| /* |
| * GRUB -- GRand Unified Bootloader |
| * Copyright (C) 1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| /* |
| * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. |
| */ |
| |
| #ifndef _SYS_SPA_H |
| #define _SYS_SPA_H |
| |
| /* |
| * General-purpose 32-bit and 64-bit bitfield encodings. |
| */ |
| #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) |
| #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) |
| #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) |
| #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) |
| |
| #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) |
| #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) |
| |
| #define BF32_SET(x, low, len, val) \ |
| ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len)) |
| #define BF64_SET(x, low, len, val) \ |
| ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)) |
| |
| #define BF32_GET_SB(x, low, len, shift, bias) \ |
| ((BF32_GET(x, low, len) + (bias)) << (shift)) |
| #define BF64_GET_SB(x, low, len, shift, bias) \ |
| ((BF64_GET(x, low, len) + (bias)) << (shift)) |
| |
| #define BF32_SET_SB(x, low, len, shift, bias, val) \ |
| BF32_SET(x, low, len, ((val) >> (shift)) - (bias)) |
| #define BF64_SET_SB(x, low, len, shift, bias, val) \ |
| BF64_SET(x, low, len, ((val) >> (shift)) - (bias)) |
| |
| /* |
| * We currently support nine block sizes, from 512 bytes to 128K. |
| * We could go higher, but the benefits are near-zero and the cost |
| * of COWing a giant block to modify one byte would become excessive. |
| */ |
| #define SPA_MINBLOCKSHIFT 9 |
| #define SPA_MAXBLOCKSHIFT 17 |
| #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) |
| #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) |
| |
| #define SPA_BLOCKSIZES (SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1) |
| |
| /* |
| * Size of block to hold the configuration data (a packed nvlist) |
| */ |
| #define SPA_CONFIG_BLOCKSIZE (1 << 14) |
| |
| /* |
| * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. |
| * The ASIZE encoding should be at least 64 times larger (6 more bits) |
| * to support up to 4-way RAID-Z mirror mode with worst-case gang block |
| * overhead, three DVAs per bp, plus one more bit in case we do anything |
| * else that expands the ASIZE. |
| */ |
| #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ |
| #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ |
| #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ |
| |
| /* |
| * All SPA data is represented by 128-bit data virtual addresses (DVAs). |
| * The members of the dva_t should be considered opaque outside the SPA. |
| */ |
| typedef struct dva { |
| uint64_t dva_word[2]; |
| } dva_t; |
| |
| /* |
| * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. |
| */ |
| typedef struct zio_cksum { |
| uint64_t zc_word[4]; |
| } zio_cksum_t; |
| |
| /* |
| * Each block is described by its DVAs, time of birth, checksum, etc. |
| * The word-by-word, bit-by-bit layout of the blkptr is as follows: |
| * |
| * 64 56 48 40 32 24 16 8 0 |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 0 | vdev1 |ncopy|L| ASIZE | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 1 |G| offset1 | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 2 | vdev2 |ncopy|L| ASIZE | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 3 |G| offset2 | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 4 | vdev3 |ncopy|L| ASIZE | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 5 |G| offset3 | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 6 |BDE|lvl| type | cksum | comp | PSIZE | LSIZE | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 7 | padding | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 8 | padding | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * 9 | physical birth txg | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * a | logical birth txg | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * b | fill count | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * c | checksum[0] | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * d | checksum[1] | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * e | checksum[2] | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * f | checksum[3] | |
| * +-------+-------+-------+-------+-------+-------+-------+-------+ |
| * |
| * Legend: |
| * |
| * vdev virtual device ID |
| * offset offset into virtual device |
| * LSIZE logical size |
| * PSIZE physical size (after compression) |
| * ASIZE allocated size (including RAID-Z parity and gang block headers) |
| * L layout (e.g. standard vs. RAID-Z/mirror hybrid) |
| * ncopy number of copies if RAID-Z, otherwise 1 |
| * cksum checksum function |
| * comp compression function |
| * G gang block indicator |
| * B byteorder (endianness) |
| * D dedup |
| * E encryption |
| * lvl level of indirection |
| * type DMU object type |
| * phys birth txg of block allocation; zero if same as logical birth txg |
| * log. birth transaction group in which the block was logically born |
| * fill count number of non-zero blocks under this bp |
| * checksum[4] 256-bit checksum of the data this bp describes |
| * |
| * Special notes for encryption: |
| * |
| * A single bit is used to indicate if the block is encrypted. This is |
| * sufficient since all blocks in a dataset always share the same encryption |
| * algorithm-keylen-mode. |
| * |
| * When encryption is enabled blk_dva[2] holds the IV. |
| * When encryption is enabled level 0 blocks checksum[2] and checksum[3] hold |
| * the MAC output from the encryption and the normal checksum is truncated |
| * and stored in checksum[0] and checksum[1]. |
| * |
| */ |
| #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ |
| #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ |
| |
| typedef struct blkptr { |
| dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ |
| uint64_t blk_prop; /* size, compression, type, etc */ |
| uint64_t blk_pad[2]; /* Extra space for the future */ |
| uint64_t blk_phys_birth; /* txg when block was allocated */ |
| uint64_t blk_birth; /* transaction group at birth */ |
| uint64_t blk_fill; /* fill count */ |
| zio_cksum_t blk_cksum; /* 256-bit checksum */ |
| } blkptr_t; |
| |
| /* |
| * DVA layouts. Normally mirror vdevs contain mirrored data, RAID-Z vdevs |
| * contain RAID-Z data, etc. However, for latency-sensitive metadata, |
| * we can use a mirrored layout across the children of a RAID-Z vdev. |
| * This ensures that such metadata can be read in a single I/O. |
| */ |
| typedef enum dva_layout { |
| DVA_LAYOUT_STANDARD = 0, |
| DVA_LAYOUT_RAIDZ_MIRROR |
| } dva_layout_t; |
| |
| /* |
| * Macros to get and set fields in a bp or DVA. |
| */ |
| #define DVA_GET_ASIZE(dva) \ |
| BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0) |
| #define DVA_SET_ASIZE(dva, x) \ |
| BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x) |
| |
| #define DVA_GET_LAYOUT(dva) BF64_GET((dva)->dva_word[0], 24, 2) |
| #define DVA_SET_LAYOUT(dva, x) BF64_SET((dva)->dva_word[0], 24, 2, x) |
| |
| #define DVA_GET_COPIES(dva) BF64_GET_SB((dva)->dva_word[0], 26, 6, 0, 1) |
| #define DVA_SET_COPIES(dva, x) BF64_SET_SB((dva)->dva_word[0], 26, 6, 0, 1, x) |
| |
| #define DVA_MAX_COPIES (1ULL << 6) |
| #define DVA_MAX_INFLATION (4ULL) |
| |
| #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) |
| #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) |
| |
| #define DVA_GET_OFFSET(dva) \ |
| BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) |
| #define DVA_SET_OFFSET(dva, x) \ |
| BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) |
| |
| #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) |
| #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) |
| |
| #define DVA_EQUAL(dva1, dva2) \ |
| ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ |
| (dva1)->dva_word[0] == (dva2)->dva_word[0]) |
| |
| #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) |
| |
| #define DVA_VALID_COPIES(dva) \ |
| (DVA_IS_VALID(dva) ? DVA_GET_COPIES(dva) : 0) |
| |
| #define BP_GET_LSIZE(bp) \ |
| BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1) |
| #define BP_SET_LSIZE(bp, x) \ |
| BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x) |
| |
| #define BP_GET_PSIZE(bp) \ |
| BF64_GET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1) |
| #define BP_SET_PSIZE(bp, x) \ |
| BF64_SET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x) |
| |
| #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 8) |
| #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 8, x) |
| |
| #define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8) |
| #define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x) |
| |
| #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) |
| #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) |
| |
| #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) |
| #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) |
| |
| #define BP_GET_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1) |
| #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x) |
| #define BP_IS_ENCRYPTED(bp) (0 - BP_GET_CRYPT_FLAG(bp)) |
| |
| #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) |
| #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) |
| |
| #define BP_GET_BYTEORDER(bp) (0 - BF64_GET((bp)->blk_prop, 63, 1)) |
| #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) |
| |
| #define BP_PHYSICAL_BIRTH(bp) \ |
| ((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) |
| |
| #define BP_SET_BIRTH(bp, logical, physical) \ |
| { \ |
| (bp)->blk_birth = (logical); \ |
| (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \ |
| } |
| |
| #define BP_GET_UCSIZE(bp) \ |
| ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \ |
| BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)) |
| |
| #define BP_GET_ASIZE(bp) \ |
| (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ |
| DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ |
| (BP_IS_ENCRYPTED(bp) ? 0 : DVA_GET_ASIZE(&(bp)->blk_dva[2]))) |
| |
| #define BP_GET_NDVAS(bp) \ |
| (DVA_IS_VALID(&(bp)->blk_dva[0]) + \ |
| DVA_IS_VALID(&(bp)->blk_dva[1]) + \ |
| (BP_IS_ENCRYPTED(bp) ? 0 : DVA_IS_VALID(&(bp)->blk_dva[2]))) |
| |
| #define BP_GET_COPIES(bp) \ |
| (DVA_VALID_COPIES(&(bp)->blk_dva[0]) + \ |
| DVA_VALID_COPIES(&(bp)->blk_dva[1]) + \ |
| (BP_IS_ENCRYPTED(bp) ? 0 : DVA_VALID_COPIES(&(bp)->blk_dva[2]))) |
| |
| #define BP_COUNT_GANG(bp) \ |
| (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ |
| DVA_GET_GANG(&(bp)->blk_dva[1]) + \ |
| (BP_IS_ENCRYPTED(bp) ? 0 : DVA_GET_GANG(&(bp)->blk_dva[2]))) |
| |
| #define BP_EQUAL(bp1, bp2) \ |
| (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \ |
| DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \ |
| DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \ |
| DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2])) |
| |
| #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ |
| (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ |
| ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ |
| ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ |
| ((zc1).zc_word[3] - (zc2).zc_word[3]))) |
| |
| #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ |
| { \ |
| (zcp)->zc_word[0] = w0; \ |
| (zcp)->zc_word[1] = w1; \ |
| (zcp)->zc_word[2] = w2; \ |
| (zcp)->zc_word[3] = w3; \ |
| } |
| |
| #define BP_IDENTITY(bp) (&(bp)->blk_dva[0]) |
| #define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp)) |
| #define BP_IS_HOLE(bp) ((bp)->blk_birth == 0) |
| |
| /* BP_IS_RAIDZ(bp) assumes no block compression */ |
| #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \ |
| BP_GET_PSIZE(bp)) |
| |
| #define BP_ZERO(bp) \ |
| { \ |
| (bp)->blk_dva[0].dva_word[0] = 0; \ |
| (bp)->blk_dva[0].dva_word[1] = 0; \ |
| (bp)->blk_dva[1].dva_word[0] = 0; \ |
| (bp)->blk_dva[1].dva_word[1] = 0; \ |
| (bp)->blk_dva[2].dva_word[0] = 0; \ |
| (bp)->blk_dva[2].dva_word[1] = 0; \ |
| (bp)->blk_prop = 0; \ |
| (bp)->blk_pad[0] = 0; \ |
| (bp)->blk_pad[1] = 0; \ |
| (bp)->blk_phys_birth = 0; \ |
| (bp)->blk_birth = 0; \ |
| (bp)->blk_fill = 0; \ |
| ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ |
| } |
| /* |
| * Note: the byteorder is either 0 or -1, both of which are palindromes. |
| * This simplifies the endianness handling a bit. |
| */ |
| #ifdef _BIG_ENDIAN |
| #define ZFS_HOST_BYTEORDER (0ULL) |
| #else |
| #define ZFS_HOST_BYTEORDER (-1ULL) |
| #endif |
| |
| #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) |
| |
| #define BP_SPRINTF_LEN 360 |
| |
| #endif /* _SYS_SPA_H */ |