blob: 82e472b781c17d9ef3f66df88f614adc1f3d62d5 [file] [log] [blame] [raw]
/*
htop - dragonflybsd/DragonFlyBSDProcessList.c
(C) 2014 Hisham H. Muhammad
(C) 2017 Diederik de Groot
Released under the GNU GPL, see the COPYING file
in the source distribution for its full text.
*/
/*{
#include "ProcessList.h"
#include "Hashtable.h"
#include <sys/types.h>
#include <kvm.h>
typedef struct CPUData_ {
double userPercent;
double nicePercent;
double systemPercent;
double irqPercent;
double idlePercent;
double systemAllPercent;
} CPUData;
typedef struct DragonFlyBSDProcessList_ {
ProcessList super;
kvm_t* kd;
unsigned long long int memWire;
unsigned long long int memActive;
unsigned long long int memInactive;
unsigned long long int memFree;
CPUData* cpus;
long int *cp_time_o;
long int *cp_time_n;
long int *cp_times_o;
long int *cp_times_n;
Hashtable *jails;
} DragonFlyBSDProcessList;
}*/
#include "DragonFlyBSDProcessList.h"
#include "DragonFlyBSDProcess.h"
#include "CRT.h"
#include <sys/sysctl.h>
#include <sys/kinfo.h>
#include <sys/jail.h>
#include <sys/uio.h>
#include <sys/resource.h>
#include <sys/user.h>
#include <kinfo.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <err.h>
#define _UNUSED_ __attribute__((unused))
static int MIB_hw_physmem[2];
static int MIB_vm_stats_vm_v_page_count[4];
static int MIB_vm_stats_vm_v_wire_count[4];
static int MIB_vm_stats_vm_v_active_count[4];
static int MIB_vm_stats_vm_v_cache_count[4];
static int MIB_vm_stats_vm_v_inactive_count[4];
static int MIB_vm_stats_vm_v_free_count[4];
static int MIB_vfs_bufspace[2];
static int MIB_kern_cp_time[2];
static int MIB_kern_cp_times[2];
static int kernelFScale;
ProcessList* ProcessList_new(UsersTable* usersTable, const Hashtable *pidWhiteList, uid_t userId) {
size_t len;
char errbuf[_POSIX2_LINE_MAX];
DragonFlyBSDProcessList* dfpl = xCalloc(1, sizeof(DragonFlyBSDProcessList));
ProcessList* pl = (ProcessList*) dfpl;
ProcessList_init(pl, Class(DragonFlyBSDProcess), usersTable, pidWhiteList, userId);
// physical memory in system: hw.physmem
// physical page size: hw.pagesize
// usable pagesize : vm.stats.vm.v_page_size
len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len);
unsigned int page_size;
len = sizeof page_size;
if (sysctlbyname("vm.stats.vm.v_page_size", &page_size, &len, NULL, 0) == 0 && page_size != CRT_page_size) {
// How can this happen?
CRT_page_size = page_size;
CRT_page_size_kib = page_size / ONE_BINARY_K;
}
// usable page count vm.stats.vm.v_page_count
// actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size
len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len);
len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len);
int cpus = 1;
len = sizeof(cpus);
if (sysctlbyname("hw.ncpu", &cpus, &len, NULL, 0) != 0) {
cpus = 1;
}
size_t sizeof_cp_time_array = sizeof(long int) * CPUSTATES;
len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len);
dfpl->cp_time_o = xCalloc(cpus, sizeof_cp_time_array);
dfpl->cp_time_n = xCalloc(cpus, sizeof_cp_time_array);
len = sizeof_cp_time_array;
// fetch initial single (or average) CPU clicks from kernel
sysctl(MIB_kern_cp_time, 2, dfpl->cp_time_o, &len, NULL, 0);
// on smp box, fetch rest of initial CPU's clicks
if (cpus > 1) {
len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len);
dfpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array);
dfpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array);
len = cpus * sizeof_cp_time_array;
sysctl(MIB_kern_cp_times, 2, dfpl->cp_times_o, &len, NULL, 0);
}
pl->cpuCount = MAX(cpus, 1);
if (cpus == 1 ) {
dfpl->cpus = xRealloc(dfpl->cpus, sizeof(CPUData));
} else {
// on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well)
dfpl->cpus = xRealloc(dfpl->cpus, (pl->cpuCount + 1) * sizeof(CPUData));
}
len = sizeof(kernelFScale);
if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) {
//sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed
kernelFScale = 2048;
}
dfpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf);
if (dfpl->kd == NULL) {
errx(1, "kvm_open: %s", errbuf);
}
return pl;
}
void ProcessList_delete(ProcessList* this) {
const DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) this;
if (dfpl->kd) kvm_close(dfpl->kd);
if (dfpl->jails) {
Hashtable_delete(dfpl->jails);
}
free(dfpl->cp_time_o);
free(dfpl->cp_time_n);
free(dfpl->cp_times_o);
free(dfpl->cp_times_n);
free(dfpl->cpus);
ProcessList_done(this);
free(this);
}
static inline void DragonFlyBSDProcessList_scanCPUTime(ProcessList* pl) {
const DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) pl;
int cpus = pl->cpuCount; // actual CPU count
int maxcpu = cpus; // max iteration (in case we have average + smp)
int cp_times_offset;
assert(cpus > 0);
size_t sizeof_cp_time_array;
long int *cp_time_n; // old clicks state
long int *cp_time_o; // current clicks state
long int cp_time_d[CPUSTATES];
double cp_time_p[CPUSTATES];
// get averages or single CPU clicks
sizeof_cp_time_array = sizeof(long int) * CPUSTATES;
if(sysctl(MIB_kern_cp_time, 2, dfpl->cp_time_n, &sizeof_cp_time_array, NULL, 0) < 0) return;
// get rest of CPUs
if (cpus > 1) {
// on smp systems DragonFlyBSD kernel concats all CPU states into one long array in
// kern.cp_times sysctl OID
// we store averages in dfpl->cpus[0], and actual cores after that
maxcpu = cpus + 1;
sizeof_cp_time_array = cpus * sizeof(long int) * CPUSTATES;
if(sysctl(MIB_kern_cp_times, 2, dfpl->cp_times_n, &sizeof_cp_time_array, NULL, 0) < 0) {
return;
}
}
for (int i = 0; i < maxcpu; i++) {
if (cpus == 1) {
// single CPU box
cp_time_n = dfpl->cp_time_n;
cp_time_o = dfpl->cp_time_o;
} else {
if (i == 0 ) {
// average
cp_time_n = dfpl->cp_time_n;
cp_time_o = dfpl->cp_time_o;
} else {
// specific smp cores
cp_times_offset = i - 1;
cp_time_n = dfpl->cp_times_n + (cp_times_offset * CPUSTATES);
cp_time_o = dfpl->cp_times_o + (cp_times_offset * CPUSTATES);
}
}
// diff old vs new
unsigned long long total_o = 0;
unsigned long long total_n = 0;
unsigned long long total_d = 0;
for (int s = 0; s < CPUSTATES; s++) {
cp_time_d[s] = cp_time_n[s] - cp_time_o[s];
total_o += cp_time_o[s];
total_n += cp_time_n[s];
}
// totals
total_d = total_n - total_o;
if (total_d < 1 ) total_d = 1;
// save current state as old and calc percentages
for (int s = 0; s < CPUSTATES; ++s) {
cp_time_o[s] = cp_time_n[s];
cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100;
}
CPUData* cpuData = &(dfpl->cpus[i]);
cpuData->userPercent = cp_time_p[CP_USER];
cpuData->nicePercent = cp_time_p[CP_NICE];
cpuData->systemPercent = cp_time_p[CP_SYS];
cpuData->irqPercent = cp_time_p[CP_INTR];
cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR];
// this one is not really used, but we store it anyway
cpuData->idlePercent = cp_time_p[CP_IDLE];
}
}
static inline void DragonFlyBSDProcessList_scanMemoryInfo(ProcessList* pl) {
DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) pl;
union {
unsigned int v_uint;
long int v_long;
unsigned long int v_ulong;
} buffer;
size_t len;
// @etosan:
// memory counter relationships seem to be these:
// total = active + wired + inactive + cache + free
// htop_used (unavail to anybody) = active + wired
// htop_cache (for cache meter) = buffers + cache
// user_free (avail to procs) = buffers + inactive + cache + free
// disabled for now, as it is always smaller than phycal amount of memory...
// ...to avoid "where is my memory?" questions
//len = sizeof buffer.v_uint;
//sysctl(MIB_vm_stats_vm_v_page_count, 4, &buffer, &len, NULL, 0);
//pl->totalMem = buffer.v_uint * CRT_page_size_kib;
len = sizeof buffer.v_ulong;
if(sysctl(MIB_hw_physmem, 2, &buffer, &len, NULL, 0) < 0) goto fail;
pl->totalMem = buffer.v_ulong / 1024;
len = sizeof buffer.v_uint;
if(sysctl(MIB_vm_stats_vm_v_active_count, 4, &buffer, &len, NULL, 0) < 0) goto fail;
dfpl->memActive = buffer.v_uint * CRT_page_size_kib;
len = sizeof buffer.v_uint;
if(sysctl(MIB_vm_stats_vm_v_wire_count, 4, &buffer, &len, NULL, 0) < 0) goto fail;
dfpl->memWire = buffer.v_uint * CRT_page_size_kib;
len = sizeof buffer.v_long;
if(sysctl(MIB_vfs_bufspace, 2, &buffer, &len, NULL, 0) < 0) goto fail;
pl->buffersMem = buffer.v_long / 1024;
len = sizeof buffer.v_uint;
if(sysctl(MIB_vm_stats_vm_v_cache_count, 4, &buffer, &len, NULL, 0) < 0) goto fail;
pl->cachedMem = buffer.v_uint * CRT_page_size_kib;
pl->usedMem = dfpl->memActive + dfpl->memWire;
// currently unused, same as with arc, custom meter perhaps
//len = sizeof buffer.v_uint;
//sysctl(MIB_vm_stats_vm_v_inactive_count, 4, &buffer, &len, NULL, 0);
//dfpl->memInactive = buffer.v_uint * CRT_page_size_kib;
//len = sizeof buffer.v_uint;
//sysctl(MIB_vm_stats_vm_v_free_count, 4, &buffer, &len, NULL, 0);
//dfpl->memFree = buffer.v_uint * CRT_page_size_kib;
//pl->freeMem = dfpl->memInactive + dfpl->memFree;
struct kvm_swap swap[16];
int nswap = kvm_getswapinfo(dfpl->kd, swap, sizeof(swap)/sizeof(swap[0]), 0);
pl->totalSwap = 0;
pl->usedSwap = 0;
for (int i = 0; i < nswap; i++) {
pl->totalSwap += swap[i].ksw_total;
pl->usedSwap += swap[i].ksw_used;
}
pl->totalSwap *= CRT_page_size_kib;
pl->usedSwap *= CRT_page_size_kib;
return;
fail:
pl->totalMem = 0;
pl->buffersMem = 0;
pl->cachedMem = 0;
pl->usedMem = 0;
pl->totalSwap = 0;
pl->usedSwap = 0;
}
static void DragonFlyBSDProcessList_readProcessName(kvm_t* kd, struct kinfo_proc* kproc, char **name, char **command, int *argv0_len) {
*name = xStrdup(kproc->kp_comm);
char** argv = kvm_getargv(kd, kproc, 0);
if (!argv || !*argv) {
*command = xStrdup(kproc->kp_comm);
*argv0_len = strlen(kproc->kp_comm);
return;
}
int len = 0;
for (int i = 0; argv[i]; i++) {
if(i) {
len += strlen(argv[i]) + 1;
} else {
len = strlen(argv[i]);
*argv0_len = len++;
}
}
*command = xMalloc(len);
char* at = *command;
for (int i = 0; argv[i]; i++) {
if(i) *at++ = ' ';
at = stpcpy(at, argv[i]);
}
}
static inline void DragonFlyBSDProcessList_scanJails(DragonFlyBSDProcessList* dfpl) {
size_t len;
char *jls; /* Jail list */
char *curpos;
char *nextpos;
if (sysctlbyname("jail.list", NULL, &len, NULL, 0) == -1) {
fprintf(stderr, "initial sysctlbyname / jail.list failed\n");
exit(3);
}
retry:
if (len == 0)
return;
jls = xMalloc(len);
if (jls == NULL) {
fprintf(stderr, "xMalloc failed\n");
exit(4);
}
if (sysctlbyname("jail.list", jls, &len, NULL, 0) == -1) {
if (errno == ENOMEM) {
free(jls);
goto retry;
}
fprintf(stderr, "sysctlbyname / jail.list failed\n");
exit(5);
}
if (dfpl->jails) {
Hashtable_delete(dfpl->jails);
}
dfpl->jails = Hashtable_new(20, true);
curpos = jls;
while (curpos) {
int jailid;
char *str_hostname;
nextpos = strchr(curpos, '\n');
if (nextpos)
*nextpos++ = 0;
jailid = atoi(strtok(curpos, " "));
str_hostname = strtok(NULL, " ");
char *jname = Hashtable_get(dfpl->jails, jailid);
if (jname == NULL) {
jname = xStrdup(str_hostname);
Hashtable_put(dfpl->jails, jailid, jname);
}
curpos = nextpos;
}
free(jls);
}
static char *DragonFlyBSDProcessList_readJailName(DragonFlyBSDProcessList* dfpl, int jailid) {
char *hostname;
if (jailid != 0 && dfpl->jails && (hostname = Hashtable_get(dfpl->jails, jailid))) {
return xStrdup(hostname);
} else {
return xStrdup("-");
}
}
void ProcessList_goThroughEntries(ProcessList* this, bool skip_processes) {
DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) this;
DragonFlyBSDProcessList_scanMemoryInfo(this);
DragonFlyBSDProcessList_scanCPUTime(this);
DragonFlyBSDProcessList_scanJails(dfpl);
if(skip_processes) return;
int count = 0;
struct kinfo_proc* kprocs = kvm_getprocs(dfpl->kd, KERN_PROC_ALL, 0, &count);
for (int i = 0; i < count; i++) {
struct kinfo_proc* kproc = &kprocs[i];
bool preExisting;
// note: dragonflybsd kernel processes all have the same pid, so we misuse the kernel thread address to give them a unique identifier
pid_t pid = kproc->kp_pid != 1 && (kproc->kp_flags & P_SYSTEM) && kproc->kp_ktaddr ?
(pid_t)kproc->kp_ktaddr : kproc->kp_pid;
Process* proc = ProcessList_getProcess(this, pid, &preExisting, (Process_New) DragonFlyBSDProcess_new);
DragonFlyBSDProcess* dfp = (DragonFlyBSDProcess*) proc;
proc->ppid = kproc->kp_ppid; // parent process id
proc->tpgid = kproc->kp_tpgid; // tty process group id
proc->tgid = kproc->kp_pid; // thread group id
proc->pgrp = kproc->kp_pgid; // process group id
proc->session = kproc->kp_sid;
proc->tty_nr = kproc->kp_tdev; // control terminal device number
if (!preExisting) {
dfp->jid = kproc->kp_jailid;
dfp->kernel = kproc->kp_pid != 1 && (kproc->kp_flags & P_SYSTEM);
proc->ruid = kproc->kp_ruid; // real user ID
proc->euid = kproc->kp_uid; // effective user ID
proc->processor = kproc->kp_lwp.kl_origcpu;
proc->real_user = UsersTable_getRef(this->usersTable, proc->ruid);
proc->effective_user = UsersTable_getRef(this->usersTable, proc->euid);
proc->starttime_ctime = kproc->kp_start.tv_sec;
ProcessList_add((ProcessList*)this, proc);
DragonFlyBSDProcessList_readProcessName(dfpl->kd, kproc, &proc->name, &proc->comm, &proc->argv0_length);
dfp->jname = DragonFlyBSDProcessList_readJailName(dfpl, kproc->kp_jailid);
} else {
proc->processor = kproc->kp_lwp.kl_cpuid;
if(dfp->jid != kproc->kp_jailid) { // process can enter jail anytime
dfp->jid = kproc->kp_jailid;
free(dfp->jname);
dfp->jname = DragonFlyBSDProcessList_readJailName(dfpl, kproc->kp_jailid);
}
// some processes change users (eg. to lower privs)
if(proc->ruid != kproc->kp_ruid) {
proc->ruid = kproc->kp_ruid;
proc->real_user = UsersTable_getRef(this->usersTable, proc->ruid);
}
if(proc->euid != kproc->kp_uid) {
proc->euid = kproc->kp_uid;
proc->effective_user = UsersTable_getRef(this->usersTable, proc->euid);
}
if (ProcessList_shouldUpdateProcessNames(this)) {
free(proc->name);
free(proc->comm);
DragonFlyBSDProcessList_readProcessName(dfpl->kd, kproc, &proc->name, &proc->comm, &proc->argv0_length);
}
}
proc->m_size = kproc->kp_vm_map_size / CRT_page_size;
proc->m_resident = kproc->kp_vm_rssize;
proc->percent_mem =
(double)proc->m_resident / (double)(this->totalMem / CRT_page_size_kib) * 100;
proc->nlwp = kproc->kp_nthreads; // number of lwp thread
proc->time =
(kproc->kp_lwp.kl_uticks + kproc->kp_lwp.kl_sticks + kproc->kp_lwp.kl_iticks) / 10000;
proc->percent_cpu = (double)kproc->kp_lwp.kl_pctcpu / (double)kernelFScale * 100;
proc->priority = kproc->kp_lwp.kl_pid == -1 ? -kproc->kp_lwp.kl_tdprio : kproc->kp_lwp.kl_prio;
switch(kproc->kp_lwp.kl_rtprio.type) {
case RTP_PRIO_REALTIME:
proc->nice = PRIO_MIN - 1 - RTP_PRIO_MAX + kproc->kp_lwp.kl_rtprio.prio;
break;
case RTP_PRIO_IDLE:
proc->nice = PRIO_MAX + 1 + kproc->kp_lwp.kl_rtprio.prio;
break;
case RTP_PRIO_THREAD:
proc->nice = PRIO_MIN - 1 - RTP_PRIO_MAX - kproc->kp_lwp.kl_rtprio.prio;
break;
default:
proc->nice = kproc->kp_nice;
break;
}
// would be nice if we could store multiple states in proc->state (as enum) and have writeField render them
switch (kproc->kp_stat) {
case SIDL:
proc->state = 'I';
break;
case SACTIVE:
switch (kproc->kp_lwp.kl_stat) {
case LSSLEEP:
if (kproc->kp_lwp.kl_flags & LWP_SINTR) {
// interruptable wait long/short
proc->state = kproc->kp_lwp.kl_slptime > MAXSLP ? 'I' : 'S';
} else if (kproc->kp_lwp.kl_tdflags & TDF_SINTR) {
// interruptable lwkt wait
proc->state = 'S';
} else if (kproc->kp_paddr) {
// uninterruptable wait
proc->state = 'D';
} else {
// uninterruptable lwkt wait
proc->state = 'B';
}
break;
case LSRUN:
// running or runnable
//proc->state = (kproc->kp_lwp.kl_tdflags & (TDF_RUNNING | TDF_RUNQ)) ? 'O' : 'R';
proc->state = 'R';
break;
case LSSTOP:
proc->state = 'T';
break;
default:
proc->state = 'A';
break;
}
break;
case SSTOP:
proc->state = 'T';
break;
case SZOMB:
proc->state = 'Z';
break;
case SCORE:
proc->state = 'C';
break;
default:
proc->state = '?';
break;
}
this->totalTasks++;
this->thread_count += proc->nlwp;
if (Process_isKernelProcess(proc)) {
this->kernel_process_count++;
this->kernel_thread_count += proc->nlwp;
}
if (proc->state == 'R') {
this->running_process_count++;
this->running_thread_count++;
}
proc->show = !(this->settings->hide_kernel_processes && Process_isKernelProcess(proc));
proc->updated = true;
}
}