blob: 804d751ddddf7f8ca1b76a3039c291235be854ff [file] [log] [blame] [raw]
/*
* RISCV machine
*
* Copyright (c) 2016-2017 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <inttypes.h>
#include <assert.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <time.h>
#include "cutils.h"
#include "iomem.h"
#include "riscv_cpu.h"
#include "virtio.h"
#include "machine.h"
/* RISCV machine */
typedef struct RISCVMachine {
VirtMachine common;
PhysMemoryMap *mem_map;
RISCVCPUState *cpu_state;
uint64_t ram_size;
/* RTC */
BOOL rtc_real_time;
uint64_t rtc_start_time;
uint64_t timecmp;
/* PLIC */
uint32_t plic_pending_irq, plic_served_irq;
IRQSignal plic_irq[32]; /* IRQ 0 is not used */
/* HTIF */
uint64_t htif_tohost, htif_fromhost;
VIRTIODevice *keyboard_dev;
VIRTIODevice *mouse_dev;
int virtio_count;
} RISCVMachine;
#define LOW_RAM_SIZE 0x00010000 /* 64KB */
#define RAM_BASE_ADDR 0x80000000
#define CLINT_BASE_ADDR 0x02000000
#define CLINT_SIZE 0x000c0000
#define HTIF_BASE_ADDR 0x40008000
#define IDE_BASE_ADDR 0x40009000
#define VIRTIO_BASE_ADDR 0x40010000
#define VIRTIO_SIZE 0x1000
#define VIRTIO_IRQ 1
#define PLIC_BASE_ADDR 0x40100000
#define PLIC_SIZE 0x00400000
#define FRAMEBUFFER_BASE_ADDR 0x41000000
#define RTC_FREQ 10000000
#define RTC_FREQ_DIV 16 /* arbitrary, relative to CPU freq to have a
10 MHz frequency */
static uint64_t rtc_get_real_time(RISCVMachine *s)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (uint64_t)ts.tv_sec * RTC_FREQ +
(ts.tv_nsec / (1000000000 / RTC_FREQ));
}
static uint64_t rtc_get_time(RISCVMachine *m)
{
uint64_t val;
if (m->rtc_real_time) {
val = rtc_get_real_time(m) - m->rtc_start_time;
} else {
val = riscv_cpu_get_cycles(m->cpu_state) / RTC_FREQ_DIV;
}
// printf("rtc_time=%" PRId64 "\n", val);
return val;
}
static uint32_t htif_read(void *opaque, uint32_t offset,
int size_log2)
{
RISCVMachine *s = opaque;
uint32_t val;
assert(size_log2 == 2);
switch(offset) {
case 0:
val = s->htif_tohost;
break;
case 4:
val = s->htif_tohost >> 32;
break;
case 8:
val = s->htif_fromhost;
break;
case 12:
val = s->htif_fromhost >> 32;
break;
default:
val = 0;
break;
}
return val;
}
static void htif_handle_cmd(RISCVMachine *s)
{
uint32_t device, cmd;
device = s->htif_tohost >> 56;
cmd = (s->htif_tohost >> 48) & 0xff;
if (s->htif_tohost == 1) {
/* shuthost */
printf("\nPower off.\n");
exit(0);
} else if (device == 1 && cmd == 1) {
uint8_t buf[1];
buf[0] = s->htif_tohost & 0xff;
s->common.console->write_data(s->common.console->opaque, buf, 1);
s->htif_tohost = 0;
s->htif_fromhost = ((uint64_t)device << 56) | ((uint64_t)cmd << 48);
} else if (device == 1 && cmd == 0) {
/* request keyboard interrupt */
s->htif_tohost = 0;
} else {
printf("HTIF: unsupported tohost=0x%016" PRIx64 "\n", s->htif_tohost);
}
}
static void htif_write(void *opaque, uint32_t offset, uint32_t val,
int size_log2)
{
RISCVMachine *s = opaque;
assert(size_log2 == 2);
switch(offset) {
case 0:
s->htif_tohost = (s->htif_tohost & ~0xffffffff) | val;
break;
case 4:
s->htif_tohost = (s->htif_tohost & 0xffffffff) | ((uint64_t)val << 32);
htif_handle_cmd(s);
break;
case 8:
s->htif_fromhost = (s->htif_fromhost & ~0xffffffff) | val;
break;
case 12:
s->htif_fromhost = (s->htif_fromhost & 0xffffffff) |
(uint64_t)val << 32;
break;
default:
break;
}
}
#if 0
static void htif_poll(RISCVMachine *s)
{
uint8_t buf[1];
int ret;
if (s->htif_fromhost == 0) {
ret = s->console->read_data(s->console->opaque, buf, 1);
if (ret == 1) {
s->htif_fromhost = ((uint64_t)1 << 56) | ((uint64_t)0 << 48) |
buf[0];
}
}
}
#endif
static uint32_t clint_read(void *opaque, uint32_t offset, int size_log2)
{
RISCVMachine *m = opaque;
uint32_t val;
assert(size_log2 == 2);
switch(offset) {
case 0xbff8:
val = rtc_get_time(m);
break;
case 0xbffc:
val = rtc_get_time(m) >> 32;
break;
case 0x4000:
val = m->timecmp;
break;
case 0x4004:
val = m->timecmp >> 32;
break;
default:
val = 0;
break;
}
return val;
}
static void clint_write(void *opaque, uint32_t offset, uint32_t val,
int size_log2)
{
RISCVMachine *m = opaque;
assert(size_log2 == 2);
switch(offset) {
case 0x4000:
m->timecmp = (m->timecmp & ~0xffffffff) | val;
riscv_cpu_reset_mip(m->cpu_state, MIP_MTIP);
break;
case 0x4004:
m->timecmp = (m->timecmp & 0xffffffff) | ((uint64_t)val << 32);
riscv_cpu_reset_mip(m->cpu_state, MIP_MTIP);
break;
default:
break;
}
}
static void plic_update_mip(RISCVMachine *s)
{
RISCVCPUState *cpu = s->cpu_state;
uint32_t mask;
mask = s->plic_pending_irq & ~s->plic_served_irq;
if (mask) {
riscv_cpu_set_mip(cpu, MIP_MEIP | MIP_SEIP);
} else {
riscv_cpu_reset_mip(cpu, MIP_MEIP | MIP_SEIP);
}
}
#define PLIC_HART_BASE 0x200000
#define PLIC_HART_SIZE 0x1000
static uint32_t plic_read(void *opaque, uint32_t offset, int size_log2)
{
RISCVMachine *s = opaque;
uint32_t val, mask;
int i;
assert(size_log2 == 2);
switch(offset) {
case PLIC_HART_BASE:
val = 0;
break;
case PLIC_HART_BASE + 4:
mask = s->plic_pending_irq & ~s->plic_served_irq;
if (mask != 0) {
i = ctz32(mask);
s->plic_served_irq |= 1 << i;
plic_update_mip(s);
val = i + 1;
} else {
val = 0;
}
break;
default:
val = 0;
break;
}
return val;
}
static void plic_write(void *opaque, uint32_t offset, uint32_t val,
int size_log2)
{
RISCVMachine *s = opaque;
assert(size_log2 == 2);
switch(offset) {
case PLIC_HART_BASE + 4:
val--;
if (val < 32) {
s->plic_served_irq &= ~(1 << val);
plic_update_mip(s);
}
break;
default:
break;
}
}
static void plic_set_irq(void *opaque, int irq_num, int state)
{
RISCVMachine *s = opaque;
uint32_t mask;
mask = 1 << (irq_num - 1);
if (state)
s->plic_pending_irq |= mask;
else
s->plic_pending_irq &= ~mask;
plic_update_mip(s);
}
static uint8_t *get_ram_ptr(RISCVMachine *s, uint64_t paddr)
{
PhysMemoryRange *pr = get_phys_mem_range(s->mem_map, paddr);
if (!pr || !pr->is_ram)
return NULL;
return pr->phys_mem + (uintptr_t)(paddr - pr->addr);
}
/* FDT machine description */
#define FDT_MAGIC 0xd00dfeed
#define FDT_VERSION 17
struct fdt_header {
uint32_t magic;
uint32_t totalsize;
uint32_t off_dt_struct;
uint32_t off_dt_strings;
uint32_t off_mem_rsvmap;
uint32_t version;
uint32_t last_comp_version; /* <= 17 */
uint32_t boot_cpuid_phys;
uint32_t size_dt_strings;
uint32_t size_dt_struct;
};
struct fdt_reserve_entry {
uint64_t address;
uint64_t size;
};
#define FDT_BEGIN_NODE 1
#define FDT_END_NODE 2
#define FDT_PROP 3
#define FDT_NOP 4
#define FDT_END 9
typedef struct {
uint32_t *tab;
int tab_len;
int tab_size;
int open_node_count;
char *string_table;
int string_table_len;
int string_table_size;
} FDTState;
static FDTState *fdt_init(void)
{
FDTState *s;
s = mallocz(sizeof(*s));
return s;
}
static void fdt_alloc_len(FDTState *s, int len)
{
int new_size;
if (unlikely(len > s->tab_size)) {
new_size = max_int(len, s->tab_size * 3 / 2);
s->tab = realloc(s->tab, new_size * sizeof(uint32_t));
s->tab_size = new_size;
}
}
static void fdt_put32(FDTState *s, int v)
{
fdt_alloc_len(s, s->tab_len + 1);
s->tab[s->tab_len++] = cpu_to_be32(v);
}
/* the data is zero padded */
static void fdt_put_data(FDTState *s, const uint8_t *data, int len)
{
int len1;
len1 = (len + 3) / 4;
fdt_alloc_len(s, s->tab_len + len1);
memcpy(s->tab + s->tab_len, data, len);
memset((uint8_t *)(s->tab + s->tab_len) + len, 0, -len & 3);
s->tab_len += len1;
}
static void fdt_begin_node(FDTState *s, const char *name)
{
fdt_put32(s, FDT_BEGIN_NODE);
fdt_put_data(s, (uint8_t *)name, strlen(name) + 1);
s->open_node_count++;
}
static void fdt_begin_node_num(FDTState *s, const char *name, uint64_t n)
{
char buf[256];
snprintf(buf, sizeof(buf), "%s@%" PRIx64, name, n);
fdt_begin_node(s, buf);
}
static void fdt_end_node(FDTState *s)
{
fdt_put32(s, FDT_END_NODE);
s->open_node_count--;
}
static int fdt_get_string_offset(FDTState *s, const char *name)
{
int pos, new_size, name_size, new_len;
pos = 0;
while (pos < s->string_table_len) {
if (!strcmp(s->string_table + pos, name))
return pos;
pos += strlen(s->string_table + pos) + 1;
}
/* add a new string */
name_size = strlen(name) + 1;
new_len = s->string_table_len + name_size;
if (new_len > s->string_table_size) {
new_size = max_int(new_len, s->string_table_size * 3 / 2);
s->string_table = realloc(s->string_table, new_size);
s->string_table_size = new_size;
}
pos = s->string_table_len;
memcpy(s->string_table + pos, name, name_size);
s->string_table_len = new_len;
return pos;
}
static void fdt_prop(FDTState *s, const char *prop_name,
const void *data, int data_len)
{
fdt_put32(s, FDT_PROP);
fdt_put32(s, data_len);
fdt_put32(s, fdt_get_string_offset(s, prop_name));
fdt_put_data(s, data, data_len);
}
static void fdt_prop_tab_u32(FDTState *s, const char *prop_name,
uint32_t *tab, int tab_len)
{
int i;
fdt_put32(s, FDT_PROP);
fdt_put32(s, tab_len * sizeof(uint32_t));
fdt_put32(s, fdt_get_string_offset(s, prop_name));
for(i = 0; i < tab_len; i++)
fdt_put32(s, tab[i]);
}
static void fdt_prop_u32(FDTState *s, const char *prop_name, uint32_t val)
{
fdt_prop_tab_u32(s, prop_name, &val, 1);
}
static void fdt_prop_tab_u64_2(FDTState *s, const char *prop_name,
uint64_t v0, uint64_t v1)
{
uint32_t tab[4];
tab[0] = v0 >> 32;
tab[1] = v0;
tab[2] = v1 >> 32;
tab[3] = v1;
fdt_prop_tab_u32(s, prop_name, tab, 4);
}
static void fdt_prop_str(FDTState *s, const char *prop_name,
const char *str)
{
fdt_prop(s, prop_name, str, strlen(str) + 1);
}
/* NULL terminated string list */
static void fdt_prop_tab_str(FDTState *s, const char *prop_name,
...)
{
va_list ap;
int size, str_size;
char *ptr, *tab;
va_start(ap, prop_name);
size = 0;
for(;;) {
ptr = va_arg(ap, char *);
if (!ptr)
break;
str_size = strlen(ptr) + 1;
size += str_size;
}
va_end(ap);
tab = malloc(size);
va_start(ap, prop_name);
size = 0;
for(;;) {
ptr = va_arg(ap, char *);
if (!ptr)
break;
str_size = strlen(ptr) + 1;
memcpy(tab + size, ptr, str_size);
size += str_size;
}
va_end(ap);
fdt_prop(s, prop_name, tab, size);
free(tab);
}
/* write the FDT to 'dst1'. return the FDT size in bytes */
int fdt_output(FDTState *s, uint8_t *dst)
{
struct fdt_header *h;
struct fdt_reserve_entry *re;
int dt_struct_size;
int dt_strings_size;
int pos;
assert(s->open_node_count == 0);
fdt_put32(s, FDT_END);
dt_struct_size = s->tab_len * sizeof(uint32_t);
dt_strings_size = s->string_table_len;
h = (struct fdt_header *)dst;
h->magic = cpu_to_be32(FDT_MAGIC);
h->version = cpu_to_be32(FDT_VERSION);
h->last_comp_version = cpu_to_be32(16);
h->boot_cpuid_phys = cpu_to_be32(0);
h->size_dt_strings = cpu_to_be32(dt_strings_size);
h->size_dt_struct = cpu_to_be32(dt_struct_size);
pos = sizeof(struct fdt_header);
h->off_dt_struct = cpu_to_be32(pos);
memcpy(dst + pos, s->tab, dt_struct_size);
pos += dt_struct_size;
/* align to 8 */
while ((pos & 7) != 0) {
dst[pos++] = 0;
}
h->off_mem_rsvmap = cpu_to_be32(pos);
re = (struct fdt_reserve_entry *)(dst + pos);
re->address = 0; /* no reserved entry */
re->size = 0;
pos += sizeof(struct fdt_reserve_entry);
h->off_dt_strings = cpu_to_be32(pos);
memcpy(dst + pos, s->string_table, dt_strings_size);
pos += dt_strings_size;
/* align to 8, just in case */
while ((pos & 7) != 0) {
dst[pos++] = 0;
}
h->totalsize = cpu_to_be32(pos);
return pos;
}
void fdt_end(FDTState *s)
{
free(s->tab);
free(s->string_table);
free(s);
}
static int riscv_build_fdt(RISCVMachine *m, uint8_t *dst, const char *cmd_line)
{
FDTState *s;
int size, max_xlen, i, cur_phandle, intc_phandle, plic_phandle;
char isa_string[128], *q;
uint32_t misa;
uint32_t tab[4];
FBDevice *fb_dev;
s = fdt_init();
cur_phandle = 1;
fdt_begin_node(s, "");
fdt_prop_u32(s, "#address-cells", 2);
fdt_prop_u32(s, "#size-cells", 2);
fdt_prop_str(s, "compatible", "ucbbar,riscvemu-bar_dev");
fdt_prop_str(s, "model", "ucbbar,riscvemu-bare");
/* CPU list */
fdt_begin_node(s, "cpus");
fdt_prop_u32(s, "#address-cells", 1);
fdt_prop_u32(s, "#size-cells", 0);
fdt_prop_u32(s, "timebase-frequency", RTC_FREQ);
/* cpu */
fdt_begin_node_num(s, "cpu", 0);
fdt_prop_str(s, "device_type", "cpu");
fdt_prop_u32(s, "reg", 0);
fdt_prop_str(s, "status", "okay");
fdt_prop_str(s, "compatible", "riscv");
max_xlen = riscv_cpu_get_max_xlen();
misa = riscv_cpu_get_misa(m->cpu_state);
q = isa_string;
q += snprintf(isa_string, sizeof(isa_string), "rv%d", max_xlen);
for(i = 0; i < 26; i++) {
if (misa & (1 << i))
*q++ = 'a' + i;
}
*q = '\0';
fdt_prop_str(s, "riscv,isa", isa_string);
fdt_prop_str(s, "mmu-type", max_xlen <= 32 ? "sv32" : "sv48");
fdt_prop_u32(s, "clock-frequency", 2000000000);
fdt_begin_node(s, "interrupt-controller");
fdt_prop_u32(s, "#interrupt-cells", 1);
fdt_prop(s, "interrupt-controller", NULL, 0);
fdt_prop_str(s, "compatible", "riscv,cpu-intc");
intc_phandle = cur_phandle++;
fdt_prop_u32(s, "phandle", intc_phandle);
fdt_end_node(s); /* interrupt-controller */
fdt_end_node(s); /* cpu */
fdt_end_node(s); /* cpus */
fdt_begin_node_num(s, "memory", RAM_BASE_ADDR);
fdt_prop_str(s, "device_type", "memory");
tab[0] = (uint64_t)RAM_BASE_ADDR >> 32;
tab[1] = RAM_BASE_ADDR;
tab[2] = m->ram_size >> 32;
tab[3] = m->ram_size;
fdt_prop_tab_u32(s, "reg", tab, 4);
fdt_end_node(s); /* memory */
fdt_begin_node(s, "soc");
fdt_prop_u32(s, "#address-cells", 2);
fdt_prop_u32(s, "#size-cells", 2);
fdt_prop_tab_str(s, "compatible",
"ucbbar,riscvemu-bar-soc", "simple-bus", NULL);
fdt_prop(s, "ranges", NULL, 0);
fdt_begin_node_num(s, "clint", CLINT_BASE_ADDR);
fdt_prop_str(s, "compatible", "riscv,clint0");
tab[0] = intc_phandle;
tab[1] = 3; /* M IPI irq */
tab[2] = intc_phandle;
tab[3] = 7; /* M timer irq */
fdt_prop_tab_u32(s, "interrupts-extended", tab, 4);
fdt_prop_tab_u64_2(s, "reg", CLINT_BASE_ADDR, CLINT_SIZE);
fdt_end_node(s); /* clint */
fdt_begin_node_num(s, "plic", PLIC_BASE_ADDR);
fdt_prop_u32(s, "#interrupt-cells", 1);
fdt_prop(s, "interrupt-controller", NULL, 0);
fdt_prop_str(s, "compatible", "riscv,plic0");
fdt_prop_u32(s, "riscv,ndev", 31);
fdt_prop_tab_u64_2(s, "reg", PLIC_BASE_ADDR, PLIC_SIZE);
tab[0] = intc_phandle;
tab[1] = 9; /* S ext irq */
tab[2] = intc_phandle;
tab[3] = 11; /* M ext irq */
fdt_prop_tab_u32(s, "interrupts-extended", tab, 4);
plic_phandle = cur_phandle++;
fdt_prop_u32(s, "phandle", plic_phandle);
fdt_end_node(s); /* plic */
for(i = 0; i < m->virtio_count; i++) {
fdt_begin_node_num(s, "virtio", VIRTIO_BASE_ADDR + i * VIRTIO_SIZE);
fdt_prop_str(s, "compatible", "virtio,mmio");
fdt_prop_tab_u64_2(s, "reg", VIRTIO_BASE_ADDR + i * VIRTIO_SIZE,
VIRTIO_SIZE);
tab[0] = plic_phandle;
tab[1] = VIRTIO_IRQ + i;
fdt_prop_tab_u32(s, "interrupts-extended", tab, 2);
fdt_end_node(s); /* virtio */
}
fb_dev = m->common.fb_dev;
if (fb_dev) {
fdt_begin_node_num(s, "framebuffer", FRAMEBUFFER_BASE_ADDR);
fdt_prop_str(s, "compatible", "simple-framebuffer");
fdt_prop_tab_u64_2(s, "reg", FRAMEBUFFER_BASE_ADDR, fb_dev->fb_size);
fdt_prop_u32(s, "width", fb_dev->width);
fdt_prop_u32(s, "height", fb_dev->height);
fdt_prop_u32(s, "stride", fb_dev->stride);
fdt_prop_str(s, "format", "a8r8g8b8");
fdt_end_node(s); /* framebuffer */
}
fdt_end_node(s); /* soc */
fdt_begin_node(s, "chosen");
fdt_prop_str(s, "bootargs", cmd_line ? cmd_line : "");
fdt_end_node(s); /* chosen */
fdt_end_node(s); /* / */
size = fdt_output(s, dst);
#if 0
{
FILE *f;
f = fopen("/tmp/riscvemu.dtb", "wb");
fwrite(dst, 1, size, f);
fclose(f);
}
#endif
fdt_end(s);
return size;
}
static void copy_kernel(RISCVMachine *s, const uint8_t *buf, int buf_len,
const char *cmd_line)
{
uint32_t fdt_addr;
uint8_t *ram_ptr;
uint32_t *q;
if (buf_len > s->ram_size) {
vm_error("Kernel too big\n");
exit(1);
}
ram_ptr = get_ram_ptr(s, RAM_BASE_ADDR);
memcpy(ram_ptr, buf, buf_len);
ram_ptr = get_ram_ptr(s, 0);
fdt_addr = 0x1000 + 8 * 8;
riscv_build_fdt(s, ram_ptr + fdt_addr, cmd_line);
/* jump_addr = 0x80000000 */
q = (uint32_t *)(ram_ptr + 0x1000);
q[0] = 0x297 + 0x80000000 - 0x1000; /* auipc t0, jump_addr */
q[1] = 0x597; /* auipc a1, dtb */
q[2] = 0x58593 + ((fdt_addr - 4) << 20); /* addi a1, a1, dtb */
q[3] = 0xf1402573; /* csrr a0, mhartid */
q[4] = 0x00028067; /* jalr zero, t0, jump_addr */
}
static void riscv_flush_tlb_write_range(void *opaque, uint8_t *ram_addr,
size_t ram_size)
{
RISCVMachine *s = opaque;
riscv_cpu_flush_tlb_write_range_ram(s->cpu_state, ram_addr, ram_size);
}
void virt_machine_set_defaults(VirtMachineParams *p)
{
memset(p, 0, sizeof(*p));
}
VirtMachine *virt_machine_init(const VirtMachineParams *p)
{
RISCVMachine *s;
VIRTIODevice *blk_dev;
int irq_num, i;
VIRTIOBusDef vbus_s, *vbus = &vbus_s;
s = mallocz(sizeof(*s));
s->ram_size = p->ram_size;
s->mem_map = phys_mem_map_init();
/* needed to handle the RAM dirty bits */
s->mem_map->opaque = s;
s->mem_map->flush_tlb_write_range = riscv_flush_tlb_write_range;
s->cpu_state = riscv_cpu_init(s->mem_map);
/* RAM */
cpu_register_ram(s->mem_map, RAM_BASE_ADDR, p->ram_size, 0);
cpu_register_ram(s->mem_map, 0x00000000, LOW_RAM_SIZE, 0);
s->rtc_real_time = p->rtc_real_time;
if (p->rtc_real_time) {
s->rtc_start_time = rtc_get_real_time(s);
}
cpu_register_device(s->mem_map, CLINT_BASE_ADDR, CLINT_SIZE, s,
clint_read, clint_write, DEVIO_SIZE32);
cpu_register_device(s->mem_map, PLIC_BASE_ADDR, PLIC_SIZE, s,
plic_read, plic_write, DEVIO_SIZE32);
for(i = 1; i < 32; i++) {
irq_init(&s->plic_irq[i], plic_set_irq, s, i);
}
cpu_register_device(s->mem_map, HTIF_BASE_ADDR, 16,
s, htif_read, htif_write, DEVIO_SIZE32);
s->common.console = p->console;
memset(vbus, 0, sizeof(*vbus));
vbus->mem_map = s->mem_map;
vbus->addr = VIRTIO_BASE_ADDR;
irq_num = VIRTIO_IRQ;
/* virtio console */
if (p->console) {
vbus->irq = &s->plic_irq[irq_num];
s->common.console_dev = virtio_console_init(vbus, p->console);
vbus->addr += VIRTIO_SIZE;
irq_num++;
s->virtio_count++;
}
/* virtio net device */
for(i = 0; i < p->eth_count; i++) {
vbus->irq = &s->plic_irq[irq_num];
virtio_net_init(vbus, p->tab_eth[i].net);
s->common.net = p->tab_eth[i].net;
vbus->addr += VIRTIO_SIZE;
irq_num++;
s->virtio_count++;
}
/* virtio block device */
for(i = 0; i < p->drive_count; i++) {
vbus->irq = &s->plic_irq[irq_num];
blk_dev = virtio_block_init(vbus, p->tab_drive[i].block_dev);
(void)blk_dev;
vbus->addr += VIRTIO_SIZE;
irq_num++;
s->virtio_count++;
}
/* virtio filesystem */
for(i = 0; i < p->fs_count; i++) {
VIRTIODevice *fs_dev;
vbus->irq = &s->plic_irq[irq_num];
fs_dev = virtio_9p_init(vbus, p->tab_fs[i].fs_dev,
p->tab_fs[i].tag);
(void)fs_dev;
// virtio_set_debug(fs_dev, VIRTIO_DEBUG_9P);
vbus->addr += VIRTIO_SIZE;
irq_num++;
s->virtio_count++;
}
if (p->display_device) {
FBDevice *fb_dev;
fb_dev = mallocz(sizeof(*fb_dev));
s->common.fb_dev = fb_dev;
if (!strcmp(p->display_device, "simplefb")) {
simplefb_init(s->mem_map,
FRAMEBUFFER_BASE_ADDR,
fb_dev,
p->width, p->height);
} else {
vm_error("unsupported display device: %s\n", p->display_device);
exit(1);
}
}
if (p->input_device) {
if (!strcmp(p->input_device, "virtio")) {
vbus->irq = &s->plic_irq[irq_num];
s->keyboard_dev = virtio_input_init(vbus,
VIRTIO_INPUT_TYPE_KEYBOARD);
vbus->addr += VIRTIO_SIZE;
irq_num++;
s->virtio_count++;
vbus->irq = &s->plic_irq[irq_num];
s->mouse_dev = virtio_input_init(vbus,
VIRTIO_INPUT_TYPE_TABLET);
vbus->addr += VIRTIO_SIZE;
irq_num++;
s->virtio_count++;
} else {
vm_error("unsupported input device: %s\n", p->input_device);
exit(1);
}
}
if (!p->files[VM_FILE_BIOS].buf) {
vm_error("No bios found");
}
copy_kernel(s, p->files[VM_FILE_BIOS].buf, p->files[VM_FILE_BIOS].len,
p->cmdline);
return (VirtMachine *)s;
}
void virt_machine_end(VirtMachine *s1)
{
RISCVMachine *s = (RISCVMachine *)s1;
/* XXX: stop all */
riscv_cpu_end(s->cpu_state);
phys_mem_map_end(s->mem_map);
free(s);
}
/* in ms */
int virt_machine_get_sleep_duration(VirtMachine *s1, int delay)
{
RISCVMachine *m = (RISCVMachine *)s1;
RISCVCPUState *s = m->cpu_state;
int64_t delay1;
/* wait for an event: the only asynchronous event is the RTC timer */
if (!(riscv_cpu_get_mip(s) & MIP_MTIP)) {
delay1 = m->timecmp - rtc_get_time(m);
if (delay1 <= 0) {
riscv_cpu_set_mip(s, MIP_MTIP);
delay = 0;
} else {
/* convert delay to ms */
delay1 = delay1 / (RTC_FREQ / 1000);
if (delay1 < delay)
delay = delay1;
}
}
if (!riscv_cpu_get_power_down(s))
delay = 0;
return delay;
}
void virt_machine_interp(VirtMachine *s1, int max_exec_cycle)
{
RISCVMachine *s = (RISCVMachine *)s1;
riscv_cpu_interp(s->cpu_state, max_exec_cycle);
}
const char *virt_machine_get_name(void)
{
switch(riscv_cpu_get_max_xlen()) {
case 32:
return "riscv32";
case 64:
return "riscv64";
case 128:
return "riscv128";
default:
abort();
}
}
void vm_send_key_event(VirtMachine *s1, BOOL is_down,
uint16_t key_code)
{
RISCVMachine *s = (RISCVMachine *)s1;
if (s->keyboard_dev) {
virtio_input_send_key_event(s->keyboard_dev, is_down, key_code);
}
}
BOOL vm_mouse_is_absolute(VirtMachine *s)
{
return TRUE;
}
void vm_send_mouse_event(VirtMachine *s1, int dx, int dy, int dz,
unsigned int buttons)
{
RISCVMachine *s = (RISCVMachine *)s1;
if (s->mouse_dev) {
virtio_input_send_mouse_event(s->mouse_dev, dx, dy, dz, buttons);
}
}