| /* epic100.c: A SMC 83c170 EPIC/100 fast ethernet driver for Etherboot */ |
| |
| #define LINUX_OUT_MACROS |
| |
| #include "etherboot.h" |
| #include "nic.h" |
| #include "cards.h" |
| #include "epic100.h" |
| |
| #undef virt_to_bus |
| #define virt_to_bus(x) ((unsigned long)x) |
| |
| #define TX_RING_SIZE 2 /* use at least 2 buffers for TX */ |
| #define RX_RING_SIZE 2 |
| |
| #define PKT_BUF_SZ 1536 /* Size of each temporary Tx/Rx buffer.*/ |
| |
| #define TIME_OUT 1000000 |
| |
| /* |
| #define DEBUG_RX |
| #define DEBUG_TX |
| #define DEBUG_EEPROM |
| */ |
| |
| #define EPIC_DEBUG 0 /* debug level */ |
| |
| /* The EPIC100 Rx and Tx buffer descriptors. */ |
| struct epic_rx_desc { |
| unsigned short status; |
| unsigned short rxlength; |
| unsigned long bufaddr; |
| unsigned short buflength; |
| unsigned short control; |
| unsigned long next; |
| }; |
| |
| /* description of the tx descriptors control bits commonly used */ |
| #define TD_STDFLAGS TD_LASTDESC |
| |
| struct epic_tx_desc { |
| unsigned short status; |
| unsigned short txlength; |
| unsigned long bufaddr; |
| unsigned short buflength; |
| unsigned short control; |
| unsigned long next; |
| }; |
| |
| #define delay(nanosec) do { int _i = 3; while (--_i > 0) \ |
| { __SLOW_DOWN_IO; }} while (0) |
| |
| static void epic100_open(void); |
| static void epic100_init_ring(void); |
| static void epic100_disable(struct nic *nic); |
| static int epic100_poll(struct nic *nic); |
| static void epic100_transmit(struct nic *nic, const char *destaddr, |
| unsigned int type, unsigned int len, const char *data); |
| static int read_eeprom(int location); |
| static int mii_read(int phy_id, int location); |
| |
| static int ioaddr; |
| |
| static int command; |
| static int intstat; |
| static int intmask; |
| static int genctl ; |
| static int eectl ; |
| static int test ; |
| static int mmctl ; |
| static int mmdata ; |
| static int lan0 ; |
| static int rxcon ; |
| static int txcon ; |
| static int prcdar ; |
| static int ptcdar ; |
| static int eththr ; |
| |
| static unsigned int cur_rx, cur_tx; /* The next free ring entry */ |
| #ifdef DEBUG_EEPROM |
| static unsigned short eeprom[64]; |
| #endif |
| static signed char phys[4]; /* MII device addresses. */ |
| static struct epic_rx_desc rx_ring[RX_RING_SIZE]; |
| static struct epic_tx_desc tx_ring[TX_RING_SIZE]; |
| #ifndef USE_INTERNAL_BUFFER |
| #define rx_packet ((char *)0x10000 - PKT_BUF_SZ * RX_RING_SIZE) |
| #define tx_packet ((char *)0x10000 - PKT_BUF_SZ * RX_RING_SIZE - PKT_BUF_SZ * TX_RING_SIZE) |
| #else |
| static char rx_packet[PKT_BUF_SZ * RX_RING_SIZE]; |
| static char tx_packet[PKT_BUF_SZ * TX_RING_SIZE]; |
| #endif |
| |
| /***********************************************************************/ |
| /* Externally visible functions */ |
| /***********************************************************************/ |
| |
| static void |
| epic100_reset(struct nic *nic) |
| { |
| /* Soft reset the chip. */ |
| outl(GC_SOFT_RESET, genctl); |
| } |
| |
| struct nic* |
| epic100_probe(struct nic *nic, unsigned short *probeaddrs) |
| { |
| unsigned short sum = 0; |
| unsigned short value; |
| int i; |
| unsigned short* ap; |
| unsigned int phy, phy_idx; |
| |
| if (probeaddrs == 0 || probeaddrs[0] == 0) |
| return 0; |
| |
| /* Ideally we would detect all network cards in slot order. That would |
| be best done a central PCI probe dispatch, which wouldn't work |
| well with the current structure. So instead we detect just the |
| Epic cards in slot order. */ |
| |
| ioaddr = probeaddrs[0] & ~3; /* Mask the bit that says "this is an io addr" */ |
| |
| /* compute all used static epic100 registers address */ |
| command = ioaddr + COMMAND; /* Control Register */ |
| intstat = ioaddr + INTSTAT; /* Interrupt Status */ |
| intmask = ioaddr + INTMASK; /* Interrupt Mask */ |
| genctl = ioaddr + GENCTL; /* General Control */ |
| eectl = ioaddr + EECTL; /* EEPROM Control */ |
| test = ioaddr + TEST; /* Test register (clocks) */ |
| mmctl = ioaddr + MMCTL; /* MII Management Interface Control */ |
| mmdata = ioaddr + MMDATA; /* MII Management Interface Data */ |
| lan0 = ioaddr + LAN0; /* MAC address. (0x40-0x48) */ |
| rxcon = ioaddr + RXCON; /* Receive Control */ |
| txcon = ioaddr + TXCON; /* Transmit Control */ |
| prcdar = ioaddr + PRCDAR; /* PCI Receive Current Descr Address */ |
| ptcdar = ioaddr + PTCDAR; /* PCI Transmit Current Descr Address */ |
| eththr = ioaddr + ETHTHR; /* Early Transmit Threshold */ |
| |
| /* Reset the chip & bring it out of low-power mode. */ |
| outl(GC_SOFT_RESET, genctl); |
| |
| /* Disable ALL interrupts by setting the interrupt mask. */ |
| outl(INTR_DISABLE, intmask); |
| |
| /* |
| * set the internal clocks: |
| * Application Note 7.15 says: |
| * In order to set the CLOCK TEST bit in the TEST register, |
| * perform the following: |
| * |
| * Write 0x0008 to the test register at least sixteen |
| * consecutive times. |
| * |
| * The CLOCK TEST bit is Write-Only. Writing it several times |
| * consecutively insures a successful write to the bit... |
| */ |
| |
| for (i = 0; i < 16; i++) { |
| outl(0x00000008, test); |
| } |
| |
| #ifdef DEBUG_EEPROM |
| for (i = 0; i < 64; i++) { |
| value = read_eeprom(i); |
| eeprom[i] = value; |
| sum += value; |
| } |
| |
| #if (EPIC_DEBUG > 1) |
| printf("EEPROM contents\n"); |
| for (i = 0; i < 64; i++) { |
| printf(" %02x%s", eeprom[i], i % 16 == 15 ? "\n" : ""); |
| } |
| #endif |
| #endif |
| |
| /* This could also be read from the EEPROM. */ |
| ap = (unsigned short*)nic->node_addr; |
| for (i = 0; i < 3; i++) |
| *ap++ = inw(lan0 + i*4); |
| |
| printf(" I/O %x ", ioaddr); |
| |
| for (i = 0; i < 6; i++) |
| printf ("%b%c", nic->node_addr[i] , i < 5 ?':':' '); |
| |
| /* Find the connected MII xcvrs. */ |
| for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(phys); phy++) { |
| int mii_status = mii_read(phy, 0); |
| |
| if (mii_status != 0xffff && mii_status != 0x0000) { |
| phys[phy_idx++] = phy; |
| #if (EPIC_DEBUG > 1) |
| printf("MII transceiver found at address %d.\n", phy); |
| #endif |
| } |
| } |
| if (phy_idx == 0) { |
| #if (EPIC_DEBUG > 1) |
| printf("***WARNING***: No MII transceiver found!\n"); |
| #endif |
| /* Use the known PHY address of the EPII. */ |
| phys[0] = 3; |
| } |
| |
| epic100_open(); |
| |
| nic->reset = epic100_reset; |
| nic->poll = epic100_poll; |
| nic->transmit = epic100_transmit; |
| nic->disable = epic100_disable; |
| |
| return nic; |
| } |
| |
| static void |
| epic100_open() |
| { |
| int mii_reg5; |
| int full_duplex = 0; |
| unsigned long tmp; |
| |
| epic100_init_ring(); |
| |
| /* Pull the chip out of low-power mode, and set for PCI read multiple. */ |
| outl(GC_RX_FIFO_THR_64 | GC_MRC_READ_MULT | GC_ONE_COPY, genctl); |
| |
| outl(TX_FIFO_THRESH, eththr); |
| |
| tmp = TC_EARLY_TX_ENABLE | TX_SLOT_TIME; |
| |
| mii_reg5 = mii_read(phys[0], 5); |
| if (mii_reg5 != 0xffff && (mii_reg5 & 0x0100)) { |
| full_duplex = 1; |
| printf(" full-duplex mode"); |
| tmp |= TC_LM_FULL_DPX; |
| } else |
| tmp |= TC_LM_NORMAL; |
| |
| outl(tmp, txcon); |
| |
| /* Give adress of RX and TX ring to the chip */ |
| outl(virt_to_bus(&rx_ring), prcdar); |
| outl(virt_to_bus(&tx_ring), ptcdar); |
| |
| /* Start the chip's Rx process: receive unicast and broadcast */ |
| outl(0x04, rxcon); |
| outl(CR_START_RX | CR_QUEUE_RX, command); |
| |
| putchar('\n'); |
| } |
| |
| /* Initialize the Rx and Tx rings. */ |
| static void |
| epic100_init_ring() |
| { |
| int i; |
| char* p; |
| |
| cur_rx = cur_tx = 0; |
| |
| p = &rx_packet[0]; |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| rx_ring[i].status = RRING_OWN; /* Owned by Epic chip */ |
| rx_ring[i].buflength = PKT_BUF_SZ; |
| rx_ring[i].bufaddr = virt_to_bus(p + (PKT_BUF_SZ * i)); |
| rx_ring[i].control = 0; |
| rx_ring[i].next = virt_to_bus(&(rx_ring[i + 1]) ); |
| } |
| /* Mark the last entry as wrapping the ring. */ |
| rx_ring[i-1].next = virt_to_bus(&rx_ring[0]); |
| |
| /* |
| *The Tx buffer descriptor is filled in as needed, |
| * but we do need to clear the ownership bit. |
| */ |
| p = &tx_packet[0]; |
| |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| tx_ring[i].status = 0; /* Owned by CPU */ |
| tx_ring[i].bufaddr = virt_to_bus(p + (PKT_BUF_SZ * i)); |
| tx_ring[i].control = TD_STDFLAGS; |
| tx_ring[i].next = virt_to_bus(&(tx_ring[i + 1]) ); |
| } |
| tx_ring[i-1].next = virt_to_bus(&tx_ring[0]); |
| } |
| |
| /* function: epic100_transmit |
| * This transmits a packet. |
| * |
| * Arguments: char d[6]: destination ethernet address. |
| * unsigned short t: ethernet protocol type. |
| * unsigned short s: size of the data-part of the packet. |
| * char *p: the data for the packet. |
| * returns: void. |
| */ |
| static void |
| epic100_transmit(struct nic *nic, const char *destaddr, unsigned int type, |
| unsigned int len, const char *data) |
| { |
| unsigned short nstype; |
| unsigned short status; |
| char* txp; |
| int to; |
| int entry; |
| |
| /* Calculate the next Tx descriptor entry. */ |
| entry = cur_tx % TX_RING_SIZE; |
| |
| if ((tx_ring[entry].status & TRING_OWN) == TRING_OWN) { |
| printf("eth_transmit: Unable to transmit. status=%x. Resetting...\n", |
| tx_ring[entry].status); |
| |
| epic100_open(); |
| return; |
| } |
| |
| txp = (char*)tx_ring[entry].bufaddr; |
| |
| memcpy(txp, destaddr, ETHER_ADDR_SIZE); |
| memcpy(txp + ETHER_ADDR_SIZE, nic->node_addr, ETHER_ADDR_SIZE); |
| nstype = htons(type); |
| memcpy(txp + 12, (char*)&nstype, 2); |
| memcpy(txp + ETHER_HDR_SIZE, data, len); |
| |
| len += ETHER_HDR_SIZE; |
| |
| /* |
| * Caution: the write order is important here, |
| * set the base address with the "ownership" |
| * bits last. |
| */ |
| tx_ring[entry].txlength = (len >= 60 ? len : 60); |
| tx_ring[entry].buflength = len; |
| tx_ring[entry].status = TRING_OWN; /* Pass ownership to the chip. */ |
| |
| cur_tx++; |
| |
| /* Trigger an immediate transmit demand. */ |
| outl(CR_QUEUE_TX, command); |
| |
| to = TIME_OUT; |
| status = tx_ring[entry].status; |
| |
| while ( (status & TRING_OWN) && --to) { |
| status = tx_ring[entry].status; |
| } |
| |
| if ((status & TRING_OWN) == 0) { |
| #ifdef DEBUG_TX |
| printf("tx done after %d loop(s), status %x\n", |
| TIME_OUT-to, tx_ring[entry].status ); |
| #endif |
| return; |
| } |
| |
| if (to == 0) { |
| printf("OOPS, Something wrong with transmitter. status=%x\n", |
| tx_ring[entry].status); |
| } |
| } |
| |
| /* function: epic100_poll / eth_poll |
| * This receives a packet from the network. |
| * |
| * Arguments: none |
| * |
| * returns: 1 if a packet was received. |
| * 0 if no pacet was received. |
| * side effects: |
| * returns the packet in the array nic->packet. |
| * returns the length of the packet in nic->packetlen. |
| */ |
| |
| static int |
| epic100_poll(struct nic *nic) |
| { |
| int to; |
| int entry; |
| int status; |
| int retcode; |
| |
| entry = cur_rx % RX_RING_SIZE; |
| cur_rx++; |
| to = TIME_OUT; |
| |
| status = rx_ring[entry].status; |
| while ( (status & RRING_OWN) == RRING_OWN && --to) { |
| status = rx_ring[entry].status; |
| } |
| |
| if (to == 0) { |
| #ifdef DEBUG_RX |
| printf("epic_poll: time out! status %x\n", status); |
| #endif |
| /* Restart Receiver */ |
| outl(CR_START_RX | CR_QUEUE_RX, command); |
| return 0; |
| } |
| |
| /* We own the next entry, it's a new packet. Send it up. */ |
| |
| #if (EPIC_DEBUG > 4) |
| printf("epic_poll: entry %d status %8x\n", entry, status); |
| #endif |
| |
| if (status & 0x2000) { |
| printf("epic_poll: Giant packet\n"); |
| retcode = 0; |
| } else if (status & 0x0006) { |
| /* Rx Frame errors are counted in hardware. */ |
| printf("epic_poll: Frame received with errors\n"); |
| retcode = 0; |
| } else { |
| /* Omit the four octet CRC from the length. */ |
| nic->packetlen = rx_ring[entry].rxlength - 4; |
| memcpy(nic->packet, (char*)rx_ring[entry].bufaddr, nic->packetlen); |
| retcode = 1; |
| } |
| |
| /* Clear all error sources. */ |
| outl(status & INTR_CLEARERRS, intstat); |
| |
| /* Give the descriptor back to the chip */ |
| rx_ring[entry].status = RRING_OWN; |
| |
| /* Restart Receiver */ |
| outl(CR_START_RX | CR_QUEUE_RX, command); |
| |
| return retcode; |
| } |
| |
| |
| static void |
| epic100_disable(struct nic *nic) |
| { |
| } |
| |
| |
| #ifdef DEBUG_EEPROM |
| /* Serial EEPROM section. */ |
| |
| /* EEPROM_Ctrl bits. */ |
| #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ |
| #define EE_CS 0x02 /* EEPROM chip select. */ |
| #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ |
| #define EE_WRITE_0 0x01 |
| #define EE_WRITE_1 0x09 |
| #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ |
| #define EE_ENB (0x0001 | EE_CS) |
| |
| /* The EEPROM commands include the alway-set leading bit. */ |
| #define EE_WRITE_CMD (5 << 6) |
| #define EE_READ_CMD (6 << 6) |
| #define EE_ERASE_CMD (7 << 6) |
| |
| #define eeprom_delay(n) delay(n) |
| |
| static int |
| read_eeprom(int location) |
| { |
| int i; |
| int retval = 0; |
| int read_cmd = location | EE_READ_CMD; |
| |
| outl(EE_ENB & ~EE_CS, eectl); |
| outl(EE_ENB, eectl); |
| |
| /* Shift the read command bits out. */ |
| for (i = 10; i >= 0; i--) { |
| short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; |
| outl(EE_ENB | dataval, eectl); |
| eeprom_delay(100); |
| outl(EE_ENB | dataval | EE_SHIFT_CLK, eectl); |
| eeprom_delay(150); |
| outl(EE_ENB | dataval, eectl); /* Finish EEPROM a clock tick. */ |
| eeprom_delay(250); |
| } |
| outl(EE_ENB, eectl); |
| |
| for (i = 16; i > 0; i--) { |
| outl(EE_ENB | EE_SHIFT_CLK, eectl); |
| eeprom_delay(100); |
| retval = (retval << 1) | ((inl(eectl) & EE_DATA_READ) ? 1 : 0); |
| outl(EE_ENB, eectl); |
| eeprom_delay(100); |
| } |
| |
| /* Terminate the EEPROM access. */ |
| outl(EE_ENB & ~EE_CS, eectl); |
| return retval; |
| } |
| #endif |
| |
| |
| #define MII_READOP 1 |
| #define MII_WRITEOP 2 |
| |
| static int |
| mii_read(int phy_id, int location) |
| { |
| int i; |
| |
| outl((phy_id << 9) | (location << 4) | MII_READOP, mmctl); |
| /* Typical operation takes < 50 ticks. */ |
| |
| for (i = 4000; i > 0; i--) |
| if ((inl(mmctl) & MII_READOP) == 0) |
| break; |
| return inw(mmdata); |
| } |