i <= pl->cpuCount; i++) {
CPUData *d = opl->cpus + i;
d->totalTime = 1;
d->totalPeriod = 1;
}
char errbuf[_POSIX2_LINE_MAX];
opl->kd = kvm_openfiles(NULL, NULL, NULL, KVM_NO_FILES, errbuf);
if (opl->kd == NULL) {
errx(1, "kvm_open: %s", errbuf);
}
return pl;
}
void ProcessList_delete(ProcessList* this) {
const OpenBSDProcessList* opl = (OpenBSDProcessList*) this;
if (opl->kd) {
kvm_close(opl->kd);
}
free(opl->cpus);
ProcessList_done(this);
free(this);
}
static inline void OpenBSDProcessList_scanMemoryInfo(ProcessList* pl) {
static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP};
struct uvmexp uvmexp;
size_t size_uvmexp = sizeof(uvmexp);
if (sysctl(uvmexp_mib, 2, &uvmexp, &size_uvmexp, NULL, 0) < 0) {
err(1, "uvmexp sysctl call failed");
}
pl->totalMem = uvmexp.npages * CRT_page_size_kib;
// Taken from OpenBSD systat/iostat.c, top/machine.c and uvm_sysctl(9)
static int bcache_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT};
struct bcachestats bcstats;
size_t size_bcstats = sizeof(bcstats);
if (sysctl(bcache_mib, 3, &bcstats, &size_bcstats, NULL, 0) < 0) {
err(1, "cannot get vfs.bcachestat");
}
pl->cachedMem = bcstats.numbufpages * CRT_page_size_kib;
pl->freeMem = uvmexp.free * CRT_page_size_kib;
pl->usedMem = (uvmexp.npages - uvmexp.free - uvmexp.paging) * CRT_page_size_kib;
}
static void OpenBSDProcessList_readProcessName(kvm_t* kd, struct kinfo_proc* kproc, char **name, char **command, int *argv0_len) {
*name = xStrdup(kproc->p_comm);
/*
* Like OpenBSD's top(1), we try to fall back to the command name
* if we failed to construct the full command.
*/
char **arg = kvm_getargv(kd, kproc, 500);
if (arg == NULL || *arg == NULL) {
fallback_to_name_only:
*command = xStrdup(kproc->p_comm);
*argv0_len = strlen(kproc->p_comm);
return;
}
// Initialize 'len' because GCC 4.2.1 reports:
// warning: 'len' may be used uninitialized in this function
size_t len = 0;
unsigned int i = 0;
while(arg[i]) {
if(i) {
size_t arg_len = strlen(arg[i]) + 1;
char *p = realloc(*command, len + arg_len);
if(!p) return;
*command = p;
(*command)[len - 1] = ' ';
memcpy(*command + len, arg[i], arg_len);
len += arg_len;
} else {
len = strlen(arg[i]);
if(!len) goto fallback_to_name_only;
*argv0_len = len++;
/* don't use xMalloc here - we want to handle huge argv's gracefully */
*command = malloc(len);
if (!*command) goto fallback_to_name_only;
memcpy(*command, arg[i], len);
}
i++;
}
}
/*
* Taken from OpenBSD's ps(1).
*/
static double getpcpu(const struct kinfo_proc *kp) {
if (fscale == 0)
return (0.0);
#define fxtofl(fixpt) ((double)(fixpt) / fscale)
return (100.0 * fxtofl(kp->p_pctcpu));
}
#ifdef PID_AND_MAIN_THREAD_ID_DIFFER
static pid_t get_main_tid(const struct kinfo_proc *procs, unsigned int count, pid_t pid) {
for(unsigned int i = 0; i < count; i++) {
const struct kinfo_proc *p = procs + i;
if(p->p_tid == -1) continue;
if(p->p_pid != pid) continue;
if(p->p_flag & P_THREAD) continue;
return p->p_tid - THREAD_PID_OFFSET;
}
return -1;
}
#endif
static inline void OpenBSDProcessList_scanProcs(ProcessList *this) {
OpenBSDProcessList* opl = (OpenBSDProcessList*) this;
bool hide_kernel_processes = this->settings->hide_kernel_processes;
bool hide_thread_processes = this->settings->hide_thread_processes;
#ifdef PID_AND_MAIN_THREAD_ID_DIFFER
bool hide_high_level_processes = this->settings->hide_high_level_processes;
#else
bool hide_high_level_processes = false;
#endif
struct timeval now;
int count = 0;
int i;
struct kinfo_proc* kprocs = kvm_getprocs(opl->kd,
#ifdef KERN_PROC_SHOW_THREADS
KERN_PROC_SHOW_THREADS |
#endif
KERN_PROC_KTHREAD,
0, sizeof(struct kinfo_proc), &count);
gettimeofday(&now, NULL);
#ifdef PID_AND_MAIN_THREAD_ID_DIFFER
pid_t last_pid = -1;
pid_t last_main_tid = -1;
#endif
for (i = 0; i < count; i++) {
struct kinfo_proc *kproc = kprocs + i;
#ifdef HAVE_STRUCT_KINFO_PROC_P_TID
if((hide_high_level_processes || kproc->p_pid == 0) && kproc->p_tid == -1) continue;
pid_t pid = kproc->p_tid == -1 ? kproc->p_pid : kproc->p_tid - THREAD_PID_OFFSET;
#else
pid_t pid = kproc->p_pid;
#endif
bool preExisting;
Process *proc = ProcessList_getProcess(this, pid, &preExisting, (Process_New) OpenBSDProcess_new);
OpenBSDProcess *openbsd_proc = (OpenBSDProcess *)proc;
if (!preExisting) {
proc->tgid = kproc->p_pid;
proc->starttime_ctime = kproc->p_ustart_sec;
openbsd_proc->is_kernel_process = (kproc->p_flag & P_SYSTEM);
openbsd_proc->is_main_thread = !(kproc->p_flag & P_THREAD);
ProcessList_add((ProcessList*)this, proc);
OpenBSDProcessList_readProcessName(opl->kd, kproc, &proc->name, &proc->comm, &proc->argv0_length);
} else {
if(proc->ruid != kproc->p_ruid) proc->real_user = NULL;
if(proc->euid != kproc->p_uid) proc->effective_user = NULL;
if (this->settings->updateProcessNames) {
free(proc->name);
free(proc->comm);
OpenBSDProcessList_readProcessName(opl->kd, kproc, &proc->name, &proc->comm, &proc->argv0_length);
}
}
#ifdef PID_AND_MAIN_THREAD_ID_DIFFER
if(hide_high_level_processes) {
if(openbsd_proc->is_main_thread) {
int remain_count = count - i - 1;
if(remain_count > 0) {
proc->ppid = get_main_tid(kprocs + i + 1, remain_count, kproc->p_ppid);
last_pid = kproc->p_pid;
last_main_tid = kproc->p_tid - THREAD_PID_OFFSET;
} else {
proc->ppid = 0;
}
} else if(last_pid == kproc->p_pid) {
proc->ppid = last_main_tid;
} else {
proc->ppid = get_main_tid(kprocs, i, kproc->p_pid);
}
} else
#endif
proc->ppid = kproc->p_ppid;
proc->tpgid = kproc->p_tpgid;
proc->session = kproc->p_sid;
proc->tty_nr = kproc->p_tdev;
proc->pgrp = kproc->p__pgid;
proc->ruid = kproc->p_ruid;
proc->euid = kproc->p_uid;
if(!proc->real_user) {
proc->real_user = UsersTable_getRef(this->usersTable, proc->ruid);
}
if(!proc->effective_user) {
proc->effective_user = UsersTable_getRef(this->usersTable, proc->euid);
}
proc->m_size = kproc->p_vm_dsize;
proc->m_resident = kproc->p_vm_rssize;
proc->percent_mem = (proc->m_resident * CRT_page_size_kib) / (double)(this->totalMem) * 100.0;
proc->percent_cpu = CLAMP(getpcpu(kproc), 0.0, this->cpuCount*100.0);
proc->nice = kproc->p_nice - NZERO;
proc->time = kproc->p_rtime_sec + ((kproc->p_rtime_usec + 500000) / 1000000);
proc->time *= 100;
proc->priority = kproc->p_priority - PZERO;
switch (kproc->p_stat) {
case SIDL:
proc->state = 'I';
break;
case SRUN:
proc->state = 'R';
break;
case SSLEEP:
proc->state = (kproc->p_flag & P_SINTR) ? (kproc->p_slptime > maxslp ? 'I' : 'S') : 'D';
break;
case SSTOP:
proc->state = 'T';
break;
case SZOMB:
case SDEAD:
proc->state = 'Z';
break;
case SONPROC:
proc->state = 'O';
break;
default:
proc->state = '?';
break;
}
#ifdef HAVE_STRUCT_KINFO_PROC_P_TID
if(kproc->p_tid != -1) {
#endif
this->totalTasks++;
this->thread_count++;
if (Process_isKernelProcess(proc)) {
this->kernel_process_count++;
this->kernel_thread_count++;
}
// SRUN ('R') means runnable, not running
if (proc->state == 'O') {
this->running_process_count++;
this->running_thread_count++;
}
#ifdef HAVE_STRUCT_KINFO_PROC_P_TID
}
#endif
proc->show =
#ifdef KERN_PROC_SHOW_THREADS
!(Process_isKernelProcess(proc) && kproc->p_tid == -1) &&
#endif
(!((hide_kernel_processes && Process_isKernelProcess(proc)) ||
(hide_thread_processes && Process_isExtraThreadProcess(proc))));
proc->updated = true;
}
}
static unsigned long long saturatingSub(unsigned long long a, unsigned long long b) {
return a > b ? a - b : 0;
}
static void getKernelCPUTimes(int cpuId, uint64_t *times) {
int mib[] = { CTL_KERN, KERN_CPTIME2, cpuId };
size_t length = sizeof(uint64_t) * CPUSTATES;
if (sysctl(mib, 3, times, &length, NULL, 0) == -1 ||
length != sizeof(uint64_t) * CPUSTATES) {
CRT_fatalError("sysctl kern.cp_time2 failed");
}
}
static void kernelCPUTimesToHtop(const uint64_t *times, CPUData* cpu) {
unsigned long long totalTime = 0;
for (int i = 0; i < CPUSTATES; i++) {
totalTime += times[i];
}
unsigned long long sysAllTime = times[CP_INTR] + times[CP_SYS];
// XXX Not sure if CP_SPIN should be added to sysAllTime.
// See https://github.com/openbsd/src/commit/531d8034253fb82282f0f353c086e9ad827e031c
#ifdef CP_SPIN
sysAllTime += times[CP_SPIN];
#endif
cpu->totalPeriod = saturatingSub(totalTime, cpu->totalTime);
cpu->userPeriod = saturatingSub(times[CP_USER], cpu->userTime);
cpu->nicePeriod = saturatingSub(times[CP_NICE], cpu->niceTime);
cpu->sysPeriod = saturatingSub(times[CP_SYS], cpu->sysTime);
cpu->sysAllPeriod = saturatingSub(sysAllTime, cpu->sysAllTime);
#ifdef CP_SPIN
cpu->spinPeriod = saturatingSub(times[CP_SPIN], cpu->spinTime);
#endif
cpu->intrPeriod = saturatingSub(times[CP_INTR], cpu->intrTime);
cpu->idlePeriod = saturatingSub(times[CP_IDLE], cpu->idleTime);
cpu->totalTime = totalTime;
cpu->userTime = times[CP_USER];
cpu->niceTime = times[CP_NICE];
cpu->sysTime = times[CP_SYS];
cpu->sysAllTime = sysAllTime;
#ifdef CP_SPIN
cpu->spinTime = times[CP_SPIN];
#endif
cpu->intrTime = times[CP_INTR];
cpu->idleTime = times[CP_IDLE];
}
static void OpenBSDProcessList_scanCPUTime(OpenBSDProcessList* this) {
uint64_t kernelTimes[CPUSTATES] = {0};
uint64_t avg[CPUSTATES] = {0};
for (int i = 0; i < this->super.cpuCount; i++) {
getKernelCPUTimes(i, kernelTimes);
CPUData* cpu = this->cpus + i + 1;
kernelCPUTimesToHtop(kernelTimes, cpu);
avg[CP_USER] += cpu->userTime;
avg[CP_NICE] += cpu->niceTime;
avg[CP_SYS] += cpu->sysTime;
#ifdef CP_SPIN
avg[CP_SPIN] += cpu->spinTime;
#endif
avg[CP_INTR] += cpu->intrTime;
avg[CP_IDLE] += cpu->idleTime;
}
for (int i = 0; i < CPUSTATES; i++) {
avg[i] /= this->super.cpuCount;
}
kernelCPUTimesToHtop(avg, this->cpus);
}
void ProcessList_goThroughEntries(ProcessList* this) {
OpenBSDProcessList_scanMemoryInfo(this);
OpenBSDProcessList_scanProcs(this);
OpenBSDProcessList_scanCPUTime((OpenBSDProcessList*)this);
}