blob: 2d3781a4b23780fa85fdc65a20874f5163aa4415 [file] [log] [blame] [raw]
/*
htop - freebsd/FreeBSDProcessList.c
(C) 2014 Hisham H. Muhammad
Copyright 2015-2022 Rivoreo
Released under the GNU GPL, see the COPYING file
in the source distribution for its full text.
*/
/*{
#include "config.h"
#ifdef HAVE_LIBKVM
#include <kvm.h>
#endif
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/uio.h>
#include <sys/resource.h>
typedef struct CPUData_ {
double userPercent;
double nicePercent;
double systemPercent;
double irqPercent;
double idlePercent;
double systemAllPercent;
} CPUData;
typedef struct FreeBSDProcessList_ {
ProcessList super;
#ifdef HAVE_LIBKVM
kvm_t* kd;
#else
struct kinfo_proc *kip_buffer;
size_t kip_buffer_size;
#endif
unsigned long long int memWire;
unsigned long long int memActive;
unsigned long long int memInactive;
unsigned long long int memFree;
unsigned long long int laundry_size;
CPUData* cpus;
long int *cp_time_o;
long int *cp_time_n;
long int *cp_times_o;
long int *cp_times_n;
int arg_max;
} FreeBSDProcessList;
}*/
#include "ProcessList.h"
#include "FreeBSDProcessList.h"
#include "FreeBSDProcess.h"
#include "CRT.h"
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <sys/vmmeter.h>
#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <string.h>
#include <assert.h>
static int MIB_hw_physmem[2];
static int MIB_vm_stats_vm_v_page_count[4];
static int MIB_vm_stats_vm_v_wire_count[4];
static int MIB_vm_stats_vm_v_active_count[4];
static int *MIB_vm_stats_vm_v_cache_count;
static int MIB_vm_stats_vm_v_inactive_count[4];
static int MIB_vm_stats_vm_v_free_count[4];
static int *v_laundry_count_mib;
static int MIB_vfs_bufspace[2];
static int MIB_kern_cp_time[2];
static int MIB_kern_cp_times[2];
static int kernelFScale;
#ifdef __GLIBC__
// GNU C Library defines NZERO to 20, which is incorrect for kFreeBSD
#undef NZERO
#define NZERO 0
#endif
ProcessList* ProcessList_new(UsersTable* usersTable, const Hashtable *pidWhiteList, uid_t userId) {
size_t len;
FreeBSDProcessList* fpl = xCalloc(1, sizeof(FreeBSDProcessList));
ProcessList* pl = (ProcessList*) fpl;
ProcessList_init(pl, Class(FreeBSDProcess), usersTable, pidWhiteList, userId);
// physical memory in system: hw.physmem
// physical page size: hw.pagesize
// usable pagesize : vm.stats.vm.v_page_size
len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len);
unsigned int page_size;
len = sizeof page_size;
if (sysctlbyname("vm.stats.vm.v_page_size", &page_size, &len, NULL, 0) == 0 && page_size != CRT_page_size) {
// How can this happen?
CRT_page_size = page_size;
CRT_page_size_kib = page_size / ONE_BINARY_K;
}
int mib[4];
// usable page count vm.stats.vm.v_page_count
// actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size
len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len);
len = 4;
if(sysctlnametomib("vm.stats.vm.v_cache_count", mib, &len) == 0) {
assert(len == 4);
MIB_vm_stats_vm_v_cache_count = xMalloc(sizeof mib);
memcpy(MIB_vm_stats_vm_v_cache_count, mib, sizeof mib);
}
len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len);
len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len);
len = 4;
if(sysctlnametomib("vm.stats.vm.v_laundry_count", mib, &len) == 0) {
assert(len == 4);
v_laundry_count_mib = xMalloc(sizeof mib);
memcpy(v_laundry_count_mib, mib, sizeof mib);
}
int smp = 0;
len = sizeof(smp);
if (sysctlbyname("kern.smp.active", &smp, &len, NULL, 0) != 0 || len != sizeof(smp)) {
smp = 0;
}
int cpus;
len = sizeof(cpus);
if(!smp || sysctlbyname("kern.smp.cpus", &cpus, &len, NULL, 0) < 0) cpus = 1;
size_t sizeof_cp_time_array = sizeof(long int) * CPUSTATES;
len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len);
fpl->cp_time_o = xCalloc(cpus, sizeof_cp_time_array);
fpl->cp_time_n = xCalloc(cpus, sizeof_cp_time_array);
len = sizeof_cp_time_array;
// fetch initial single (or average) CPU clicks from kernel
sysctl(MIB_kern_cp_time, 2, fpl->cp_time_o, &len, NULL, 0);
// on smp box, fetch rest of initial CPU's clicks
if (cpus > 1) {
len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len);
fpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array);
fpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array);
len = cpus * sizeof_cp_time_array;
sysctl(MIB_kern_cp_times, 2, fpl->cp_times_o, &len, NULL, 0);
}
pl->cpuCount = MAX(cpus, 1);
if (cpus == 1 ) {
fpl->cpus = xRealloc(fpl->cpus, sizeof(CPUData));
} else {
// on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well)
fpl->cpus = xRealloc(fpl->cpus, (pl->cpuCount + 1) * sizeof(CPUData));
}
len = sizeof(kernelFScale);
if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) {
//sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed
kernelFScale = 2048;
}
#ifdef HAVE_LIBKVM
char errbuf[_POSIX2_LINE_MAX];
fpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf);
if (fpl->kd == NULL) {
errx(1, "kvm_open: %s", errbuf);
}
#else
fpl->kip_buffer = NULL;
fpl->kip_buffer_size = 0;
#endif
int arg_max_mib[] = { CTL_KERN, KERN_ARGMAX };
len = sizeof fpl->arg_max;
if(sysctl(arg_max_mib, 2, &fpl->arg_max, &len, NULL, 0) < 0) fpl->arg_max = ARG_MAX;
return pl;
}
void ProcessList_delete(ProcessList* this) {
FreeBSDProcessList* fpl = (FreeBSDProcessList*) this;
#ifdef HAVE_LIBKVM
if (fpl->kd) kvm_close(fpl->kd);
#else
free(fpl->kip_buffer);
#endif
free(fpl->cp_time_o);
free(fpl->cp_time_n);
free(fpl->cp_times_o);
free(fpl->cp_times_n);
free(fpl->cpus);
ProcessList_done(this);
free(this);
}
static inline void FreeBSDProcessList_scanCPUTime(ProcessList* pl) {
const FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl;
int cpus = pl->cpuCount; // actual CPU count
int maxcpu = cpus; // max iteration (in case we have average + smp)
int cp_times_offset;
assert(cpus > 0);
size_t sizeof_cp_time_array;
long int *cp_time_n; // old clicks state
long int *cp_time_o; // current clicks state
long int cp_time_d[CPUSTATES];
double cp_time_p[CPUSTATES];
// get averages or single CPU clicks
sizeof_cp_time_array = sizeof(long int) * CPUSTATES;
if(sysctl(MIB_kern_cp_time, 2, fpl->cp_time_n, &sizeof_cp_time_array, NULL, 0) < 0) return;
// get rest of CPUs
if (cpus > 1) {
// on smp systems FreeBSD kernel concats all CPU states into one long array in
// kern.cp_times sysctl OID
// we store averages in fpl->cpus[0], and actual cores after that
maxcpu = cpus + 1;
sizeof_cp_time_array = cpus * sizeof(long int) * CPUSTATES;
if(sysctl(MIB_kern_cp_times, 2, fpl->cp_times_n, &sizeof_cp_time_array, NULL, 0) < 0) {
return;
}
}
for (int i = 0; i < maxcpu; i++) {
if (cpus == 1) {
// single CPU box
cp_time_n = fpl->cp_time_n;
cp_time_o = fpl->cp_time_o;
} else {
if (i == 0 ) {
// average
cp_time_n = fpl->cp_time_n;
cp_time_o = fpl->cp_time_o;
} else {
// specific smp cores
cp_times_offset = i - 1;
cp_time_n = fpl->cp_times_n + (cp_times_offset * CPUSTATES);
cp_time_o = fpl->cp_times_o + (cp_times_offset * CPUSTATES);
}
}
// diff old vs new
unsigned long long total_o = 0;
unsigned long long total_n = 0;
unsigned long long total_d = 0;
for (int s = 0; s < CPUSTATES; s++) {
cp_time_d[s] = cp_time_n[s] - cp_time_o[s];
total_o += cp_time_o[s];
total_n += cp_time_n[s];
}
// totals
total_d = total_n - total_o;
if (total_d < 1 ) total_d = 1;
// save current state as old and calc percentages
for (int s = 0; s < CPUSTATES; ++s) {
cp_time_o[s] = cp_time_n[s];
cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100;
}
CPUData* cpuData = &(fpl->cpus[i]);
cpuData->userPercent = cp_time_p[CP_USER];
cpuData->nicePercent = cp_time_p[CP_NICE];
cpuData->systemPercent = cp_time_p[CP_SYS];
cpuData->irqPercent = cp_time_p[CP_INTR];
cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR];
// this one is not really used, but we store it anyway
cpuData->idlePercent = cp_time_p[CP_IDLE];
}
}
static inline void FreeBSDProcessList_scanMemoryInfo(ProcessList* pl) {
FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl;
union {
unsigned int v_uint;
long int v_long;
unsigned long int v_ulong;
} buffer;
size_t len;
// @etosan:
// memory counter relationships seem to be these:
// total = active + wired + inactive + cache + free
// htop_used (unavail to anybody) = active + wired
// htop_cache (for cache meter) = buffers + cache
// user_free (avail to procs) = buffers + inactive + cache + free
//
// with ZFS ARC situation becomes bit muddled, as ARC behaves like "user_free"
// and belongs into cache, but is reported as wired by kernel
//
// htop_used = active + (wired - arc)
// htop_cache = buffers + cache + arc
//disabled for now, as it is always smaller than phycal amount of memory...
//...to avoid "where is my memory?" questions
//len = sizeof buffer.v_uint;
//sysctl(MIB_vm_stats_vm_v_page_count, 4, &buffer, &len, NULL, 0);
//pl->totalMem = buffer.v_uint * CRT_page_size_kib;
len = sizeof buffer.v_ulong;
if(sysctl(MIB_hw_physmem, 2, &buffer, &len, NULL, 0) < 0) goto fail;
pl->totalMem = buffer.v_ulong / 1024;
len = sizeof buffer.v_uint;
if(sysctl(MIB_vm_stats_vm_v_active_count, 4, &buffer, &len, NULL, 0) < 0) goto fail;
fpl->memActive = buffer.v_uint * CRT_page_size_kib;
len = sizeof buffer.v_uint;
if(sysctl(MIB_vm_stats_vm_v_wire_count, 4, &buffer, &len, NULL, 0) < 0) goto fail;
fpl->memWire = buffer.v_uint * CRT_page_size_kib;
len = sizeof buffer.v_long;
if(sysctl(MIB_vfs_bufspace, 2, &buffer, &len, NULL, 0) < 0) goto fail;
pl->buffersMem = buffer.v_long / 1024;
if(MIB_vm_stats_vm_v_cache_count) {
len = sizeof buffer.v_uint;
if(sysctl(MIB_vm_stats_vm_v_cache_count, 4, &buffer, &len, NULL, 0) < 0) {
pl->cachedMem = 0;
} else {
pl->cachedMem = buffer.v_uint * CRT_page_size_kib;
}
}
if(v_laundry_count_mib) {
// Exists since kFreeBSD 11.1
len = sizeof buffer.v_uint;
if(sysctl(v_laundry_count_mib, 4, &buffer, &len, NULL, 0) < 0) {
fpl->laundry_size = 0;
} else {
fpl->laundry_size = buffer.v_uint * CRT_page_size_kib;
}
}
// ZFS ARC size is now handled in ProcessList.c
pl->usedMem = fpl->memActive + fpl->memWire + fpl->laundry_size;
// currently unused, same as with arc, custom meter perhaps
//len = sizeof buffer.v_uint;
//sysctl(MIB_vm_stats_vm_v_inactive_count, 4, &buffer, &len, NULL, 0);
//fpl->memInactive = buffer.v_uint * CRT_page_size_kib;
//len = sizeof buffer.v_uint;
//sysctl(MIB_vm_stats_vm_v_free_count, 4, &buffer, &len, NULL, 0);
//fpl->memFree = buffer.v_uint * CRT_page_size_kib;
//pl->freeMem = fpl->memInactive + fpl->memFree;
#ifdef HAVE_LIBKVM
struct kvm_swap swap[16];
int nswap = kvm_getswapinfo(fpl->kd, swap, sizeof(swap)/sizeof(swap[0]), 0);
pl->totalSwap = 0;
pl->usedSwap = 0;
for (int i = 0; i < nswap; i++) {
pl->totalSwap += swap[i].ksw_total;
pl->usedSwap += swap[i].ksw_used;
}
pl->totalSwap *= CRT_page_size_kib;
pl->usedSwap *= CRT_page_size_kib;
#else
pl->totalSwap = 0;
pl->usedSwap = 0;
#endif
return;
fail:
pl->totalMem = 0;
pl->buffersMem = 0;
pl->cachedMem = 0;
pl->usedMem = 0;
pl->totalSwap = 0;
pl->usedSwap = 0;
}
static void FreeBSDProcessList_readProcessName(FreeBSDProcessList *this, struct kinfo_proc* kproc, char **name, char **command, int *argv0_len) {
*name = xStrdup(kproc->ki_comm);
#ifdef KERN_PROC_ARGS
int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_ARGS, kproc->ki_pid };
char buffer[this->arg_max];
size_t len = this->arg_max;
if(sysctl(mib, 4, buffer, &len, NULL, 0) < 0 || len < 1) {
*command = xStrdup(kproc->ki_comm);
*argv0_len = strlen(kproc->ki_comm);
return;
}
*command = xMalloc(len);
(*command)[--len] = 0;
*argv0_len = len;
while(len-- > 0) {
(*command)[len] = buffer[len] ? : (*argv0_len = len, ' ');
}
#elif defined HAVE_LIBKVM
char** argv = kvm_getargv(this->kd, kproc, 0);
if (!argv || !*argv) {
*command = xStrdup(kproc->ki_comm);
*argv0_len = strlen(kproc->ki_comm);
return;
}
int len = 0;
for (int i = 0; argv[i]; i++) {
if(i) {
len += strlen(argv[i]) + 1;
} else {
len = strlen(argv[i]);
*argv0_len = len++;
}
}
*command = xMalloc(len);
char* at = *command;
for (int i = 0; argv[i]; i++) {
if(i) *at++ = ' ';
at = stpcpy(at, argv[i]);
}
#else
*command = xStrdup(kproc->ki_comm);
*argv0_len = strlen(kproc->ki_comm);
#endif
}
#define JAIL_ERRMSGLEN 1024
static char *FreeBSDProcessList_readJailName(struct kinfo_proc* kproc) {
#ifdef HAVE_STRUCT_KINFO_PROC_KI_JID
if (kproc->ki_jid != 0) {
struct iovec jiov[6];
char jnamebuf[MAXHOSTNAMELEN];
char errmsg[JAIL_ERRMSGLEN];
memset(jnamebuf, 0, sizeof(jnamebuf));
*(const void **)&jiov[0].iov_base = "jid";
jiov[0].iov_len = sizeof("jid");
jiov[1].iov_base = &kproc->ki_jid;
jiov[1].iov_len = sizeof(kproc->ki_jid);
*(const void **)&jiov[2].iov_base = "name";
jiov[2].iov_len = sizeof("name");
jiov[3].iov_base = jnamebuf;
jiov[3].iov_len = sizeof(jnamebuf);
*(const void **)&jiov[4].iov_base = "errmsg";
jiov[4].iov_len = sizeof("errmsg");
jiov[5].iov_base = errmsg;
jiov[5].iov_len = JAIL_ERRMSGLEN;
errmsg[0] = 0;
int jid = jail_get(jiov, 6, 0);
if (jid < 0) {
if (!errmsg[0]) {
xSnprintf(errmsg, JAIL_ERRMSGLEN, "jail_get: %s", strerror(errno));
// TODO: Make use of errmsg
}
return NULL;
}
return jid == kproc->ki_jid ? xStrdup(jnamebuf) : NULL;
}
#endif
return xStrdup("-");
}
void ProcessList_goThroughEntries(ProcessList* this) {
FreeBSDProcessList* fpl = (FreeBSDProcessList*) this;
bool hide_kernel_processes = this->settings->hide_kernel_processes;
FreeBSDProcessList_scanMemoryInfo(this);
FreeBSDProcessList_scanCPUTime(this);
#ifdef HAVE_LIBKVM
int count = 0;
struct kinfo_proc* kprocs = kvm_getprocs(fpl->kd, KERN_PROC_PROC, 0, &count);
if(!kprocs) return;
#else
int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PROC };
size_t buffer_size;
if(sysctl(mib, 3, NULL, &buffer_size, NULL, 0) < 0) return;
if(fpl->kip_buffer_size < buffer_size) {
fpl->kip_buffer = xRealloc(fpl->kip_buffer, buffer_size);
fpl->kip_buffer_size = buffer_size;
}
if(sysctl(mib, 3, fpl->kip_buffer, &buffer_size, NULL, 0) < 0 && errno != ENOMEM) return;
struct kinfo_proc *kprocs = fpl->kip_buffer;
int count = buffer_size / sizeof(struct kinfo_proc);
#endif
for (int i = 0; i < count; i++) {
struct kinfo_proc* kproc = &kprocs[i];
bool is_existing;
Process* proc = ProcessList_getProcess(this, kproc->ki_pid, &is_existing, (Process_New) FreeBSDProcess_new);
FreeBSDProcess* fp = (FreeBSDProcess*) proc;
proc->ppid = kproc->ki_ppid;
proc->tpgid = kproc->ki_tpgid;
proc->tgid = kproc->ki_pid;
proc->session = kproc->ki_sid;
proc->tty_nr = kproc->ki_tdev;
proc->pgrp = kproc->ki_pgid;
if (!is_existing) {
#ifdef HAVE_STRUCT_KINFO_PROC_KI_JID
fp->jid = kproc->ki_jid;
#endif
fp->kernel = kproc->ki_pid != 1 && (kproc->ki_flag & P_SYSTEM);
proc->ruid = kproc->ki_ruid;
proc->euid = kproc->ki_uid;
proc->real_user = UsersTable_getRef(this->usersTable, proc->ruid);
proc->effective_user = UsersTable_getRef(this->usersTable, proc->euid);
proc->starttime_ctime = kproc->ki_start.tv_sec;
ProcessList_add((ProcessList*)this, proc);
FreeBSDProcessList_readProcessName(fpl, kproc, &proc->name, &proc->comm, &proc->argv0_length);
fp->jname = FreeBSDProcessList_readJailName(kproc);
fp->emulation = xStrdup(kproc->ki_emul);
} else {
#ifdef HAVE_STRUCT_KINFO_PROC_KI_JID
if(fp->jid != kproc->ki_jid) {
// process can enter jail anytime
fp->jid = kproc->ki_jid;
free(fp->jname);
fp->jname = FreeBSDProcessList_readJailName(kproc);
}
#endif
// some processes change users (eg. to lower privs)
if(proc->ruid != kproc->ki_ruid) {
proc->ruid = kproc->ki_ruid;
proc->real_user = UsersTable_getRef(this->usersTable, proc->ruid);
}
if(proc->euid != kproc->ki_uid) {
proc->euid = kproc->ki_uid;
proc->effective_user = UsersTable_getRef(this->usersTable, proc->euid);
}
if (this->settings->updateProcessNames) {
free(proc->name);
free(proc->comm);
FreeBSDProcessList_readProcessName(fpl, kproc, &proc->name, &proc->comm, &proc->argv0_length);
free(fp->emulation);
fp->emulation = xStrdup(kproc->ki_emul);
}
}
proc->m_size = kproc->ki_size / CRT_page_size;
proc->m_resident = kproc->ki_rssize;
proc->percent_mem =
(double)proc->m_resident / (double)(this->totalMem / CRT_page_size_kib) * 100;
proc->nlwp = kproc->ki_numthreads;
proc->time = (kproc->ki_runtime + 5000) / 10000;
proc->percent_cpu = (double)kproc->ki_pctcpu / (double)kernelFScale * 100;
proc->priority = kproc->ki_pri.pri_level - PZERO;
if ((kproc->ki_flag & P_SYSTEM) && strcmp(kproc->ki_comm, "intr") == 0) {
proc->nice = 0; //@etosan: intr kernel process (not thread) has weird nice value
} else if (kproc->ki_pri.pri_class == PRI_TIMESHARE) {
proc->nice = kproc->ki_nice - NZERO;
} else if (PRI_IS_REALTIME(kproc->ki_pri.pri_class)) {
proc->nice = PRIO_MIN - 1 - (PRI_MAX_REALTIME - kproc->ki_pri.pri_level);
} else {
proc->nice = PRIO_MAX + 1 + kproc->ki_pri.pri_level - PRI_MIN_IDLE;
}
int on_processor = -1;
switch (kproc->ki_stat) {
case SIDL:
proc->state = 'I';
break;
case SRUN:
proc->state = 'R';
if(kproc->ki_oncpu != NOCPU) on_processor = kproc->ki_oncpu;
break;
case SSLEEP:
proc->state = (kproc->ki_tdflags & TDF_SINTR) ?
(kproc->ki_slptime > MAXSLP ? 'I' : 'S') : 'D';
break;
case SSTOP:
proc->state = 'T';
break;
case SZOMB:
proc->state = 'Z';
break;
case SWAIT:
proc->state = 'W';
break;
case SLOCK:
proc->state = 'L';
break;
default:
proc->state = '?';
break;
}
if(on_processor < 0) {
if(kproc->ki_lastcpu != NOCPU) proc->processor = kproc->ki_lastcpu;
} else {
proc->processor = on_processor;
}
this->totalTasks++;
this->thread_count += proc->nlwp;
if (Process_isKernelProcess(proc)) {
this->kernel_process_count++;
this->kernel_thread_count += proc->nlwp;
}
if (proc->state == 'R' && !(kproc->ki_tdflags & TDF_IDLETD)) {
this->running_process_count++;
this->running_thread_count++;
}
proc->show = !(hide_kernel_processes && Process_isKernelProcess(proc));
proc->updated = true;
}
}