blob: 62c13b2707c6829d87eb53fa7549b6a2c8999012 [file] [log] [blame] [raw]
/*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 2000 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef FSYS_REISERFS
#include "shared.h"
#include "filesys.h"
#undef REISERDEBUG
/* Some parts of this code (mainly the structures and defines) are
* from the original reiser fs code, as found in the linux kernel.
*/
/* include/asm-i386/types.h */
typedef __signed__ char __s8;
typedef unsigned char __u8;
typedef __signed__ short __s16;
typedef unsigned short __u16;
typedef __signed__ int __s32;
typedef unsigned int __u32;
typedef unsigned long long __u64;
/* linux/posix_type.h */
typedef long linux_off_t;
/* linux/little_endian.h */
#define __cpu_to_le64(x) ((__u64) (x))
#define __le64_to_cpu(x) ((__u64) (x))
#define __cpu_to_le32(x) ((__u32) (x))
#define __le32_to_cpu(x) ((__u32) (x))
#define __cpu_to_le16(x) ((__u16) (x))
#define __le16_to_cpu(x) ((__u16) (x))
/* include/linux/reiser_fs.h */
/* This is the new super block of a journaling reiserfs system */
struct reiserfs_super_block
{
__u32 s_block_count; /* blocks count */
__u32 s_free_blocks; /* free blocks count */
__u32 s_root_block; /* root block number */
__u32 s_journal_block; /* journal block number */
__u32 s_journal_dev; /* journal device number */
__u32 s_orig_journal_size; /* size of the journal on FS creation. used to make sure they don't overflow it */
__u32 s_journal_trans_max ; /* max number of blocks in a transaction. */
__u32 s_journal_block_count ; /* total size of the journal. can change over time */
__u32 s_journal_max_batch ; /* max number of blocks to batch into a trans */
__u32 s_journal_max_commit_age ; /* in seconds, how old can an async commit be */
__u32 s_journal_max_trans_age ; /* in seconds, how old can a transaction be */
__u16 s_blocksize; /* block size */
__u16 s_oid_maxsize; /* max size of object id array, see get_objectid() commentary */
__u16 s_oid_cursize; /* current size of object id array */
__u16 s_state; /* valid or error */
char s_magic[16]; /* reiserfs magic string indicates that file system is reiserfs */
__u16 s_tree_height; /* height of disk tree */
__u16 s_bmap_nr; /* amount of bitmap blocks needed to address each block of file system */
__u16 s_version;
char s_unused[128] ; /* zero filled by mkreiserfs */
};
#define REISERFS_MAX_SUPPORTED_VERSION 2
#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
#define MAX_HEIGHT 7
/*
* directories use this key as well as old files
*/
struct offset_v1
{
/*
* for regular files this is the offset to the first byte of the
* body, contained in the object-item, as measured from the start of
* the entire body of the object.
*
* for directory entries, k_offset consists of hash derived from
* hashing the name and using few bits (23 or more) of the resulting
* hash, and generation number that allows distinguishing names with
* hash collisions. If number of collisions overflows generation
* number, we return EEXIST. High order bit is 0 always
*/
__u32 k_offset;
__u32 k_uniqueness;
};
struct offset_v2
{
/*
* for regular files this is the offset to the first byte of the
* body, contained in the object-item, as measured from the start of
* the entire body of the object.
*
* for directory entries, k_offset consists of hash derived from
* hashing the name and using few bits (23 or more) of the resulting
* hash, and generation number that allows distinguishing names with
* hash collisions. If number of collisions overflows generation
* number, we return EEXIST. High order bit is 0 always
*/
__u64 k_offset:60;
__u64 k_type: 4;
};
struct key
{
/* packing locality: by default parent directory object id */
__u32 k_dir_id;
/* object identifier */
__u32 k_objectid;
/* the offset and node type (old and new form) */
union
{
struct offset_v1 v1;
struct offset_v2 v2;
}
u;
};
#define KEY_SIZE (sizeof (struct key))
#define K_OFFSET(key) (INFO->version < 2 ? \
key.u.v1.k_offset : key.u.v2.k_offset)
/* Header of a disk block. More precisely, header of a formatted leaf
or internal node, and not the header of an unformatted node. */
struct block_head
{
__u16 blk_level; /* Level of a block in the tree. */
__u16 blk_nr_item; /* Number of keys/items in a block. */
__u16 blk_free_space; /* Block free space in bytes. */
struct key blk_right_delim_key; /* Right delimiting key for this block (supported for leaf level nodes
only) */
};
#define BLKH_SIZE (sizeof(struct block_head))
#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
struct item_head
{
struct key ih_key; /* Everything in the tree is found by searching for it based on its key.*/
union
{
__u16 ih_free_space; /* The free space in the last unformatted node of an indirect item if this
is an indirect item. This equals 0xFFFF iff this is a direct item or
stat data item. Note that the key, not this field, is used to determine
the item type, and thus which field this union contains. */
__u16 ih_entry_count; /* Iff this is a directory item, this field equals the number of directory
entries in the directory item. */
}
u;
__u16 ih_item_len; /* total size of the item body */
__u16 ih_item_location; /* an offset to the item body within the block */
__u16 ih_version; /* 0 for all old items, 2 for new
ones. Highest bit is set by fsck
temporary, cleaned after all done */
};
/* size of item header */
#define IH_SIZE (sizeof (struct item_head))
struct disk_child
{
unsigned long dc_block_number; /* Disk child's block number. */
unsigned short dc_size; /* Disk child's used space. */
};
#define DC_SIZE (sizeof (struct disk_child))
/* Stat Data on disk.
*
* Note that reiserfs has two different forms of stat data. Luckily
* the fields needed by grub are at the same position.
*/
struct stat_data
{
__u16 sd_mode; /* file type, permissions */
__u16 sd_notused1[3]; /* fields not needed by reiserfs */
__u32 sd_size; /* file size */
__u32 sd_size_hi; /* file size high 32 bits (since version 2) */
};
struct reiserfs_de_head
{
__u32 deh_offset; /* third component of the directory entry key */
__u32 deh_dir_id; /* objectid of the parent directory of the
object, that is referenced by directory entry */
__u32 deh_objectid;/* objectid of the object, that is referenced by
directory entry */
__u16 deh_location;/* offset of name in the whole item */
__u16 deh_state; /* whether 1) entry contains stat data (for
future), and 2) whether entry is hidden
(unlinked) */
};
#define DEH_SIZE (sizeof (struct reiserfs_de_head))
#define DEH_Statdata (1 << 0) /* not used now */
#define DEH_Visible (1 << 2)
#define SD_OFFSET 0
#define SD_UNIQUENESS 0
#define DOT_OFFSET 1
#define DOT_DOT_OFFSET 2
#define DIRENTRY_UNIQUENESS 500
#define V1_TYPE_STAT_DATA 0x0
#define V1_TYPE_DIRECT 0xffffffff
#define V1_TYPE_INDIRECT 0xfffffffe
#define V1_TYPE_DIRECTORY_MAX 0xfffffffd
#define V2_TYPE_STAT_DATA 0
#define V2_TYPE_INDIRECT 1
#define V2_TYPE_DIRECT 2
#define V2_TYPE_DIRENTRY 3
#define S_ISREG(mode) (((mode) & 0170000) == 0100000)
#define S_ISDIR(mode) (((mode) & 0170000) == 0040000)
#define REISERFS_ROOT_OBJECTID 2
#define REISERFS_ROOT_PARENT_OBJECTID 1
#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
/* the spot for the super in versions 3.5 - 3.5.11 (inclusive) */
#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
#define REISERFS_OLD_BLOCKSIZE 4096
/* The size of the node cache (must be power of two) */
#define FSYSREISER_CACHE_SIZE 24*1024
#define FSYSREISER_MIN_BLOCKSIZE SECTOR_SIZE
#define FSYSREISER_MAX_BLOCKSIZE FSYSREISER_CACHE_SIZE / 3
struct fsys_reiser_fileinfo
{
__u32 k_dir_id;
__u32 k_objectid;
};
struct fsys_reiser_info
{
struct item_head *current_ih;
char *current_item;
struct fsys_reiser_fileinfo fileinfo;
__u16 version;
__u16 tree_depth;
__u8 blocksize_shift;
__u8 fullblocksize_shift;
__u16 blocksize;
__u16 cached_slots;
unsigned int blocks[MAX_HEIGHT];
unsigned int next_key_nr[MAX_HEIGHT];
};
/* The cached s+tree blocks in FSYS_BUF */
#define ROOT ((char *) ((int) FSYS_BUF))
#define CACHE(i) (ROOT + ((i) << INFO->fullblocksize_shift))
#define LEAF CACHE (DISK_LEAF_NODE_LEVEL)
#define BLOCKHEAD(cache) ((struct block_head *) cache)
#define ITEMHEAD ((struct item_head *) ((int) LEAF + BLKH_SIZE))
#define KEY(cache) ((struct key *) ((int) cache + BLKH_SIZE))
#define DC(cache) ((struct disk_child *) \
((int) cache + BLKH_SIZE + KEY_SIZE * nr_item))
#define INFO \
((struct fsys_reiser_info *) ((int) FSYS_BUF + FSYSREISER_CACHE_SIZE))
static __inline__ unsigned long
log2 (unsigned long word)
{
__asm__ ("bsfl %1,%0"
: "=r" (word)
: "r" (word));
return word;
}
/* check filesystem types and read superblock into memory buffer */
int
reiserfs_mount (void)
{
struct reiserfs_super_block super;
if (! devread (REISERFS_DISK_OFFSET_IN_BYTES >> SECTOR_BITS, 0,
sizeof (struct reiserfs_super_block), (char *) &super)
|| (substring (REISER2FS_SUPER_MAGIC_STRING, super.s_magic) > 0
&& substring (REISERFS_SUPER_MAGIC_STRING, super.s_magic) > 0)
|| (/* check that this is not a copy inside the journal log */
super.s_journal_block * super.s_blocksize
<= REISERFS_DISK_OFFSET_IN_BYTES))
{
/* Try old super block position */
if (! devread (REISERFS_OLD_DISK_OFFSET_IN_BYTES >> SECTOR_BITS, 0,
sizeof (struct reiserfs_super_block), (char *) &super))
return 0;
if (substring (REISER2FS_SUPER_MAGIC_STRING, super.s_magic) > 0
&& substring (REISERFS_SUPER_MAGIC_STRING, super.s_magic) > 0)
{
/* pre journaling super block ? */
if (substring ("ReIsErFs", (char *) ((int) &super + 20)) > 0)
return 0;
super.s_blocksize = REISERFS_OLD_BLOCKSIZE;
super.s_version = 0;
}
}
/* check the version number. */
if (super.s_version > REISERFS_MAX_SUPPORTED_VERSION)
return 0;
INFO->version = super.s_version;
INFO->blocksize = super.s_blocksize;
INFO->fullblocksize_shift = log2 (super.s_blocksize);
INFO->blocksize_shift = INFO->fullblocksize_shift - SECTOR_BITS;
INFO->cached_slots =
(FSYSREISER_CACHE_SIZE >> INFO->fullblocksize_shift) - 1;
if (super.s_blocksize < FSYSREISER_MIN_BLOCKSIZE
|| super.s_blocksize > FSYSREISER_MAX_BLOCKSIZE
|| (SECTOR_SIZE << INFO->blocksize_shift) != super.s_blocksize
|| ! devread (super.s_root_block << INFO->blocksize_shift,
0, INFO->blocksize, (char *) ROOT))
return 0;
INFO->tree_depth = BLOCKHEAD (ROOT)->blk_level;
#ifdef REISERDEBUG
printf ("root read_in: block=%d, depth=%d\n",
super.s_root_block, INFO->tree_depth);
#endif /* REISERDEBUG */
if (INFO->tree_depth >= MAX_HEIGHT)
return 0;
if (INFO->tree_depth == DISK_LEAF_NODE_LEVEL)
{
/* There is only one node in the whole filesystem,
* which is simultanously leaf and root */
memcpy (LEAF, ROOT, INFO->blocksize);
}
return 1;
}
static char *
read_tree_node (int depth)
{
char* cache = CACHE (depth > INFO->cached_slots ? 1 : depth);
#ifdef REISERDEBUG
printf (" next read_in: block=%d (depth=%d)\n",
INFO->blocks[depth], depth);
#endif /* REISERDEBUG */
if (! devread (INFO->blocks[depth] << INFO->blocksize_shift,
0, INFO->blocksize, cache))
return 0;
/* Make sure it has the right node level */
if (BLOCKHEAD (cache)->blk_level != depth)
{
errnum = ERR_FSYS_CORRUPT;
return 0;
}
return cache;
}
/* Get the next key, i.e. the key following the last retrieved key in
* tree order. INFO->current_ih and
* INFO->current_info are adapted accordingly. */
static int
next_key (void)
{
int depth;
struct item_head *ih = INFO->current_ih + 1;
char *cache;
#ifdef REISERDEBUG
printf ("next_key:\n old key %d:%d:%d:%d\n",
INFO->current_ih->ih_key.k_dir_id,
INFO->current_ih->ih_key.k_objectid,
INFO->current_ih->ih_key.u.v1.k_offset,
INFO->current_ih->ih_key.u.v1.k_uniqueness);
#endif /* REISERDEBUG */
if (ih == &ITEMHEAD[BLOCKHEAD (LEAF)->blk_nr_item])
{
depth = DISK_LEAF_NODE_LEVEL;
/* The last item, was the last in the leaf node.
* Read in the next block */
do
{
if (depth == INFO->tree_depth)
{
/* There are no more keys at all.
* Return a dummy item with MAX_KEY */
ih = (struct item_head *) &BLOCKHEAD (LEAF)->blk_right_delim_key;
goto found;
}
depth++;
#ifdef REISERDEBUG
printf (" depth=%d, i=%d\n", depth, INFO->next_key_nr[depth]);
#endif /* REISERDEBUG */
}
while (INFO->next_key_nr[depth] == 0);
if (depth == INFO->tree_depth)
cache = ROOT;
else if (depth <= INFO->cached_slots)
cache = CACHE (depth);
else
goto read_at_depth;
do
{
int nr_item = BLOCKHEAD (cache)->blk_nr_item;
int key_nr = INFO->next_key_nr[depth]++;
#ifdef REISERDEBUG
printf (" depth=%d, i=%d/%d\n", depth, key_nr, nr_item);
#endif /* REISERDEBUG */
if (key_nr == nr_item)
/* This is the last item in this block, set the next_key_nr to 0 */
INFO->next_key_nr[depth] = 0;
INFO->blocks[--depth] = DC (cache)[key_nr].dc_block_number;
read_at_depth:
cache = read_tree_node (depth);
if (! cache)
return 0;
}
while (depth > DISK_LEAF_NODE_LEVEL);
ih = ITEMHEAD;
}
found:
INFO->current_ih = ih;
INFO->current_item = &LEAF[ih->ih_item_location];
#ifdef REISERDEBUG
printf (" new key %d:%d:%d:%d\n",
INFO->current_ih->ih_key.k_dir_id,
INFO->current_ih->ih_key.k_objectid,
INFO->current_ih->ih_key.u.v1.k_offset,
INFO->current_ih->ih_key.u.v1.k_uniqueness);
#endif /* REISERDEBUG */
return 1;
}
/* preconditions: reiserfs_mount already executed, therefore
* INFO block is valid
* returns: 0 if error (errnum is set),
* nonzero iff we were able to find the key successfully.
* postconditions: on a nonzero return, the current_ih and
* current_item fields describe the key that equals the
* searched key. INFO->next_key contains the next key after
* the searched key.
* side effects: messes around with the cache.
*/
static int
search_stat (__u32 dir_id, __u32 objectid)
{
char *cache;
int depth;
int nr_item;
int i;
struct item_head *ih;
#ifdef REISERDEBUG
printf ("search_stat:\n key %d:%d:0:0\n", dir_id, objectid);
#endif /* REISERDEBUG */
depth = INFO->tree_depth;
cache = ROOT;
while (depth > DISK_LEAF_NODE_LEVEL)
{
struct key *key;
nr_item = BLOCKHEAD (cache)->blk_nr_item;
key = KEY (cache);
for (i = 0; i < nr_item; i++)
{
if (key->k_dir_id > dir_id
|| (key->k_dir_id == dir_id
&& (key->k_objectid > objectid
|| (key->k_objectid == objectid
&& (key->u.v1.k_offset
| key->u.v1.k_uniqueness) > 0))))
break;
key++;
}
#ifdef REISERDEBUG
printf (" depth=%d, i=%d/%d\n", depth, i, nr_item);
#endif /* REISERDEBUG */
INFO->next_key_nr[depth] = (i == nr_item) ? 0 : i+1;
INFO->blocks[--depth] = DC (cache)[i].dc_block_number;
cache = read_tree_node (depth);
if (! cache)
return 0;
}
/* cache == LEAF */
nr_item = BLOCKHEAD (LEAF)->blk_nr_item;
ih = ITEMHEAD;
for (i = 0; i < nr_item; i++)
{
if (ih->ih_key.k_dir_id == dir_id
&& ih->ih_key.k_objectid == objectid
&& ih->ih_key.u.v1.k_offset == 0
&& ih->ih_key.u.v1.k_uniqueness == 0)
{
#ifdef REISERDEBUG
printf (" depth=%d, i=%d/%d\n", depth, i, nr_item);
#endif /* REISERDEBUG */
INFO->current_ih = ih;
INFO->current_item = &LEAF[ih->ih_item_location];
return 1;
}
ih++;
}
errnum = ERR_FSYS_CORRUPT;
return 0;
}
int
reiserfs_read (char *buf, int len)
{
unsigned int blocksize;
unsigned int offset;
unsigned int to_read;
char *prev_buf = buf;
#ifdef REISERDEBUG
printf ("reiserfs_read: filepos=%d len=%d, offset=%d\n",
filepos, len, K_OFFSET (INFO->current_ih->ih_key) - 1);
#endif /* REISERDEBUG */
if (INFO->current_ih->ih_key.k_objectid != INFO->fileinfo.k_objectid
|| K_OFFSET (INFO->current_ih->ih_key) > filepos + 1)
{
search_stat (INFO->fileinfo.k_dir_id, INFO->fileinfo.k_objectid);
goto get_next_key;
}
while (! errnum)
{
if (INFO->current_ih->ih_key.k_objectid != INFO->fileinfo.k_objectid)
break;
offset = filepos - K_OFFSET (INFO->current_ih->ih_key) + 1;
blocksize = INFO->current_ih->ih_item_len;
#ifdef REISERDEBUG
printf (" loop: filepos=%d len=%d, offset=%d blocksize=%d\n",
filepos, len, offset, blocksize);
#endif /* REISERDEBUG */
if ((INFO->version < 2
? INFO->current_ih->ih_key.u.v1.k_uniqueness == V1_TYPE_DIRECT
: INFO->current_ih->ih_key.u.v2.k_type == V2_TYPE_DIRECT)
&& offset < blocksize)
{
to_read = blocksize - offset;
if (to_read > len)
to_read = len;
#ifndef STAGE1_5
if (disk_read_hook != NULL)
{
disk_read_func = disk_read_hook;
devread (INFO->blocks[DISK_LEAF_NODE_LEVEL]
<< INFO->blocksize_shift,
(INFO->current_item - LEAF + offset), to_read, buf);
disk_read_func = NULL;
}
else
#endif /* ! STAGE1_5 */
memcpy (buf, INFO->current_item + offset, to_read);
goto update_buf_len;
}
else if (INFO->version < 2
? INFO->current_ih->ih_key.u.v1.k_uniqueness == V1_TYPE_INDIRECT
: INFO->current_ih->ih_key.u.v2.k_type == V2_TYPE_INDIRECT)
{
blocksize = (blocksize >> 2) << INFO->fullblocksize_shift;
while (offset < blocksize)
{
__u32 blocknr = ((__u32 *) INFO->current_item)
[offset >> INFO->fullblocksize_shift];
int blk_offset = offset & (INFO->blocksize-1);
to_read = INFO->blocksize - blk_offset;
if (to_read > len)
to_read = len;
#ifndef STAGE1_5
disk_read_func = disk_read_hook;
#endif /* ! STAGE1_5 */
devread (blocknr << INFO->blocksize_shift,
blk_offset, to_read, buf);
#ifndef STAGE1_5
disk_read_func = NULL;
#endif /* ! STAGE1_5 */
update_buf_len:
len -= to_read;
buf += to_read;
offset += to_read;
filepos += to_read;
if (len == 0)
goto done;
}
}
get_next_key:
next_key ();
}
done:
return errnum ? 0 : buf - prev_buf;
}
/* preconditions: reiserfs_mount already executed, therefore
* INFO block is valid
* returns: 0 if error, nonzero iff we were able to find the file successfully
* postconditions: on a nonzero return, INFO->fileinfo contains the info
* of the file we were trying to look up, filepos is 0 and filemax is
* the size of the file.
*/
int
reiserfs_dir (char *dirname)
{
struct reiserfs_de_head *de_head;
char *rest, ch;
__u32 dir_id, objectid;
#ifndef STAGE1_5
int do_possibilities = 0;
#endif /* ! STAGE1_5 */
dir_id = REISERFS_ROOT_PARENT_OBJECTID;
objectid = REISERFS_ROOT_OBJECTID;
while (1)
{
#ifdef REISERDEBUG
printf ("dirname=%s\n", dirname);
#endif /* REISERDEBUG */
/* Search for the stat info first. */
if (! search_stat (dir_id, objectid))
return 0;
#ifdef REISERDEBUG
printf ("sd_mode=%x sd_size=%d\n",
((struct stat_data *) INFO->current_item)->sd_mode,
((struct stat_data *) INFO->current_item)->sd_size);
#endif /* REISERDEBUG */
/* if we have a real file (and we're not just printing possibilities),
then this is where we want to exit */
if (! *dirname || isspace (*dirname))
{
if (! S_ISREG (((struct stat_data *) INFO->current_item)->sd_mode))
{
errnum = ERR_BAD_FILETYPE;
return 0;
}
filepos = 0;
filemax = ((struct stat_data *) INFO->current_item)->sd_size;
/* If this is a new stat data and size is > 4GB set filemax to
* maximum
*/
if (INFO->current_ih->ih_version == 2
&& ((struct stat_data *) INFO->current_item)->sd_size_hi > 0)
filemax = 0xffffffff;
INFO->fileinfo.k_dir_id = dir_id;
INFO->fileinfo.k_objectid = objectid;
return next_key ();
}
/* continue with the file/directory name interpretation */
while (*dirname == '/')
dirname++;
if (! S_ISDIR (((struct stat_data *) INFO->current_item)->sd_mode))
{
errnum = ERR_BAD_FILETYPE;
return 0;
}
for (rest = dirname; (ch = *rest) && !isspace (ch) && ch != '/'; rest++);
*rest = 0;
# ifndef STAGE1_5
if (print_possibilities && ch != '/')
do_possibilities = 1;
# endif /* ! STAGE1_5 */
while (1)
{
char *name_end;
int num_entries;
if (! next_key ())
return 0;
#ifdef REISERDEBUG
printf ("key %d:%d:%d:%d\n", INFO->current_ih->ih_key.k_dir_id,
INFO->current_ih->ih_key.k_objectid,
INFO->current_ih->ih_key.u.v1.k_offset,
INFO->current_ih->ih_key.u.v1.k_uniqueness);
#endif /* REISERDEBUG */
if (INFO->current_ih->ih_key.k_objectid != objectid)
break;
name_end = INFO->current_item + INFO->current_ih->ih_item_len;
de_head = (struct reiserfs_de_head *) INFO->current_item;
num_entries = INFO->current_ih->u.ih_entry_count;
while (num_entries > 0)
{
char *filename = INFO->current_item + de_head->deh_location;
char tmp = *name_end;
if ((de_head->deh_state & DEH_Visible))
{
int cmp;
/* Note that this may also overwrite the next block in
* the cache. But that doesn't hurt as long as we don't
* call next_key (). */
*name_end = 0;
cmp = substring (dirname, filename);
*name_end = tmp;
# ifndef STAGE1_5
if (do_possibilities)
{
if (cmp <= 0)
{
if (print_possibilities > 0)
print_possibilities = -print_possibilities;
*name_end = 0;
print_a_completion (filename);
*name_end = tmp;
}
}
else
# endif /* ! STAGE1_5 */
if (cmp == 0)
goto found;
}
/* The beginning of this name marks the end of the next name.
*/
name_end = filename;
de_head++;
num_entries--;
}
}
# ifndef STAGE1_5
if (print_possibilities < 0)
return 1;
# endif /* ! STAGE1_5 */
errnum = ERR_FILE_NOT_FOUND;
*rest = ch;
return 0;
found:
*rest = ch;
dirname = rest;
dir_id = de_head->deh_dir_id;
objectid = de_head->deh_objectid;
}
}
int
reiserfs_embed (int *start_sector, int needed_sectors)
{
struct reiserfs_super_block super;
int num_sectors;
if (! devread (REISERFS_DISK_OFFSET_IN_BYTES >> SECTOR_BITS, 0,
sizeof (struct reiserfs_super_block), (char *) &super))
return 0;
*start_sector = 1; /* reserve first sector for stage1 */
if ((substring (REISERFS_SUPER_MAGIC_STRING, super.s_magic) <= 0
|| substring (REISER2FS_SUPER_MAGIC_STRING, super.s_magic) <= 0)
&& (/* check that this is not a super block copy inside
* the journal log */
super.s_journal_block * super.s_blocksize
> REISERFS_DISK_OFFSET_IN_BYTES))
num_sectors = (REISERFS_DISK_OFFSET_IN_BYTES >> SECTOR_BITS) - 1;
else
num_sectors = (REISERFS_OLD_DISK_OFFSET_IN_BYTES >> SECTOR_BITS) - 1;
return (needed_sectors <= num_sectors);
}
#endif /* FSYS_REISERFS */