blob: 25ac0ce4a6452d320b589bf02abee53946d949ba [file] [log] [blame] [raw]
#include "svm.h"
#include "libcflat.h"
#include "processor.h"
#include "desc.h"
#include "msr.h"
#include "vm.h"
#include "smp.h"
#include "types.h"
/* for the nested page table*/
u64 *pml4e;
u64 *pdpe;
u64 *pde[4];
u64 *pte[2048];
void *scratch_page;
#define LATENCY_RUNS 1000000
u64 tsc_start;
u64 tsc_end;
u64 vmrun_sum, vmexit_sum;
u64 vmsave_sum, vmload_sum;
u64 stgi_sum, clgi_sum;
u64 latvmrun_max;
u64 latvmrun_min;
u64 latvmexit_max;
u64 latvmexit_min;
u64 latvmload_max;
u64 latvmload_min;
u64 latvmsave_max;
u64 latvmsave_min;
u64 latstgi_max;
u64 latstgi_min;
u64 latclgi_max;
u64 latclgi_min;
u64 runs;
u8 *io_bitmap;
u8 io_bitmap_area[16384];
static bool npt_supported(void)
{
return cpuid(0x8000000A).d & 1;
}
static void setup_svm(void)
{
void *hsave = alloc_page();
u64 *page, address;
int i,j;
wrmsr(MSR_VM_HSAVE_PA, virt_to_phys(hsave));
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_SVME);
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX);
scratch_page = alloc_page();
io_bitmap = (void *) (((ulong)io_bitmap_area + 4095) & ~4095);
if (!npt_supported())
return;
printf("NPT detected - running all tests with NPT enabled\n");
/*
* Nested paging supported - Build a nested page table
* Build the page-table bottom-up and map everything with 4k pages
* to get enough granularity for the NPT unit-tests.
*/
address = 0;
/* PTE level */
for (i = 0; i < 2048; ++i) {
page = alloc_page();
for (j = 0; j < 512; ++j, address += 4096)
page[j] = address | 0x067ULL;
pte[i] = page;
}
/* PDE level */
for (i = 0; i < 4; ++i) {
page = alloc_page();
for (j = 0; j < 512; ++j)
page[j] = (u64)pte[(i * 512) + j] | 0x027ULL;
pde[i] = page;
}
/* PDPe level */
pdpe = alloc_page();
for (i = 0; i < 4; ++i)
pdpe[i] = ((u64)(pde[i])) | 0x27;
/* PML4e level */
pml4e = alloc_page();
pml4e[0] = ((u64)pdpe) | 0x27;
}
static u64 *npt_get_pde(u64 address)
{
int i1, i2;
address >>= 21;
i1 = (address >> 9) & 0x3;
i2 = address & 0x1ff;
return &pde[i1][i2];
}
static u64 *npt_get_pte(u64 address)
{
int i1, i2;
address >>= 12;
i1 = (address >> 9) & 0x7ff;
i2 = address & 0x1ff;
return &pte[i1][i2];
}
static void vmcb_set_seg(struct vmcb_seg *seg, u16 selector,
u64 base, u32 limit, u32 attr)
{
seg->selector = selector;
seg->attrib = attr;
seg->limit = limit;
seg->base = base;
}
static void vmcb_ident(struct vmcb *vmcb)
{
u64 vmcb_phys = virt_to_phys(vmcb);
struct vmcb_save_area *save = &vmcb->save;
struct vmcb_control_area *ctrl = &vmcb->control;
u32 data_seg_attr = 3 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_P_MASK
| SVM_SELECTOR_DB_MASK | SVM_SELECTOR_G_MASK;
u32 code_seg_attr = 9 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_P_MASK
| SVM_SELECTOR_L_MASK | SVM_SELECTOR_G_MASK;
struct descriptor_table_ptr desc_table_ptr;
memset(vmcb, 0, sizeof(*vmcb));
asm volatile ("vmsave" : : "a"(vmcb_phys) : "memory");
vmcb_set_seg(&save->es, read_es(), 0, -1U, data_seg_attr);
vmcb_set_seg(&save->cs, read_cs(), 0, -1U, code_seg_attr);
vmcb_set_seg(&save->ss, read_ss(), 0, -1U, data_seg_attr);
vmcb_set_seg(&save->ds, read_ds(), 0, -1U, data_seg_attr);
sgdt(&desc_table_ptr);
vmcb_set_seg(&save->gdtr, 0, desc_table_ptr.base, desc_table_ptr.limit, 0);
sidt(&desc_table_ptr);
vmcb_set_seg(&save->idtr, 0, desc_table_ptr.base, desc_table_ptr.limit, 0);
ctrl->asid = 1;
save->cpl = 0;
save->efer = rdmsr(MSR_EFER);
save->cr4 = read_cr4();
save->cr3 = read_cr3();
save->cr0 = read_cr0();
save->dr7 = read_dr7();
save->dr6 = read_dr6();
save->cr2 = read_cr2();
save->g_pat = rdmsr(MSR_IA32_CR_PAT);
save->dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
ctrl->intercept = (1ULL << INTERCEPT_VMRUN) | (1ULL << INTERCEPT_VMMCALL);
ctrl->iopm_base_pa = virt_to_phys(io_bitmap);
if (npt_supported()) {
ctrl->nested_ctl = 1;
ctrl->nested_cr3 = (u64)pml4e;
}
}
struct test {
const char *name;
bool (*supported)(void);
void (*prepare)(struct test *test);
void (*guest_func)(struct test *test);
bool (*finished)(struct test *test);
bool (*succeeded)(struct test *test);
struct vmcb *vmcb;
int exits;
ulong scratch;
};
static inline void vmmcall(void)
{
asm volatile ("vmmcall" : : : "memory");
}
static void test_thunk(struct test *test)
{
test->guest_func(test);
vmmcall();
}
struct regs {
u64 rax;
u64 rcx;
u64 rdx;
u64 rbx;
u64 cr2;
u64 rbp;
u64 rsi;
u64 rdi;
u64 r8;
u64 r9;
u64 r10;
u64 r11;
u64 r12;
u64 r13;
u64 r14;
u64 r15;
u64 rflags;
};
struct regs regs;
// rax handled specially below
#define SAVE_GPR_C \
"xchg %%rbx, regs+0x8\n\t" \
"xchg %%rcx, regs+0x10\n\t" \
"xchg %%rdx, regs+0x18\n\t" \
"xchg %%rbp, regs+0x28\n\t" \
"xchg %%rsi, regs+0x30\n\t" \
"xchg %%rdi, regs+0x38\n\t" \
"xchg %%r8, regs+0x40\n\t" \
"xchg %%r9, regs+0x48\n\t" \
"xchg %%r10, regs+0x50\n\t" \
"xchg %%r11, regs+0x58\n\t" \
"xchg %%r12, regs+0x60\n\t" \
"xchg %%r13, regs+0x68\n\t" \
"xchg %%r14, regs+0x70\n\t" \
"xchg %%r15, regs+0x78\n\t"
#define LOAD_GPR_C SAVE_GPR_C
static void test_run(struct test *test, struct vmcb *vmcb)
{
u64 vmcb_phys = virt_to_phys(vmcb);
u64 guest_stack[10000];
test->vmcb = vmcb;
test->prepare(test);
vmcb->save.rip = (ulong)test_thunk;
vmcb->save.rsp = (ulong)(guest_stack + ARRAY_SIZE(guest_stack));
regs.rdi = (ulong)test;
do {
tsc_start = rdtsc();
asm volatile (
"clgi \n\t"
"vmload \n\t"
"mov regs+0x80, %%r15\n\t" // rflags
"mov %%r15, 0x170(%0)\n\t"
"mov regs, %%r15\n\t" // rax
"mov %%r15, 0x1f8(%0)\n\t"
LOAD_GPR_C
"vmrun \n\t"
SAVE_GPR_C
"mov 0x170(%0), %%r15\n\t" // rflags
"mov %%r15, regs+0x80\n\t"
"mov 0x1f8(%0), %%r15\n\t" // rax
"mov %%r15, regs\n\t"
"vmsave \n\t"
"stgi"
: : "a"(vmcb_phys)
: "rbx", "rcx", "rdx", "rsi",
"r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15",
"memory");
tsc_end = rdtsc();
++test->exits;
} while (!test->finished(test));
report("%s", test->succeeded(test), test->name);
}
static bool smp_supported(void)
{
return cpu_count() > 1;
}
static bool default_supported(void)
{
return true;
}
static void default_prepare(struct test *test)
{
vmcb_ident(test->vmcb);
cli();
}
static bool default_finished(struct test *test)
{
return true; /* one vmexit */
}
static void null_test(struct test *test)
{
}
static bool null_check(struct test *test)
{
return test->vmcb->control.exit_code == SVM_EXIT_VMMCALL;
}
static void prepare_no_vmrun_int(struct test *test)
{
test->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMRUN);
}
static bool check_no_vmrun_int(struct test *test)
{
return test->vmcb->control.exit_code == SVM_EXIT_ERR;
}
static void test_vmrun(struct test *test)
{
asm volatile ("vmrun" : : "a"(virt_to_phys(test->vmcb)));
}
static bool check_vmrun(struct test *test)
{
return test->vmcb->control.exit_code == SVM_EXIT_VMRUN;
}
static void prepare_cr3_intercept(struct test *test)
{
default_prepare(test);
test->vmcb->control.intercept_cr_read |= 1 << 3;
}
static void test_cr3_intercept(struct test *test)
{
asm volatile ("mov %%cr3, %0" : "=r"(test->scratch) : : "memory");
}
static bool check_cr3_intercept(struct test *test)
{
return test->vmcb->control.exit_code == SVM_EXIT_READ_CR3;
}
static bool check_cr3_nointercept(struct test *test)
{
return null_check(test) && test->scratch == read_cr3();
}
static void corrupt_cr3_intercept_bypass(void *_test)
{
struct test *test = _test;
extern volatile u32 mmio_insn;
while (!__sync_bool_compare_and_swap(&test->scratch, 1, 2))
pause();
pause();
pause();
pause();
mmio_insn = 0x90d8200f; // mov %cr3, %rax; nop
}
static void prepare_cr3_intercept_bypass(struct test *test)
{
default_prepare(test);
test->vmcb->control.intercept_cr_read |= 1 << 3;
on_cpu_async(1, corrupt_cr3_intercept_bypass, test);
}
static void test_cr3_intercept_bypass(struct test *test)
{
ulong a = 0xa0000;
test->scratch = 1;
while (test->scratch != 2)
barrier();
asm volatile ("mmio_insn: mov %0, (%0); nop"
: "+a"(a) : : "memory");
test->scratch = a;
}
static bool next_rip_supported(void)
{
return (cpuid(SVM_CPUID_FUNC).d & 8);
}
static void prepare_next_rip(struct test *test)
{
test->vmcb->control.intercept |= (1ULL << INTERCEPT_RDTSC);
}
static void test_next_rip(struct test *test)
{
asm volatile ("rdtsc\n\t"
".globl exp_next_rip\n\t"
"exp_next_rip:\n\t" ::: "eax", "edx");
}
static bool check_next_rip(struct test *test)
{
extern char exp_next_rip;
unsigned long address = (unsigned long)&exp_next_rip;
return address == test->vmcb->control.next_rip;
}
static void prepare_mode_switch(struct test *test)
{
test->vmcb->control.intercept_exceptions |= (1ULL << GP_VECTOR)
| (1ULL << UD_VECTOR)
| (1ULL << DF_VECTOR)
| (1ULL << PF_VECTOR);
test->scratch = 0;
}
static void test_mode_switch(struct test *test)
{
asm volatile(" cli\n"
" ljmp *1f\n" /* jump to 32-bit code segment */
"1:\n"
" .long 2f\n"
" .long " xstr(KERNEL_CS32) "\n"
".code32\n"
"2:\n"
" movl %%cr0, %%eax\n"
" btcl $31, %%eax\n" /* clear PG */
" movl %%eax, %%cr0\n"
" movl $0xc0000080, %%ecx\n" /* EFER */
" rdmsr\n"
" btcl $8, %%eax\n" /* clear LME */
" wrmsr\n"
" movl %%cr4, %%eax\n"
" btcl $5, %%eax\n" /* clear PAE */
" movl %%eax, %%cr4\n"
" movw %[ds16], %%ax\n"
" movw %%ax, %%ds\n"
" ljmpl %[cs16], $3f\n" /* jump to 16 bit protected-mode */
".code16\n"
"3:\n"
" movl %%cr0, %%eax\n"
" btcl $0, %%eax\n" /* clear PE */
" movl %%eax, %%cr0\n"
" ljmpl $0, $4f\n" /* jump to real-mode */
"4:\n"
" vmmcall\n"
" movl %%cr0, %%eax\n"
" btsl $0, %%eax\n" /* set PE */
" movl %%eax, %%cr0\n"
" ljmpl %[cs32], $5f\n" /* back to protected mode */
".code32\n"
"5:\n"
" movl %%cr4, %%eax\n"
" btsl $5, %%eax\n" /* set PAE */
" movl %%eax, %%cr4\n"
" movl $0xc0000080, %%ecx\n" /* EFER */
" rdmsr\n"
" btsl $8, %%eax\n" /* set LME */
" wrmsr\n"
" movl %%cr0, %%eax\n"
" btsl $31, %%eax\n" /* set PG */
" movl %%eax, %%cr0\n"
" ljmpl %[cs64], $6f\n" /* back to long mode */
".code64\n\t"
"6:\n"
" vmmcall\n"
:: [cs16] "i"(KERNEL_CS16), [ds16] "i"(KERNEL_DS16),
[cs32] "i"(KERNEL_CS32), [cs64] "i"(KERNEL_CS64)
: "rax", "rbx", "rcx", "rdx", "memory");
}
static bool mode_switch_finished(struct test *test)
{
u64 cr0, cr4, efer;
cr0 = test->vmcb->save.cr0;
cr4 = test->vmcb->save.cr4;
efer = test->vmcb->save.efer;
/* Only expect VMMCALL intercepts */
if (test->vmcb->control.exit_code != SVM_EXIT_VMMCALL)
return true;
/* Jump over VMMCALL instruction */
test->vmcb->save.rip += 3;
/* Do sanity checks */
switch (test->scratch) {
case 0:
/* Test should be in real mode now - check for this */
if ((cr0 & 0x80000001) || /* CR0.PG, CR0.PE */
(cr4 & 0x00000020) || /* CR4.PAE */
(efer & 0x00000500)) /* EFER.LMA, EFER.LME */
return true;
break;
case 2:
/* Test should be back in long-mode now - check for this */
if (((cr0 & 0x80000001) != 0x80000001) || /* CR0.PG, CR0.PE */
((cr4 & 0x00000020) != 0x00000020) || /* CR4.PAE */
((efer & 0x00000500) != 0x00000500)) /* EFER.LMA, EFER.LME */
return true;
break;
}
/* one step forward */
test->scratch += 1;
return test->scratch == 2;
}
static bool check_mode_switch(struct test *test)
{
return test->scratch == 2;
}
static void prepare_ioio(struct test *test)
{
test->vmcb->control.intercept |= (1ULL << INTERCEPT_IOIO_PROT);
test->scratch = 0;
memset(io_bitmap, 0, 8192);
io_bitmap[8192] = 0xFF;
}
int get_test_stage(struct test *test)
{
barrier();
return test->scratch;
}
void inc_test_stage(struct test *test)
{
barrier();
test->scratch++;
barrier();
}
static void test_ioio(struct test *test)
{
// stage 0, test IO pass
inb(0x5000);
outb(0x0, 0x5000);
if (get_test_stage(test) != 0)
goto fail;
// test IO width, in/out
io_bitmap[0] = 0xFF;
inc_test_stage(test);
inb(0x0);
if (get_test_stage(test) != 2)
goto fail;
outw(0x0, 0x0);
if (get_test_stage(test) != 3)
goto fail;
inl(0x0);
if (get_test_stage(test) != 4)
goto fail;
// test low/high IO port
io_bitmap[0x5000 / 8] = (1 << (0x5000 % 8));
inb(0x5000);
if (get_test_stage(test) != 5)
goto fail;
io_bitmap[0x9000 / 8] = (1 << (0x9000 % 8));
inw(0x9000);
if (get_test_stage(test) != 6)
goto fail;
// test partial pass
io_bitmap[0x5000 / 8] = (1 << (0x5000 % 8));
inl(0x4FFF);
if (get_test_stage(test) != 7)
goto fail;
// test across pages
inc_test_stage(test);
inl(0x7FFF);
if (get_test_stage(test) != 8)
goto fail;
inc_test_stage(test);
io_bitmap[0x8000 / 8] = 1 << (0x8000 % 8);
inl(0x7FFF);
if (get_test_stage(test) != 10)
goto fail;
io_bitmap[0] = 0;
inl(0xFFFF);
if (get_test_stage(test) != 11)
goto fail;
io_bitmap[0] = 0xFF;
io_bitmap[8192] = 0;
inl(0xFFFF);
inc_test_stage(test);
if (get_test_stage(test) != 12)
goto fail;
return;
fail:
report("stage %d", false, get_test_stage(test));
test->scratch = -1;
}
static bool ioio_finished(struct test *test)
{
unsigned port, size;
/* Only expect IOIO intercepts */
if (test->vmcb->control.exit_code == SVM_EXIT_VMMCALL)
return true;
if (test->vmcb->control.exit_code != SVM_EXIT_IOIO)
return true;
/* one step forward */
test->scratch += 1;
port = test->vmcb->control.exit_info_1 >> 16;
size = (test->vmcb->control.exit_info_1 >> SVM_IOIO_SIZE_SHIFT) & 7;
while (size--) {
io_bitmap[port / 8] &= ~(1 << (port & 7));
port++;
}
return false;
}
static bool check_ioio(struct test *test)
{
memset(io_bitmap, 0, 8193);
return test->scratch != -1;
}
static void prepare_asid_zero(struct test *test)
{
test->vmcb->control.asid = 0;
}
static void test_asid_zero(struct test *test)
{
asm volatile ("vmmcall\n\t");
}
static bool check_asid_zero(struct test *test)
{
return test->vmcb->control.exit_code == SVM_EXIT_ERR;
}
static void sel_cr0_bug_prepare(struct test *test)
{
vmcb_ident(test->vmcb);
test->vmcb->control.intercept |= (1ULL << INTERCEPT_SELECTIVE_CR0);
}
static bool sel_cr0_bug_finished(struct test *test)
{
return true;
}
static void sel_cr0_bug_test(struct test *test)
{
unsigned long cr0;
/* read cr0, clear CD, and write back */
cr0 = read_cr0();
cr0 |= (1UL << 30);
write_cr0(cr0);
/*
* If we are here the test failed, not sure what to do now because we
* are not in guest-mode anymore so we can't trigger an intercept.
* Trigger a tripple-fault for now.
*/
report("sel_cr0 test. Can not recover from this - exiting", false);
exit(report_summary());
}
static bool sel_cr0_bug_check(struct test *test)
{
return test->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE;
}
static void npt_nx_prepare(struct test *test)
{
u64 *pte;
vmcb_ident(test->vmcb);
pte = npt_get_pte((u64)null_test);
*pte |= (1ULL << 63);
}
static bool npt_nx_check(struct test *test)
{
u64 *pte = npt_get_pte((u64)null_test);
*pte &= ~(1ULL << 63);
test->vmcb->save.efer |= (1 << 11);
return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
&& (test->vmcb->control.exit_info_1 == 0x100000015ULL);
}
static void npt_us_prepare(struct test *test)
{
u64 *pte;
vmcb_ident(test->vmcb);
pte = npt_get_pte((u64)scratch_page);
*pte &= ~(1ULL << 2);
}
static void npt_us_test(struct test *test)
{
(void) *(volatile u64 *)scratch_page;
}
static bool npt_us_check(struct test *test)
{
u64 *pte = npt_get_pte((u64)scratch_page);
*pte |= (1ULL << 2);
return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
&& (test->vmcb->control.exit_info_1 == 0x100000005ULL);
}
u64 save_pde;
static void npt_rsvd_prepare(struct test *test)
{
u64 *pde;
vmcb_ident(test->vmcb);
pde = npt_get_pde((u64) null_test);
save_pde = *pde;
*pde = (1ULL << 19) | (1ULL << 7) | 0x27;
}
static bool npt_rsvd_check(struct test *test)
{
u64 *pde = npt_get_pde((u64) null_test);
*pde = save_pde;
return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
&& (test->vmcb->control.exit_info_1 == 0x10000001dULL);
}
static void npt_rw_prepare(struct test *test)
{
u64 *pte;
vmcb_ident(test->vmcb);
pte = npt_get_pte(0x80000);
*pte &= ~(1ULL << 1);
}
static void npt_rw_test(struct test *test)
{
u64 *data = (void*)(0x80000);
*data = 0;
}
static bool npt_rw_check(struct test *test)
{
u64 *pte = npt_get_pte(0x80000);
*pte |= (1ULL << 1);
return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
&& (test->vmcb->control.exit_info_1 == 0x100000007ULL);
}
static void npt_rw_pfwalk_prepare(struct test *test)
{
u64 *pte;
vmcb_ident(test->vmcb);
pte = npt_get_pte(read_cr3());
*pte &= ~(1ULL << 1);
}
static bool npt_rw_pfwalk_check(struct test *test)
{
u64 *pte = npt_get_pte(read_cr3());
*pte |= (1ULL << 1);
return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
&& (test->vmcb->control.exit_info_1 == 0x200000006ULL)
&& (test->vmcb->control.exit_info_2 == read_cr3());
}
static void npt_rsvd_pfwalk_prepare(struct test *test)
{
vmcb_ident(test->vmcb);
pdpe[0] |= (1ULL << 8);
}
static bool npt_rsvd_pfwalk_check(struct test *test)
{
pdpe[0] &= ~(1ULL << 8);
return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
&& (test->vmcb->control.exit_info_1 == 0x200000006ULL);
}
static void npt_l1mmio_prepare(struct test *test)
{
vmcb_ident(test->vmcb);
}
u32 nested_apic_version1;
u32 nested_apic_version2;
static void npt_l1mmio_test(struct test *test)
{
volatile u32 *data = (volatile void*)(0xfee00030UL);
nested_apic_version1 = *data;
nested_apic_version2 = *data;
}
static bool npt_l1mmio_check(struct test *test)
{
volatile u32 *data = (volatile void*)(0xfee00030);
u32 lvr = *data;
return nested_apic_version1 == lvr && nested_apic_version2 == lvr;
}
static void npt_rw_l1mmio_prepare(struct test *test)
{
u64 *pte;
vmcb_ident(test->vmcb);
pte = npt_get_pte(0xfee00080);
*pte &= ~(1ULL << 1);
}
static void npt_rw_l1mmio_test(struct test *test)
{
volatile u32 *data = (volatile void*)(0xfee00080);
*data = *data;
}
static bool npt_rw_l1mmio_check(struct test *test)
{
u64 *pte = npt_get_pte(0xfee00080);
*pte |= (1ULL << 1);
return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
&& (test->vmcb->control.exit_info_1 == 0x100000007ULL);
}
static void latency_prepare(struct test *test)
{
default_prepare(test);
runs = LATENCY_RUNS;
latvmrun_min = latvmexit_min = -1ULL;
latvmrun_max = latvmexit_max = 0;
vmrun_sum = vmexit_sum = 0;
}
static void latency_test(struct test *test)
{
u64 cycles;
start:
tsc_end = rdtsc();
cycles = tsc_end - tsc_start;
if (cycles > latvmrun_max)
latvmrun_max = cycles;
if (cycles < latvmrun_min)
latvmrun_min = cycles;
vmrun_sum += cycles;
tsc_start = rdtsc();
asm volatile ("vmmcall" : : : "memory");
goto start;
}
static bool latency_finished(struct test *test)
{
u64 cycles;
tsc_end = rdtsc();
cycles = tsc_end - tsc_start;
if (cycles > latvmexit_max)
latvmexit_max = cycles;
if (cycles < latvmexit_min)
latvmexit_min = cycles;
vmexit_sum += cycles;
test->vmcb->save.rip += 3;
runs -= 1;
return runs == 0;
}
static bool latency_check(struct test *test)
{
printf(" Latency VMRUN : max: %ld min: %ld avg: %ld\n", latvmrun_max,
latvmrun_min, vmrun_sum / LATENCY_RUNS);
printf(" Latency VMEXIT: max: %ld min: %ld avg: %ld\n", latvmexit_max,
latvmexit_min, vmexit_sum / LATENCY_RUNS);
return true;
}
static void lat_svm_insn_prepare(struct test *test)
{
default_prepare(test);
runs = LATENCY_RUNS;
latvmload_min = latvmsave_min = latstgi_min = latclgi_min = -1ULL;
latvmload_max = latvmsave_max = latstgi_max = latclgi_max = 0;
vmload_sum = vmsave_sum = stgi_sum = clgi_sum;
}
static bool lat_svm_insn_finished(struct test *test)
{
u64 vmcb_phys = virt_to_phys(test->vmcb);
u64 cycles;
for ( ; runs != 0; runs--) {
tsc_start = rdtsc();
asm volatile("vmload\n\t" : : "a"(vmcb_phys) : "memory");
cycles = rdtsc() - tsc_start;
if (cycles > latvmload_max)
latvmload_max = cycles;
if (cycles < latvmload_min)
latvmload_min = cycles;
vmload_sum += cycles;
tsc_start = rdtsc();
asm volatile("vmsave\n\t" : : "a"(vmcb_phys) : "memory");
cycles = rdtsc() - tsc_start;
if (cycles > latvmsave_max)
latvmsave_max = cycles;
if (cycles < latvmsave_min)
latvmsave_min = cycles;
vmsave_sum += cycles;
tsc_start = rdtsc();
asm volatile("stgi\n\t");
cycles = rdtsc() - tsc_start;
if (cycles > latstgi_max)
latstgi_max = cycles;
if (cycles < latstgi_min)
latstgi_min = cycles;
stgi_sum += cycles;
tsc_start = rdtsc();
asm volatile("clgi\n\t");
cycles = rdtsc() - tsc_start;
if (cycles > latclgi_max)
latclgi_max = cycles;
if (cycles < latclgi_min)
latclgi_min = cycles;
clgi_sum += cycles;
}
return true;
}
static bool lat_svm_insn_check(struct test *test)
{
printf(" Latency VMLOAD: max: %ld min: %ld avg: %ld\n", latvmload_max,
latvmload_min, vmload_sum / LATENCY_RUNS);
printf(" Latency VMSAVE: max: %ld min: %ld avg: %ld\n", latvmsave_max,
latvmsave_min, vmsave_sum / LATENCY_RUNS);
printf(" Latency STGI: max: %ld min: %ld avg: %ld\n", latstgi_max,
latstgi_min, stgi_sum / LATENCY_RUNS);
printf(" Latency CLGI: max: %ld min: %ld avg: %ld\n", latclgi_max,
latclgi_min, clgi_sum / LATENCY_RUNS);
return true;
}
static struct test tests[] = {
{ "null", default_supported, default_prepare, null_test,
default_finished, null_check },
{ "vmrun", default_supported, default_prepare, test_vmrun,
default_finished, check_vmrun },
{ "ioio", default_supported, prepare_ioio, test_ioio,
ioio_finished, check_ioio },
{ "vmrun intercept check", default_supported, prepare_no_vmrun_int,
null_test, default_finished, check_no_vmrun_int },
{ "cr3 read intercept", default_supported, prepare_cr3_intercept,
test_cr3_intercept, default_finished, check_cr3_intercept },
{ "cr3 read nointercept", default_supported, default_prepare,
test_cr3_intercept, default_finished, check_cr3_nointercept },
{ "cr3 read intercept emulate", smp_supported,
prepare_cr3_intercept_bypass, test_cr3_intercept_bypass,
default_finished, check_cr3_intercept },
{ "next_rip", next_rip_supported, prepare_next_rip, test_next_rip,
default_finished, check_next_rip },
{ "mode_switch", default_supported, prepare_mode_switch, test_mode_switch,
mode_switch_finished, check_mode_switch },
{ "asid_zero", default_supported, prepare_asid_zero, test_asid_zero,
default_finished, check_asid_zero },
{ "sel_cr0_bug", default_supported, sel_cr0_bug_prepare, sel_cr0_bug_test,
sel_cr0_bug_finished, sel_cr0_bug_check },
{ "npt_nx", npt_supported, npt_nx_prepare, null_test,
default_finished, npt_nx_check },
{ "npt_us", npt_supported, npt_us_prepare, npt_us_test,
default_finished, npt_us_check },
{ "npt_rsvd", npt_supported, npt_rsvd_prepare, null_test,
default_finished, npt_rsvd_check },
{ "npt_rw", npt_supported, npt_rw_prepare, npt_rw_test,
default_finished, npt_rw_check },
{ "npt_rsvd_pfwalk", npt_supported, npt_rsvd_pfwalk_prepare, null_test,
default_finished, npt_rsvd_pfwalk_check },
{ "npt_rw_pfwalk", npt_supported, npt_rw_pfwalk_prepare, null_test,
default_finished, npt_rw_pfwalk_check },
{ "npt_l1mmio", npt_supported, npt_l1mmio_prepare, npt_l1mmio_test,
default_finished, npt_l1mmio_check },
{ "npt_rw_l1mmio", npt_supported, npt_rw_l1mmio_prepare, npt_rw_l1mmio_test,
default_finished, npt_rw_l1mmio_check },
{ "latency_run_exit", default_supported, latency_prepare, latency_test,
latency_finished, latency_check },
{ "latency_svm_insn", default_supported, lat_svm_insn_prepare, null_test,
lat_svm_insn_finished, lat_svm_insn_check },
};
int main(int ac, char **av)
{
int i, nr;
struct vmcb *vmcb;
setup_vm();
smp_init();
if (!(cpuid(0x80000001).c & 4)) {
printf("SVM not availble\n");
return report_summary();
}
setup_svm();
vmcb = alloc_page();
nr = ARRAY_SIZE(tests);
for (i = 0; i < nr; ++i) {
if (!tests[i].supported())
continue;
test_run(&tests[i], vmcb);
}
return report_summary();
}