| /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
| * |
| * LibTomCrypt is a library that provides various cryptographic |
| * algorithms in a highly modular and flexible manner. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://libtom.org |
| */ |
| #include <stdlib.h> |
| #include <string.h> |
| #include "cutils.h" |
| #include "sha256.h" |
| |
| #define LOAD32H(a, b) a = get_be32(b) |
| #define STORE32H(a, b) put_be32(b, a) |
| #define STORE64H(a, b) put_be64(b, a) |
| #define RORc(x, y) ( ((((uint32_t)(x)&0xFFFFFFFFUL)>>(uint32_t)((y)&31)) | ((uint32_t)(x)<<(uint32_t)(32-((y)&31)))) & 0xFFFFFFFFUL) |
| |
| #if defined(CONFIG_EMBUE) |
| #define LTC_SMALL_CODE |
| #endif |
| |
| /** |
| @file sha256.c |
| LTC_SHA256 by Tom St Denis |
| */ |
| |
| #ifdef LTC_SMALL_CODE |
| /* the K array */ |
| static const uint32_t K[64] = { |
| 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, |
| 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, |
| 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, |
| 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, |
| 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, |
| 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, |
| 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, |
| 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, |
| 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, |
| 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| }; |
| #endif |
| |
| /* Various logical functions */ |
| #define Ch(x,y,z) (z ^ (x & (y ^ z))) |
| #define Maj(x,y,z) (((x | y) & z) | (x & y)) |
| #define S(x, n) RORc((x),(n)) |
| #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) |
| #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) |
| #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) |
| #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) |
| #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) |
| |
| /* compress 512-bits */ |
| static void sha256_compress(SHA256_CTX *s, unsigned char *buf) |
| { |
| uint32_t S[8], W[64], t0, t1; |
| #ifdef LTC_SMALL_CODE |
| uint32_t t; |
| #endif |
| int i; |
| |
| /* copy state into S */ |
| for (i = 0; i < 8; i++) { |
| S[i] = s->state[i]; |
| } |
| |
| /* copy the state into 512-bits into W[0..15] */ |
| for (i = 0; i < 16; i++) { |
| LOAD32H(W[i], buf + (4*i)); |
| } |
| |
| /* fill W[16..63] */ |
| for (i = 16; i < 64; i++) { |
| W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; |
| } |
| |
| /* Compress */ |
| #ifdef LTC_SMALL_CODE |
| #define RND(a,b,c,d,e,f,g,h,i) \ |
| t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ |
| t1 = Sigma0(a) + Maj(a, b, c); \ |
| d += t0; \ |
| h = t0 + t1; |
| |
| for (i = 0; i < 64; ++i) { |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); |
| t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; |
| S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; |
| } |
| #else |
| #define RND(a,b,c,d,e,f,g,h,i,ki) \ |
| t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \ |
| t1 = Sigma0(a) + Maj(a, b, c); \ |
| d += t0; \ |
| h = t0 + t1; |
| |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5); |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174); |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da); |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967); |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85); |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070); |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3); |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee); |
| RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f); |
| RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814); |
| RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208); |
| RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa); |
| RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb); |
| RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7); |
| RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2); |
| |
| #undef RND |
| |
| #endif |
| |
| /* feedback */ |
| for (i = 0; i < 8; i++) { |
| s->state[i] = s->state[i] + S[i]; |
| } |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| static int sha256_compress(hash_state * md, unsigned char *buf) |
| { |
| int err; |
| err = _sha256_compress(md, buf); |
| burn_stack(sizeof(uint32_t) * 74); |
| return err; |
| } |
| #endif |
| |
| /** |
| Initialize the hash state |
| @param md The hash state you wish to initialize |
| @return CRYPT_OK if successful |
| */ |
| void SHA256_Init(SHA256_CTX *s) |
| { |
| s->curlen = 0; |
| s->length = 0; |
| s->state[0] = 0x6A09E667UL; |
| s->state[1] = 0xBB67AE85UL; |
| s->state[2] = 0x3C6EF372UL; |
| s->state[3] = 0xA54FF53AUL; |
| s->state[4] = 0x510E527FUL; |
| s->state[5] = 0x9B05688CUL; |
| s->state[6] = 0x1F83D9ABUL; |
| s->state[7] = 0x5BE0CD19UL; |
| } |
| |
| void SHA256_Update(SHA256_CTX *s, const uint8_t *in, unsigned long inlen) |
| { |
| unsigned long n; |
| |
| if (s->curlen > sizeof(s->buf)) { |
| abort(); |
| } |
| if ((s->length + inlen) < s->length) { |
| abort(); |
| } |
| while (inlen > 0) { |
| if (s->curlen == 0 && inlen >= 64) { |
| sha256_compress(s, (unsigned char *)in); |
| s->length += 64 * 8; |
| in += 64; |
| inlen -= 64; |
| } else { |
| n = min_int(inlen, 64 - s->curlen); |
| memcpy(s->buf + s->curlen, in, (size_t)n); |
| s->curlen += n; |
| in += n; |
| inlen -= n; |
| if (s->curlen == 64) { |
| sha256_compress(s, s->buf); |
| s->length += 8*64; |
| s->curlen = 0; |
| } |
| } |
| } } |
| |
| /** |
| Terminate the hash to get the digest |
| @param md The hash state |
| @param out [out] The destination of the hash (32 bytes) |
| @return CRYPT_OK if successful |
| */ |
| void SHA256_Final(uint8_t *out, SHA256_CTX *s) |
| { |
| int i; |
| |
| if (s->curlen >= sizeof(s->buf)) { |
| abort(); |
| } |
| |
| |
| /* increase the length of the message */ |
| s->length += s->curlen * 8; |
| |
| /* append the '1' bit */ |
| s->buf[s->curlen++] = (unsigned char)0x80; |
| |
| /* if the length is currently above 56 bytes we append zeros |
| * then compress. Then we can fall back to padding zeros and length |
| * encoding like normal. |
| */ |
| if (s->curlen > 56) { |
| while (s->curlen < 64) { |
| s->buf[s->curlen++] = (unsigned char)0; |
| } |
| sha256_compress(s, s->buf); |
| s->curlen = 0; |
| } |
| |
| /* pad upto 56 bytes of zeroes */ |
| while (s->curlen < 56) { |
| s->buf[s->curlen++] = (unsigned char)0; |
| } |
| |
| /* store length */ |
| STORE64H(s->length, s->buf+56); |
| sha256_compress(s, s->buf); |
| |
| /* copy output */ |
| for (i = 0; i < 8; i++) { |
| STORE32H(s->state[i], out+(4*i)); |
| } |
| #ifdef LTC_CLEAN_STACK |
| zeromem(md, sizeof(hash_state)); |
| #endif |
| } |
| |
| void SHA256(const uint8_t *buf, int buf_len, uint8_t *out) |
| { |
| SHA256_CTX ctx; |
| |
| SHA256_Init(&ctx); |
| SHA256_Update(&ctx, buf, buf_len); |
| SHA256_Final(out, &ctx); |
| } |
| |
| #if 0 |
| /** |
| Self-test the hash |
| @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled |
| */ |
| int sha256_test(void) |
| { |
| #ifndef LTC_TEST |
| return CRYPT_NOP; |
| #else |
| static const struct { |
| char *msg; |
| unsigned char hash[32]; |
| } tests[] = { |
| { "abc", |
| { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, |
| 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, |
| 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, |
| 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad } |
| }, |
| { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
| { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, |
| 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, |
| 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, |
| 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 } |
| }, |
| }; |
| |
| int i; |
| unsigned char tmp[32]; |
| hash_state md; |
| |
| for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { |
| sha256_init(&md); |
| sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg)); |
| sha256_done(&md, tmp); |
| if (XMEMCMP(tmp, tests[i].hash, 32) != 0) { |
| return CRYPT_FAIL_TESTVECTOR; |
| } |
| } |
| return CRYPT_OK; |
| #endif |
| } |
| |
| #endif |