| #ifndef IO_H |
| #define IO_H |
| |
| |
| /* Amount of relocation etherboot is experiencing */ |
| extern unsigned long virt_offset; |
| |
| /* Don't require identity mapped physical memory, |
| * osloader.c is the only valid user at the moment. |
| */ |
| unsigned long virt_to_phys(volatile const void *virt_addr); |
| void *phys_to_virt(unsigned long phys_addr); |
| |
| /* virt_to_bus converts an addresss inside of etherboot [_start, _end] |
| * into a memory access cards can use. |
| */ |
| #define virt_to_bus virt_to_phys |
| |
| |
| /* bus_to_virt reverses virt_to_bus, the address must be output |
| * from virt_to_bus to be valid. This function does not work on |
| * all bus addresses. |
| */ |
| #define bus_to_virt phys_to_virt |
| |
| /* ioremap converts a random 32bit bus address into something |
| * etherboot can access. |
| */ |
| static inline void *ioremap(unsigned long bus_addr, unsigned long length __unused) |
| { |
| return bus_to_virt(bus_addr); |
| } |
| |
| /* iounmap cleans up anything ioremap had to setup */ |
| static inline void iounmap(void *virt_addr __unused) |
| { |
| return; |
| } |
| |
| /* |
| * This file contains the definitions for the x86 IO instructions |
| * inb/inw/inl/outb/outw/outl and the "string versions" of the same |
| * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" |
| * versions of the single-IO instructions (inb_p/inw_p/..). |
| * |
| * This file is not meant to be obfuscating: it's just complicated |
| * to (a) handle it all in a way that makes gcc able to optimize it |
| * as well as possible and (b) trying to avoid writing the same thing |
| * over and over again with slight variations and possibly making a |
| * mistake somewhere. |
| */ |
| |
| /* |
| * Thanks to James van Artsdalen for a better timing-fix than |
| * the two short jumps: using outb's to a nonexistent port seems |
| * to guarantee better timings even on fast machines. |
| * |
| * On the other hand, I'd like to be sure of a non-existent port: |
| * I feel a bit unsafe about using 0x80 (should be safe, though) |
| * |
| * Linus |
| */ |
| |
| #ifdef SLOW_IO_BY_JUMPING |
| #define __SLOW_DOWN_IO __asm__ __volatile__("jmp 1f\n1:\tjmp 1f\n1:") |
| #else |
| #define __SLOW_DOWN_IO __asm__ __volatile__("outb %al,$0x80") |
| #endif |
| |
| #ifdef REALLY_SLOW_IO |
| #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } |
| #else |
| #define SLOW_DOWN_IO __SLOW_DOWN_IO |
| #endif |
| |
| /* |
| * readX/writeX() are used to access memory mapped devices. On some |
| * architectures the memory mapped IO stuff needs to be accessed |
| * differently. On the x86 architecture, we just read/write the |
| * memory location directly. |
| */ |
| #define readb(addr) (*(volatile unsigned char *) (addr)) |
| #define readw(addr) (*(volatile unsigned short *) (addr)) |
| #define readl(addr) (*(volatile unsigned int *) (addr)) |
| |
| #define writeb(b,addr) ((*(volatile unsigned char *) (addr)) = (b)) |
| #define writew(b,addr) ((*(volatile unsigned short *) (addr)) = (b)) |
| #define writel(b,addr) ((*(volatile unsigned int *) (addr)) = (b)) |
| |
| #define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c)) |
| #define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c)) |
| |
| /* |
| * Force strict CPU ordering. |
| * And yes, this is required on UP too when we're talking |
| * to devices. |
| * |
| * For now, "wmb()" doesn't actually do anything, as all |
| * Intel CPU's follow what Intel calls a *Processor Order*, |
| * in which all writes are seen in the program order even |
| * outside the CPU. |
| * |
| * I expect future Intel CPU's to have a weaker ordering, |
| * but I'd also expect them to finally get their act together |
| * and add some real memory barriers if so. |
| * |
| * Some non intel clones support out of order store. wmb() ceases to be a |
| * nop for these. |
| */ |
| |
| #define mb() __asm__ __volatile__ ("lock; addl $0,0(%%esp)": : :"memory") |
| #define rmb() mb() |
| #define wmb() mb(); |
| |
| |
| /* |
| * Talk about misusing macros.. |
| */ |
| |
| #define __OUT1(s,x) \ |
| extern void __out##s(unsigned x value, unsigned short port); \ |
| extern inline void __out##s(unsigned x value, unsigned short port) { |
| |
| #define __OUT2(s,s1,s2) \ |
| __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1" |
| |
| #define __OUT(s,s1,x) \ |
| __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "d" (port)); } \ |
| __OUT1(s##c,x) __OUT2(s,s1,"") : : "a" (value), "id" (port)); } \ |
| __OUT1(s##_p,x) __OUT2(s,s1,"w") : : "a" (value), "d" (port)); SLOW_DOWN_IO; } \ |
| __OUT1(s##c_p,x) __OUT2(s,s1,"") : : "a" (value), "id" (port)); SLOW_DOWN_IO; } |
| |
| #define __IN1(s,x) \ |
| extern unsigned x __in##s(unsigned short port); \ |
| extern inline unsigned x __in##s(unsigned short port) { unsigned x _v; |
| |
| #define __IN2(s,s1,s2) \ |
| __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0" |
| |
| #define __IN(s,s1,x,i...) \ |
| __IN1(s,x) __IN2(s,s1,"w") : "=a" (_v) : "d" (port) ,##i ); return _v; } \ |
| __IN1(s##c,x) __IN2(s,s1,"") : "=a" (_v) : "id" (port) ,##i ); return _v; } \ |
| __IN1(s##_p,x) __IN2(s,s1,"w") : "=a" (_v) : "d" (port) ,##i ); SLOW_DOWN_IO; return _v; } \ |
| __IN1(s##c_p,x) __IN2(s,s1,"") : "=a" (_v) : "id" (port) ,##i ); SLOW_DOWN_IO; return _v; } |
| |
| #define __INS(s) \ |
| extern void ins##s(unsigned short port, void * addr, unsigned long count); \ |
| extern inline void ins##s(unsigned short port, void * addr, unsigned long count) \ |
| { __asm__ __volatile__ ("cld ; rep ; ins" #s \ |
| : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } |
| |
| #define __OUTS(s) \ |
| extern void outs##s(unsigned short port, const void * addr, unsigned long count); \ |
| extern inline void outs##s(unsigned short port, const void * addr, unsigned long count) \ |
| { __asm__ __volatile__ ("cld ; rep ; outs" #s \ |
| : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } |
| |
| __IN(b,"", char) |
| __IN(w,"",short) |
| __IN(l,"", long) |
| |
| __OUT(b,"b",char) |
| __OUT(w,"w",short) |
| __OUT(l,,int) |
| |
| __INS(b) |
| __INS(w) |
| __INS(l) |
| |
| __OUTS(b) |
| __OUTS(w) |
| __OUTS(l) |
| |
| /* |
| * Note that due to the way __builtin_constant_p() works, you |
| * - can't use it inside a inline function (it will never be true) |
| * - you don't have to worry about side effects within the __builtin.. |
| */ |
| #define outb(val,port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __outbc((val),(port)) : \ |
| __outb((val),(port))) |
| |
| #define inb(port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __inbc(port) : \ |
| __inb(port)) |
| |
| #define outb_p(val,port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __outbc_p((val),(port)) : \ |
| __outb_p((val),(port))) |
| |
| #define inb_p(port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __inbc_p(port) : \ |
| __inb_p(port)) |
| |
| #define outw(val,port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __outwc((val),(port)) : \ |
| __outw((val),(port))) |
| |
| #define inw(port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __inwc(port) : \ |
| __inw(port)) |
| |
| #define outw_p(val,port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __outwc_p((val),(port)) : \ |
| __outw_p((val),(port))) |
| |
| #define inw_p(port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __inwc_p(port) : \ |
| __inw_p(port)) |
| |
| #define outl(val,port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __outlc((val),(port)) : \ |
| __outl((val),(port))) |
| |
| #define inl(port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __inlc(port) : \ |
| __inl(port)) |
| |
| #define outl_p(val,port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __outlc_p((val),(port)) : \ |
| __outl_p((val),(port))) |
| |
| #define inl_p(port) \ |
| ((__builtin_constant_p((port)) && (port) < 256) ? \ |
| __inlc_p(port) : \ |
| __inl_p(port)) |
| |
| #endif /* ETHERBOOT_IO_H */ |