blob: 3298c3580a2832589c7dfca39abb864e331dfd7a [file] [log] [blame] [raw]
/*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 1999 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* <Insert copyright here : it must be BSD-like so anyone can use it>
*
* Author: Erich Boleyn <erich@uruk.org> http://www.uruk.org/~erich/
*
* Source file implementing Intel MultiProcessor Specification (MPS)
* version 1.1 and 1.4 SMP hardware control for Intel Architecture CPUs,
* with hooks for running correctly on a standard PC without the hardware.
*
* This file was created from information in the Intel MPS version 1.4
* document, order number 242016-004, which can be ordered from the
* Intel literature center.
*
* General limitations of this code:
*
* (1) : This code has never been tested on an MPS-compatible system with
* 486 CPUs, but is expected to work.
* (2) : Presumes "int", "long", and "unsigned" are 32 bits in size, and
* that 32-bit pointers and memory addressing is used uniformly.
*/
#define _SMP_IMPS_C
/*
* XXXXX The following absolutely must be defined!!!
*
* The "KERNEL_PRINT" could be made a null macro with no danger, of
* course, but pretty much nothing would work without the other
* ones defined.
*/
#if 0
#define KERNEL_PRINT(x) /* some kind of print function */
#define CMOS_WRITE_BYTE(x,y) /* write unsigned char "y" at CMOS loc "x" */
#define CMOS_READ_BYTE(x) /* read unsigned char at CMOS loc "x" */
#define PHYS_TO_VIRTUAL(x) /* convert physical address "x" to virtual */
#define VIRTUAL_TO_PHYS(x) /* convert virtual address "x" to physical */
#endif
/*
* This is the Intel MultiProcessor Spec debugging/display code.
*/
#define IMPS_DEBUG
#define KERNEL_PRINT(x) printf x
#define CMOS_WRITE_BYTE(x, y) cmos_write_byte(x, y)
#define CMOS_READ_BYTE(x) cmos_read_byte(x)
#define PHYS_TO_VIRTUAL(x) (x)
#define VIRTUAL_TO_PHYS(x) (x)
static inline unsigned char
inb (unsigned short port)
{
unsigned char data;
__asm __volatile ("inb %1,%0" :"=a" (data):"d" (port));
return data;
}
static inline void
outb (unsigned short port, unsigned char val)
{
__asm __volatile ("outb %0,%1"::"a" (val), "d" (port));
}
static inline void
cmos_write_byte (int loc, int val)
{
outb (0x70, loc);
outb (0x71, val);
}
static inline unsigned
cmos_read_byte (int loc)
{
outb (0x70, loc);
return inb (0x71);
}
/*
* Includes here
*/
#include "shared.h"
#include "apic.h"
#include "smp-imps.h"
/*
* Defines that are here so as not to be in the global header file.
*/
#define EBDA_SEG_ADDR 0x40E
#define BIOS_RESET_VECTOR 0x467
#define LAPIC_ADDR_DEFAULT 0xFEE00000uL
#define IOAPIC_ADDR_DEFAULT 0xFEC00000uL
#define CMOS_RESET_CODE 0xF
#define CMOS_RESET_JUMP 0xa
#define CMOS_BASE_MEMORY 0x15
/*
* Static defines here for SMP use.
*/
#define DEF_ENTRIES 23
static int lapic_dummy = 0;
static struct
{
imps_processor proc[2];
imps_bus bus[2];
imps_ioapic ioapic;
imps_interrupt intin[16];
imps_interrupt lintin[2];
}
defconfig =
{
{
{
IMPS_BCT_PROCESSOR, 0, 0, 0, 0, 0
}
,
{
IMPS_BCT_PROCESSOR, 1, 0, 0, 0, 0
}
}
,
{
{
IMPS_BCT_BUS, 0,
{
'E', 'I', 'S', 'A', ' ', ' '
}
}
,
{
255, 1,
{
'P', 'C', 'I', ' ', ' ', ' '
}
}
}
,
{
IMPS_BCT_IOAPIC, 0, 0, IMPS_FLAG_ENABLED, IOAPIC_ADDR_DEFAULT
}
,
{
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_EXTINT, 0, 0, 0, 0xFF, 0
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 1, 0xFF, 1
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 0, 0xFF, 2
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 3, 0xFF, 3
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 4, 0xFF, 4
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 5, 0xFF, 5
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 6, 0xFF, 6
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 7, 0xFF, 7
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 8, 0xFF, 8
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 9, 0xFF, 9
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 10, 0xFF, 10
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 11, 0xFF, 11
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 12, 0xFF, 12
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 13, 0xFF, 13
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 14, 0xFF, 14
}
,
{
IMPS_BCT_IO_INTERRUPT, IMPS_INT_INT, 0, 0, 15, 0xFF, 15
}
}
,
{
{
IMPS_BCT_LOCAL_INTERRUPT, IMPS_INT_EXTINT, 0, 0, 15, 0xFF, 0
}
,
{
IMPS_BCT_LOCAL_INTERRUPT, IMPS_INT_NMI, 0, 0, 15, 0xFF, 1
}
}
};
/*
* Exported globals here.
*/
int imps_any_new_apics = 0;
volatile int imps_release_cpus = 0;
int imps_enabled = 0;
int imps_num_cpus = 1;
unsigned imps_lapic_addr = ((unsigned) (&lapic_dummy)) - LAPIC_ID;
unsigned char imps_cpu_apic_map[IMPS_MAX_CPUS];
unsigned char imps_apic_cpu_map[IMPS_MAX_CPUS];
/*
* MPS checksum function
*
* Function finished.
*/
static int
get_checksum (unsigned start, int length)
{
unsigned sum = 0;
while (length-- > 0)
{
sum += *((unsigned char *) (start++));
}
return (sum & 0xFF);
}
/*
* Primary function for booting individual CPUs.
*
* This must be modified to perform whatever OS-specific initialization
* that is required.
*/
static int
boot_cpu (imps_processor * proc)
{
unsigned bootaddr, accept_status;
unsigned bios_reset_vector = PHYS_TO_VIRTUAL (BIOS_RESET_VECTOR);
/* %%%%% ESB */
extern char patch_code[];
bootaddr = 256 * 1024;
memmove ((char *) bootaddr, patch_code, 32);
/*
* Generic CPU startup sequence starts here.
*/
/* set BIOS reset vector */
CMOS_WRITE_BYTE (CMOS_RESET_CODE, CMOS_RESET_JUMP);
*((volatile unsigned *) bios_reset_vector) = bootaddr << 12;
/* clear the error register */
if (proc->apic_ver & 0x10)
{
IMPS_LAPIC_WRITE (LAPIC_ESR, 0);
accept_status = IMPS_LAPIC_READ (LAPIC_ESR);
}
#if 0
/* assert INIT IPI */
cfg = IMPS_LAPIC_READ (LAPIC_ICR + 1);
cfg &= LAPIC_DEST_MASK;
IMPS_LAPIC_WRITE (LAPIC_ICR + 1, cfg);
cfg = IMPS_LAPIC_READ (LAPIC_ACR);
cfg &=;
/* %%%%% ESB finish adding startup sequence */
#endif
/* clean up BIOS reset vector */
CMOS_WRITE_BYTE (CMOS_RESET_CODE, 0);
*((volatile unsigned *) bios_reset_vector) = 0;
/*
* Generic CPU startup sequence ends here.
*/
KERNEL_PRINT (("\n"));
return 1;
/* XXXXX add OS-specific initialization here! */
}
/*
* read bios stuff and fill tables
*/
static void
add_processor (imps_processor * proc)
{
int apicid = proc->apic_id;
KERNEL_PRINT ((" Processor [APIC id %d ver %d]: ",
apicid, proc->apic_ver));
if (!(proc->flags & IMPS_FLAG_ENABLED))
{
KERNEL_PRINT (("DISABLED\n"));
return;
}
if (proc->apic_ver > 0xF)
{
imps_any_new_apics = 1;
}
if (proc->flags & (IMPS_CPUFLAG_BOOT))
{
KERNEL_PRINT (("#0 Bootstrap Processor (BSP)\n"));
return;
}
imps_cpu_apic_map[imps_num_cpus] = apicid;
imps_apic_cpu_map[apicid] = imps_num_cpus;
if (boot_cpu (proc))
{
/* XXXXX add OS-specific setup for secondary CPUs here */
imps_num_cpus++;
}
}
static void
add_bus (imps_bus * bus)
{
char str[8];
memmove (str, bus->bus_type, 6);
str[6] = 0;
KERNEL_PRINT ((" Bus id %d is %s\n", bus->id, str));
/* XXXXX add OS-specific code here */
}
static void
add_ioapic (imps_ioapic * ioapic)
{
KERNEL_PRINT ((" I/O APIC id %d ver %d, address: 0x%x ",
ioapic->id, ioapic->ver, ioapic->addr));
if (!(ioapic->flags & IMPS_FLAG_ENABLED))
{
KERNEL_PRINT (("DISABLED\n"));
return;
}
KERNEL_PRINT (("\n"));
/* XXXXX add OS-specific code here */
}
static void
imps_read_config_table (unsigned start, int count)
{
while (count-- > 0)
{
switch (*((unsigned char *) start))
{
case IMPS_BCT_PROCESSOR:
add_processor ((imps_processor *) start);
start += 12; /* 20 total */
break;
case IMPS_BCT_BUS:
add_bus ((imps_bus *) start);
break;
case IMPS_BCT_IOAPIC:
add_ioapic ((imps_ioapic *) start);
break;
#if 0 /* XXXXX uncomment this if "add_io_interrupt" is implemented */
case IMPS_BCT_IO_INTERRUPT:
add_io_interrupt ((imps_interrupt *) start);
break;
#endif
#if 0 /* XXXXX uncomment this if "add_local_interrupt" is implemented */
case IMPS_BCT_LOCAL_INTERRUPT:
add_local_interupt ((imps_interrupt *) start);
break;
#endif
default:
}
start += 8;
}
}
static int
imps_bad_bios (imps_fps * fps_ptr)
{
int sum;
imps_cth *local_cth_ptr
= (imps_cth *) PHYS_TO_VIRTUAL (fps_ptr->cth_ptr);
if (fps_ptr->feature_info[0] > IMPS_FPS_DEFAULT_MAX)
{
KERNEL_PRINT ((" Invalid MP System Configuration type %d\n",
fps_ptr->feature_info[0]));
return 1;
}
if (fps_ptr->cth_ptr)
{
sum = get_checksum ((unsigned) local_cth_ptr,
local_cth_ptr->base_length);
if (local_cth_ptr->sig != IMPS_CTH_SIGNATURE || sum)
{
KERNEL_PRINT
((" Bad MP Config Table sig 0x%x and/or checksum 0x%x\n",
(unsigned) (fps_ptr->cth_ptr), sum));
return 1;
}
if (local_cth_ptr->spec_rev != fps_ptr->spec_rev)
{
KERNEL_PRINT ((" Bad MP Config Table sub-revision # %d\n", local_cth_ptr->spec_rev));
return 1;
}
if (local_cth_ptr->extended_length)
{
sum = (get_checksum (((unsigned) local_cth_ptr)
+ local_cth_ptr->base_length,
local_cth_ptr->extended_length)
+ local_cth_ptr->extended_checksum) & 0xFF;
if (sum)
{
KERNEL_PRINT
((" Bad Extended MP Config Table checksum 0x%x\n", sum));
return 1;
}
}
}
else if (!fps_ptr->feature_info[0])
{
KERNEL_PRINT ((" Missing configuration information\n"));
return 1;
}
return 0;
}
static void
imps_read_bios (imps_fps * fps_ptr)
{
int apicid;
unsigned cth_start, cth_count;
imps_cth *local_cth_ptr
= (imps_cth *) PHYS_TO_VIRTUAL (fps_ptr->cth_ptr);
char *str_ptr;
KERNEL_PRINT (("Intel MultiProcessor Spec 1.%d BIOS support detected\n",
fps_ptr->spec_rev));
/*
* Do all checking of errors which would definitely
* lead to failure of the SMP boot here.
*/
if (imps_bad_bios (fps_ptr))
{
KERNEL_PRINT ((" Disabling MPS support\n"));
return;
}
if (fps_ptr->feature_info[1] & IMPS_FPS_IMCRP_BIT)
{
str_ptr = "IMCR and PIC";
}
else
{
str_ptr = "Virtual Wire";
}
if (fps_ptr->cth_ptr)
{
imps_lapic_addr = local_cth_ptr->lapic_addr;
}
else
{
imps_lapic_addr = LAPIC_ADDR_DEFAULT;
}
KERNEL_PRINT
((" APIC config: \"%s mode\" Local APIC address: 0x%x\n",
str_ptr, imps_lapic_addr));
imps_lapic_addr = PHYS_TO_VIRTUAL (imps_lapic_addr);
/*
* Setup primary CPU.
*/
apicid = IMPS_LAPIC_READ (LAPIC_SPIV);
IMPS_LAPIC_WRITE (LAPIC_SPIV, apicid | LAPIC_SPIV_ENABLE_APIC);
imps_any_new_apics = IMPS_LAPIC_READ (LAPIC_VER) & 0xF0;
apicid = IMPS_APIC_ID (IMPS_LAPIC_READ (LAPIC_ID));
imps_cpu_apic_map[0] = apicid;
imps_apic_cpu_map[apicid] = 0;
if (fps_ptr->cth_ptr)
{
char str1[16], str2[16];
memcpy (str1, local_cth_ptr->oem_id, 8);
str1[8] = 0;
memcpy (str2, local_cth_ptr->prod_id, 12);
str2[12] = 0;
KERNEL_PRINT ((" OEM id: %s Product id: %s\n", str1, str2));
cth_start = ((unsigned) local_cth_ptr) + sizeof (imps_cth);
cth_count = local_cth_ptr->entry_count;
}
else
{
*((volatile unsigned *) IOAPIC_ADDR_DEFAULT) = IOAPIC_ID;
defconfig.ioapic.id
= IMPS_APIC_ID (*((volatile unsigned *)
(IOAPIC_ADDR_DEFAULT + IOAPIC_RW)));
*((volatile unsigned *) IOAPIC_ADDR_DEFAULT) = IOAPIC_VER;
defconfig.ioapic.ver
= APIC_VERSION (*((volatile unsigned *)
(IOAPIC_ADDR_DEFAULT + IOAPIC_RW)));
defconfig.proc[apicid].flags
= IMPS_FLAG_ENABLED | IMPS_CPUFLAG_BOOT;
defconfig.proc[!apicid].flags = IMPS_FLAG_ENABLED;
imps_num_cpus = 2;
if (fps_ptr->feature_info[0] == 1
|| fps_ptr->feature_info[0] == 5)
{
memcpy (defconfig.bus[0].bus_type, "ISA ", 6);
}
if (fps_ptr->feature_info[0] == 4
|| fps_ptr->feature_info[0] == 7)
{
memcpy (defconfig.bus[0].bus_type, "MCA ", 6);
}
if (fps_ptr->feature_info[0] > 4)
{
defconfig.proc[0].apic_ver = 0x10;
defconfig.proc[1].apic_ver = 0x10;
defconfig.bus[1].type = IMPS_BCT_BUS;
}
if (fps_ptr->feature_info[0] == 2)
{
defconfig.intin[2].type = 255;
defconfig.intin[13].type = 255;
}
if (fps_ptr->feature_info[0] == 7)
{
defconfig.intin[0].type = 255;
}
cth_start = (unsigned) &defconfig;
cth_count = DEF_ENTRIES;
}
imps_read_config_table (cth_start, cth_count);
/* %%%%% ESB read extended entries here */
imps_enabled = 1;
}
/*
* Given a region to check, this actually looks for the "MP Floating
* Pointer Structure". The return value indicates if the correct
* signature and checksum for a floating pointer structure of the
* appropriate spec revision was found. If so, then do not search
* further.
*
* NOTE: The memory scan will always be in the bottom 1 MB.
*
* This function presumes that "start" will always be aligned to a 16-bit
* boundary.
*
* Function finished.
*/
static int
imps_scan (unsigned start, unsigned length)
{
IMPS_DEBUG_PRINT (("Scanning from 0x%x for %d bytes\n",
start, length));
while (length > 0)
{
imps_fps *fps_ptr = (imps_fps *) PHYS_TO_VIRTUAL (start);
if (fps_ptr->sig == IMPS_FPS_SIGNATURE
&& fps_ptr->length == 1
&& (fps_ptr->spec_rev == 1 || fps_ptr->spec_rev == 4)
&& !get_checksum (start, 16))
{
IMPS_DEBUG_PRINT (("Found MP Floating Structure Pointer at %x\n", start));
imps_read_bios (fps_ptr);
return 1;
}
length -= 16;
start += 16;
}
return 0;
}
/*
* This is the primary function for probing for MPS compatible hardware
* and BIOS information. Call this during the early stages of OS startup,
* before memory can be messed up.
*
* The probe looks for the "MP Floating Pointer Structure" at locations
* listed at the top of page 4-2 of the spec.
*
* Environment requirements from the OS to run:
*
* (1) : A non-linear virtual to physical memory mapping is probably OK,
* as (I think) the structures all fall within page boundaries,
* but a linear mapping is recommended. Currently assumes that
* the mapping will remain identical over time (which should be
* OK since it only accesses memory which shouldn't be munged
* by the OS anyway).
* (2) : The OS only consumes memory which the BIOS says is OK to use,
* and not any of the BIOS standard areas (the areas 0x400 to
* 0x600, the EBDA, 0xE0000 to 0xFFFFF, and unreported physical
* RAM). Sometimes a small amount of physical RAM is not
* reported by the BIOS, to be used to store MPS and other
* information.
* (3) : It must be possible to read the CMOS.
* (4) : There must be between 512K and 640K of lower memory (this is a
* sanity check).
*
* Function finished.
*/
int
imps_probe (void)
{
/*
* Determine possible address of the EBDA
*/
unsigned ebda_addr = *((unsigned short *)
PHYS_TO_VIRTUAL (EBDA_SEG_ADDR)) << 4;
/*
* Determine amount of installed lower memory (not *available*
* lower memory).
*
* NOTE: This should work reliably as long as we verify the
* machine is at least a system that could possibly have
* MPS compatibility to begin with.
*/
unsigned mem_lower = ((CMOS_READ_BYTE (CMOS_BASE_MEMORY + 1) << 8)
| CMOS_READ_BYTE (CMOS_BASE_MEMORY)) << 10;
#ifdef IMPS_DEBUG
imps_enabled = 0;
imps_num_cpus = 1;
#endif
/*
* Sanity check : if this isn't reasonable, it is almost impossibly
* unlikely to be an MPS compatible machine, so return failure.
*/
if (mem_lower < 512 * 1024 || mem_lower > 640 * 1024)
{
return 0;
}
if (ebda_addr > mem_lower - 1024
|| ebda_addr + *((unsigned char *) PHYS_TO_VIRTUAL (ebda_addr))
* 1024 > mem_lower)
{
ebda_addr = 0;
}
if (((ebda_addr && imps_scan (ebda_addr, 1024))
|| (!ebda_addr && imps_scan (mem_lower - 1024, 1024))
|| imps_scan (0xF0000, 0x10000)) && imps_enabled)
{
return 1;
}
/*
* If no BIOS info on MPS hardware is found, then return failure.
*/
return 0;
}