blob: cf4fa8284b63de524eb7aa190ccc93f8c7c86047 [file] [log] [blame] [raw]
/*
htop - ProcessList.c
(C) 2004,2005 Hisham H. Muhammad
Released under the GNU GPL, see the COPYING file
in the source distribution for its full text.
*/
#include "ProcessList.h"
#include "Platform.h"
#include "CRT.h"
#include "StringUtils.h"
#include "KStat.h"
#include <stdlib.h>
#include <string.h>
/*{
#include "Vector.h"
#include "Hashtable.h"
#include "UsersTable.h"
#include "Panel.h"
#include "Process.h"
#include "Settings.h"
#include <stdint.h>
#ifdef HAVE_LIBHWLOC
#include <hwloc.h>
#endif
#ifndef MAX_NAME
#define MAX_NAME 128
#endif
#ifndef MAX_READ
#define MAX_READ 2048
#endif
typedef struct ProcessList_ {
Settings* settings;
Vector* processes;
Vector* processes2;
Hashtable* processTable;
UsersTable* usersTable;
const Hashtable *pidWhiteList;
Panel* panel;
int following;
uid_t userId;
const char* incFilter;
#ifdef HAVE_LIBHWLOC
hwloc_topology_t topology;
bool topologyOk;
#endif
bool should_update_names;
int totalTasks;
int thread_count;
int kernel_process_count;
int kernel_thread_count;
int running_process_count;
int running_thread_count;
unsigned long long int totalMem;
unsigned long long int usedMem;
unsigned long long int freeMem;
unsigned long long int buffersMem;
unsigned long long int cachedMem;
uint64_t zfs_arc_size;
unsigned long long int totalSwap;
unsigned long long int usedSwap;
unsigned long long int freeSwap;
int cpuCount;
} ProcessList;
ProcessList* ProcessList_new(UsersTable* ut, const Hashtable *pidWhiteList, uid_t userId);
void ProcessList_delete(ProcessList* pl);
void ProcessList_goThroughEntries(ProcessList *, bool);
#define ProcessList_shouldUpdateProcessNames(THIS) ((THIS)->should_update_names || (THIS)->settings->updateProcessNames)
}*/
ProcessList* ProcessList_init(ProcessList* this, ObjectClass* klass, UsersTable* usersTable, const Hashtable *pidWhiteList, uid_t userId) {
this->processes = Vector_new(klass, true, DEFAULT_SIZE);
this->processTable = Hashtable_new(140, false);
this->usersTable = usersTable;
this->pidWhiteList = pidWhiteList;
this->userId = userId;
// tree-view auxiliary buffer
this->processes2 = Vector_new(klass, true, DEFAULT_SIZE);
// set later by platform-specific code
this->cpuCount = 0;
#ifdef HAVE_LIBHWLOC
this->topologyOk = false;
int topoErr = hwloc_topology_init(&this->topology);
if (topoErr == 0) {
topoErr = hwloc_topology_load(this->topology);
}
if (topoErr == 0) {
this->topologyOk = true;
}
#endif
this->following = -1;
return this;
}
void ProcessList_done(ProcessList* this) {
#ifdef HAVE_LIBHWLOC
if (this->topologyOk) {
hwloc_topology_destroy(this->topology);
}
#endif
Hashtable_delete(this->processTable);
Vector_delete(this->processes);
Vector_delete(this->processes2);
}
void ProcessList_setPanel(ProcessList* this, Panel* panel) {
this->panel = panel;
}
void ProcessList_printHeader(ProcessList* this, RichString* header) {
RichString_prune(header);
const unsigned int *fields = this->settings->fields;
for (int i = 0; fields[i]; i++) {
const char *title = Process_fields[fields[i]].title;
if (!title) title = "- ";
int attr = CRT_colors[!this->settings->treeView && this->settings->sortKey == fields[i] ?
HTOP_PANEL_SELECTION_FOCUS_COLOR : HTOP_PANEL_HEADER_FOCUS_COLOR];
RichString_append(header, attr, title);
}
}
void ProcessList_add(ProcessList* this, Process* p) {
assert(Vector_indexOf(this->processes, p, Process_pidCompare) == -1);
assert(Hashtable_get(this->processTable, p->pid) == NULL);
Vector_add(this->processes, p);
Hashtable_put(this->processTable, p->pid, p);
assert(Vector_indexOf(this->processes, p, Process_pidCompare) != -1);
assert(Hashtable_get(this->processTable, p->pid) != NULL);
assert(Hashtable_count(this->processTable) == Vector_count(this->processes));
}
void ProcessList_remove(ProcessList* this, Process* p) {
assert(Vector_indexOf(this->processes, p, Process_pidCompare) != -1);
assert(Hashtable_get(this->processTable, p->pid) != NULL);
Process* pp = Hashtable_remove(this->processTable, p->pid);
assert(pp == p); (void)pp;
unsigned int pid = p->pid;
int idx = Vector_indexOf(this->processes, p, Process_pidCompare);
assert(idx != -1);
if (idx >= 0) Vector_remove(this->processes, idx);
assert(Hashtable_get(this->processTable, pid) == NULL); (void)pid;
assert(Hashtable_count(this->processTable) == Vector_count(this->processes));
}
Process* ProcessList_get(ProcessList* this, int idx) {
return (Process*) (Vector_get(this->processes, idx));
}
int ProcessList_size(ProcessList* this) {
return (Vector_size(this->processes));
}
static void ProcessList_buildTree(ProcessList* this, pid_t pid, int level, int indent, int direction, bool show) {
Vector* children = Vector_new(Class(Process), false, DEFAULT_SIZE);
for (int i = Vector_size(this->processes) - 1; i >= 0; i--) {
Process* process = (Process*) (Vector_get(this->processes, i));
if (process->show && Process_isChildOf(process, pid)) {
process = (Process*) (Vector_take(this->processes, i));
Vector_add(children, process);
}
}
int size = Vector_size(children);
for (int i = 0; i < size; i++) {
Process* process = (Process *)Vector_get(children, i);
process->seen_in_tree_loop = false;
if (!show) process->show = false;
int s = this->processes2->items;
if (direction == 1) Vector_add(this->processes2, process);
else Vector_insert(this->processes2, 0, process);
assert(this->processes2->items == s+1); (void)s;
int nextIndent = level < 0 ? 0 : (indent | (1 << level));
ProcessList_buildTree(this, process->pid, level+1, (i < size - 1) ? nextIndent : indent, direction, show && process->showChildren);
process->indent = (i < size - 1) ? nextIndent : -nextIndent;
}
Vector_delete(children);
}
static Process *ProcessList_findParent(const ProcessList *this, const Process *proc, int *index) {
// Bisect the process vector to find parent
// If PID corresponds with PPID (e.g. "kernel_task" (PID=0, PPID=0)
// on Mac OS X) cancel bisecting and regard this process as root.
pid_t ppid = Process_getParentPid(proc);
if(ppid == proc->pid) return NULL;
int l = 0, r = Vector_size(this->processes);
while (l < r) {
int c = (l + r) / 2;
Process *p = (Process *)Vector_get(this->processes, c);
if (ppid == p->pid) {
if(index) *index = c;
return p;
}
if (ppid < p->pid) r = c;
else l = c + 1;
}
return NULL;
}
void ProcessList_sort(ProcessList* this) {
if (!this->settings->treeView) {
Vector_insertionSort(this->processes);
} else {
// Save settings
int direction = this->settings->direction;
int sortKey = this->settings->sortKey;
// Sort by PID
this->settings->sortKey = HTOP_PID_FIELD;
this->settings->direction = 1;
Vector_quickSort(this->processes);
// Restore settings
this->settings->sortKey = sortKey;
this->settings->direction = direction;
int vsize = Vector_size(this->processes);
// Find all processes whose parent is not visible
int size;
while ((size = Vector_size(this->processes))) {
int i = 0;
while(i < size) {
Process* process = (Process *)Vector_get(this->processes, i);
process->seen_in_tree_loop = false;
bool root = !ProcessList_findParent(this, process, NULL);
// If parent not found, then construct the tree with this root
if (!process->show || root) {
process = (Process *)Vector_take(this->processes, i);
process->indent = 0;
Vector_add(this->processes2, process);
int level = (!process->show && root) ? -1 : 0;
ProcessList_buildTree(this, process->pid, level, 0, direction, root && process->showChildren);
if(root) break;
size--;
} else {
i++;
}
}
/* Under some ptrace(2) implementations, a process
* ptrace(2)-attaching a parent process in its
* process tree will causing the traced process to be
* re-parented to the tracing process; this will
* creating a loop in the process tree. In this case
* build separated tree(s) for loop(s) left here.
*/
if(i >= size) {
do {
Process *proc = (Process *)Vector_get(this->processes, size - 1);
/* This remaining process could
* either be a node at the loop it
* self, or a descendant node
* indirectly attached to the loop.
*/
#ifdef NDEBUG
i = size - 1;
#endif
do {
/* Make sure we break at the
* loop itself, not a
* descendant of it. */
proc->seen_in_tree_loop = true;
Process *parent = ProcessList_findParent(this, proc, &i);
assert(parent != NULL);
if(!parent) break;
proc = parent;
} while(!proc->seen_in_tree_loop);
#ifdef NDEBUG
Vector_take(this->processes, i);
#else
Process *taken = (Process *)Vector_take(this->processes, i);
assert(taken == proc);
#endif
proc->indent = 0;
Vector_add(this->processes2, proc);
ProcessList_buildTree(this, proc->pid, 0, 0, direction, proc->show);
} while((size = Vector_size(this->processes)) > 0);
break;
}
}
assert(Vector_size(this->processes2) == vsize); (void)vsize;
// Swap listings around
Vector* t = this->processes;
this->processes = this->processes2;
this->processes2 = t;
}
}
ProcessField ProcessList_keyAt(ProcessList* this, int at) {
int x = 0;
const unsigned int *fields = this->settings->fields;
ProcessField field;
for (int i = 0; (field = fields[i]); i++) {
const char* title = Process_fields[field].title;
if (!title) title = "- ";
int len = strlen(title);
if (at >= x && at <= x + len) {
return field;
}
x += len;
}
return HTOP_COMM_FIELD;
}
void ProcessList_expandTree(ProcessList* this) {
int size = Vector_size(this->processes);
for (int i = 0; i < size; i++) {
Process* process = (Process*) Vector_get(this->processes, i);
process->showChildren = true;
}
}
void ProcessList_rebuildPanel(ProcessList* this) {
const char* incFilter = this->incFilter;
int currPos = Panel_getSelectedIndex(this->panel);
pid_t currPid = this->following != -1 ? this->following : 0;
int currScrollV = this->panel->scrollV;
Panel_prune(this->panel);
int size = ProcessList_size(this);
int idx = 0;
for (int i = 0; i < size; i++) {
bool hidden = false;
Process* p = ProcessList_get(this, i);
if ( (!p->show)
|| (this->userId != (uid_t) -1 && p->ruid != this->userId && p->euid != this->userId)
|| (incFilter && !(String_contains_i(p->comm, incFilter)))
|| (this->pidWhiteList && !Hashtable_get(this->pidWhiteList, p->tgid)) ) {
hidden = true;
}
if (!hidden) {
Panel_set(this->panel, idx, (Object*)p);
if ((this->following == -1 && idx == currPos) || (this->following != -1 && p->pid == currPid)) {
Panel_setSelected(this->panel, idx);
this->panel->scrollV = currScrollV;
}
idx++;
}
}
}
Process* ProcessList_getProcess(ProcessList* this, pid_t pid, bool* preExisting, Process_New constructor) {
Process* proc = Hashtable_get(this->processTable, pid);
if (proc) {
*preExisting = true;
assert(Vector_indexOf(this->processes, proc, Process_pidCompare) != -1);
assert(proc->pid == pid);
} else {
*preExisting = false;
proc = constructor(this->settings);
assert(proc->comm == NULL);
proc->pid = pid;
}
return proc;
}
static void read_zfs_arc_size(ProcessList *this) {
if(read_kstat(KSTAT_ZFS_ARCSTATS, KSTAT_ZFS_ARCSTATS_SIZE, KSTAT_DATA_UINT64, &this->zfs_arc_size) < 0) {
this->zfs_arc_size = 0;
} else {
this->zfs_arc_size /= 1024;
if(this->usedMem < this->zfs_arc_size) this->zfs_arc_size = 0;
else this->usedMem -= this->zfs_arc_size;
}
}
void ProcessList_scan(ProcessList* this, bool skip_processes) {
//if(!skip_processes) {
// mark all process as "dirty"
int i = ProcessList_size(this);
while(i > 0) {
Process *p = ProcessList_get(this, --i);
p->created = false;
p->updated = false;
p->show = true;
}
//}
this->totalTasks = 0;
this->thread_count = 0;
this->kernel_process_count = 0;
this->kernel_thread_count = 0;
this->running_process_count = 0;
this->running_thread_count = 0;
ProcessList_goThroughEntries(this, skip_processes);
read_zfs_arc_size(this);
for (i = Vector_size(this->processes) - 1; i >= 0; i--) {
Process* p = (Process*) Vector_get(this->processes, i);
if(!p->updated) ProcessList_remove(this, p);
}
if(!skip_processes) this->should_update_names = false;
}