blob: 25ceb5856fece98b553dce2ac87545d083a6a357 [file] [log] [blame] [raw]
/*
* Simple PCI bus driver
*
* Copyright (c) 2017 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <assert.h>
#include <stdarg.h>
#include "cutils.h"
#include "pci.h"
//#define DEBUG_CONFIG
typedef struct {
uint32_t size; /* 0 means no mapping defined */
uint8_t type;
uint8_t enabled; /* true if mapping is enabled */
void *opaque;
PCIBarSetFunc *bar_set;
} PCIIORegion;
struct PCIDevice {
PCIBus *bus;
uint8_t devfn;
IRQSignal irq[4];
uint8_t config[256];
uint8_t next_cap_offset; /* offset of the next capability */
char *name; /* for debug only */
PCIIORegion io_regions[PCI_NUM_REGIONS];
};
struct PCIBus {
int bus_num;
PCIDevice *device[256];
PhysMemoryMap *mem_map;
PhysMemoryMap *port_map;
uint32_t irq_state[4][8]; /* one bit per device */
IRQSignal irq[4];
};
static int bus_map_irq(PCIDevice *d, int irq_num)
{
int slot_addend;
slot_addend = (d->devfn >> 3) - 1;
return (irq_num + slot_addend) & 3;
}
static void pci_device_set_irq(void *opaque, int irq_num, int level)
{
PCIDevice *d = opaque;
PCIBus *b = d->bus;
uint32_t mask;
int i, irq_level;
// printf("%s: pci_device_seq_irq: %d %d\n", d->name, irq_num, level);
irq_num = bus_map_irq(d, irq_num);
mask = 1 << (d->devfn & 0x1f);
if (level)
b->irq_state[irq_num][d->devfn >> 5] |= mask;
else
b->irq_state[irq_num][d->devfn >> 5] &= ~mask;
/* compute the IRQ state */
mask = 0;
for(i = 0; i < 8; i++)
mask |= b->irq_state[irq_num][i];
irq_level = (mask != 0);
set_irq(&b->irq[irq_num], irq_level);
}
static int devfn_alloc(PCIBus *b)
{
int devfn;
for(devfn = 0; devfn < 256; devfn += 8) {
if (!b->device[devfn])
return devfn;
}
return -1;
}
/* devfn < 0 means to allocate it */
PCIDevice *pci_register_device(PCIBus *b, const char *name, int devfn,
uint16_t vendor_id, uint16_t device_id,
uint8_t revision, uint16_t class_id)
{
PCIDevice *d;
int i;
if (devfn < 0) {
devfn = devfn_alloc(b);
if (devfn < 0)
return NULL;
}
if (b->device[devfn])
return NULL;
d = mallocz(sizeof(PCIDevice));
d->bus = b;
d->name = strdup(name);
d->devfn = devfn;
put_le16(d->config + 0x00, vendor_id);
put_le16(d->config + 0x02, device_id);
d->config[0x08] = revision;
put_le16(d->config + 0x0a, class_id);
d->config[0x0e] = 0x00; /* header type */
d->next_cap_offset = 0x40;
for(i = 0; i < 4; i++)
irq_init(&d->irq[i], pci_device_set_irq, d, i);
b->device[devfn] = d;
return d;
}
IRQSignal *pci_device_get_irq(PCIDevice *d, unsigned int irq_num)
{
assert(irq_num < 4);
return &d->irq[irq_num];
}
static uint32_t pci_device_config_read(PCIDevice *d, uint32_t addr,
int size_log2)
{
uint32_t val;
switch(size_log2) {
case 0:
val = *(uint8_t *)(d->config + addr);
break;
case 1:
/* Note: may be unaligned */
if (addr <= 0xfe)
val = get_le16(d->config + addr);
else
val = *(uint8_t *)(d->config + addr);
break;
case 2:
/* always aligned */
val = get_le32(d->config + addr);
break;
default:
abort();
}
#ifdef DEBUG_CONFIG
printf("pci_config_read: dev=%s addr=0x%02x val=0x%x s=%d\n",
d->name, addr, val, 1 << size_log2);
#endif
return val;
}
PhysMemoryMap *pci_device_get_mem_map(PCIDevice *d)
{
return d->bus->mem_map;
}
PhysMemoryMap *pci_device_get_port_map(PCIDevice *d)
{
return d->bus->port_map;
}
void pci_register_bar(PCIDevice *d, unsigned int bar_num,
uint32_t size, int type,
void *opaque, PCIBarSetFunc *bar_set)
{
PCIIORegion *r;
uint32_t val, config_addr;
assert(bar_num < PCI_NUM_REGIONS);
assert((size & (size - 1)) == 0); /* power of two */
assert(size >= 4);
r = &d->io_regions[bar_num];
assert(r->size == 0);
r->size = size;
r->type = type;
r->enabled = FALSE;
r->opaque = opaque;
r->bar_set = bar_set;
/* set the config value */
val = 0;
if (bar_num == PCI_ROM_SLOT) {
config_addr = 0x30;
} else {
val |= r->type;
config_addr = 0x10 + 4 * bar_num;
}
put_le32(&d->config[config_addr], val);
}
static void pci_update_mappings(PCIDevice *d)
{
int cmd, i, offset;
uint32_t new_addr;
BOOL new_enabled;
PCIIORegion *r;
cmd = get_le16(&d->config[PCI_COMMAND]);
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (i == PCI_ROM_SLOT) {
offset = 0x30;
} else {
offset = 0x10 + i * 4;
}
new_addr = get_le32(&d->config[offset]);
new_enabled = FALSE;
if (r->size != 0) {
if ((r->type & PCI_ADDRESS_SPACE_IO) &&
(cmd & PCI_COMMAND_IO)) {
new_enabled = TRUE;
} else {
if (cmd & PCI_COMMAND_MEMORY) {
if (i == PCI_ROM_SLOT) {
new_enabled = (new_addr & 1);
} else {
new_enabled = TRUE;
}
}
}
}
if (new_enabled) {
/* new address */
new_addr = get_le32(&d->config[offset]) & ~(r->size - 1);
r->bar_set(r->opaque, i, new_addr, TRUE);
r->enabled = TRUE;
} else if (r->enabled) {
r->bar_set(r->opaque, i, 0, FALSE);
r->enabled = FALSE;
}
}
}
/* return != 0 if write is not handled */
static int pci_write_bar(PCIDevice *d, uint32_t addr,
uint32_t val)
{
PCIIORegion *r;
int reg;
if (addr == 0x30)
reg = PCI_ROM_SLOT;
else
reg = (addr - 0x10) >> 2;
// printf("%s: write bar addr=%x data=%x\n", d->name, addr, val);
r = &d->io_regions[reg];
if (r->size == 0)
return -1;
if (reg == PCI_ROM_SLOT) {
val = val & ((~(r->size - 1)) | 1);
} else {
val = (val & ~(r->size - 1)) | r->type;
}
put_le32(d->config + addr, val);
pci_update_mappings(d);
return 0;
}
static void pci_device_config_write8(PCIDevice *d, uint32_t addr,
uint32_t data)
{
int can_write;
if (addr == PCI_STATUS || addr == (PCI_STATUS + 1)) {
/* write 1 reset bits */
d->config[addr] &= ~data;
return;
}
switch(d->config[0x0e]) {
case 0x00:
case 0x80:
switch(addr) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0e:
case 0x10 ... 0x27: /* base */
case 0x30 ... 0x33: /* rom */
case 0x3d:
can_write = 0;
break;
default:
can_write = 1;
break;
}
break;
default:
case 0x01:
switch(addr) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0e:
case 0x38 ... 0x3b: /* rom */
case 0x3d:
can_write = 0;
break;
default:
can_write = 1;
break;
}
break;
}
if (can_write)
d->config[addr] = data;
}
static void pci_device_config_write(PCIDevice *d, uint32_t addr,
uint32_t data, int size_log2)
{
int size, i;
uint32_t addr1;
#ifdef DEBUG_CONFIG
printf("pci_config_write: dev=%s addr=0x%02x val=0x%x s=%d\n",
d->name, addr, data, 1 << size_log2);
#endif
if (size_log2 == 2 &&
((addr >= 0x10 && addr < 0x10 + 4 * 6) ||
addr == 0x30)) {
if (pci_write_bar(d, addr, data) == 0)
return;
}
size = 1 << size_log2;
for(i = 0; i < size; i++) {
addr1 = addr + i;
if (addr1 <= 0xff) {
pci_device_config_write8(d, addr1, (data >> (i * 8)) & 0xff);
}
}
if (PCI_COMMAND >= addr && PCI_COMMAND < addr + size) {
pci_update_mappings(d);
}
}
static void pci_data_write(PCIBus *s, uint32_t addr,
uint32_t data, int size_log2)
{
PCIDevice *d;
int bus_num, devfn, config_addr;
bus_num = (addr >> 16) & 0xff;
if (bus_num != s->bus_num)
return;
devfn = (addr >> 8) & 0xff;
d = s->device[devfn];
if (!d)
return;
config_addr = addr & 0xff;
pci_device_config_write(d, config_addr, data, size_log2);
}
static const uint32_t val_ones[3] = { 0xff, 0xffff, 0xffffffff };
static uint32_t pci_data_read(PCIBus *s, uint32_t addr, int size_log2)
{
PCIDevice *d;
int bus_num, devfn, config_addr;
bus_num = (addr >> 16) & 0xff;
if (bus_num != s->bus_num)
return val_ones[size_log2];
devfn = (addr >> 8) & 0xff;
d = s->device[devfn];
if (!d)
return val_ones[size_log2];
config_addr = addr & 0xff;
return pci_device_config_read(d, config_addr, size_log2);
}
/* warning: only valid for one DEVIO page. Return NULL if no memory at
the given address */
uint8_t *pci_device_get_dma_ptr(PCIDevice *d, uint64_t addr)
{
PhysMemoryRange *pr;
pr = get_phys_mem_range(d->bus->mem_map, addr);
if (!pr || !pr->is_ram)
return NULL;
return pr->phys_mem + (uintptr_t)(addr - pr->addr);
}
void pci_device_set_config8(PCIDevice *d, uint8_t addr, uint8_t val)
{
d->config[addr] = val;
}
void pci_device_set_config16(PCIDevice *d, uint8_t addr, uint16_t val)
{
put_le16(&d->config[addr], val);
}
int pci_device_get_devfn(PCIDevice *d)
{
return d->devfn;
}
/* return the offset of the capability or < 0 if error. */
int pci_add_capability(PCIDevice *d, const uint8_t *buf, int size)
{
int offset;
offset = d->next_cap_offset;
if ((offset + size) > 256)
return -1;
d->next_cap_offset += size;
d->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
memcpy(d->config + offset, buf, size);
d->config[offset + 1] = d->config[PCI_CAPABILITY_LIST];
d->config[PCI_CAPABILITY_LIST] = offset;
return offset;
}
/* i440FX host bridge */
struct I440FXState {
PCIBus *pci_bus;
PCIDevice *pci_dev;
PCIDevice *piix3_dev;
uint32_t config_reg;
uint8_t pic_irq_state[16];
IRQSignal *pic_irqs; /* 16 irqs */
};
static void i440fx_write_addr(void *opaque, uint32_t offset,
uint32_t data, int size_log2)
{
I440FXState *s = opaque;
s->config_reg = data;
}
static uint32_t i440fx_read_addr(void *opaque, uint32_t offset, int size_log2)
{
I440FXState *s = opaque;
return s->config_reg;
}
static void i440fx_write_data(void *opaque, uint32_t offset,
uint32_t data, int size_log2)
{
I440FXState *s = opaque;
if (s->config_reg & 0x80000000) {
if (size_log2 == 2) {
/* it is simpler to assume 32 bit config accesses are
always aligned */
pci_data_write(s->pci_bus, s->config_reg & ~3, data, size_log2);
} else {
pci_data_write(s->pci_bus, s->config_reg | offset, data, size_log2);
}
}
}
static uint32_t i440fx_read_data(void *opaque, uint32_t offset, int size_log2)
{
I440FXState *s = opaque;
if (!(s->config_reg & 0x80000000))
return val_ones[size_log2];
if (size_log2 == 2) {
/* it is simpler to assume 32 bit config accesses are
always aligned */
return pci_data_read(s->pci_bus, s->config_reg & ~3, size_log2);
} else {
return pci_data_read(s->pci_bus, s->config_reg | offset, size_log2);
}
}
static void i440fx_set_irq(void *opaque, int irq_num, int irq_level)
{
I440FXState *s = opaque;
PCIDevice *hd = s->piix3_dev;
int pic_irq;
/* map to the PIC irq (different IRQs can be mapped to the same
PIC irq) */
hd->config[0x60 + irq_num] &= ~0x80;
pic_irq = hd->config[0x60 + irq_num];
if (pic_irq < 16) {
if (irq_level)
s->pic_irq_state[pic_irq] |= 1 << irq_num;
else
s->pic_irq_state[pic_irq] &= ~(1 << irq_num);
set_irq(&s->pic_irqs[pic_irq], (s->pic_irq_state[pic_irq] != 0));
}
}
I440FXState *i440fx_init(PCIBus **pbus, int *ppiix3_devfn,
PhysMemoryMap *mem_map, PhysMemoryMap *port_map,
IRQSignal *pic_irqs)
{
I440FXState *s;
PCIBus *b;
PCIDevice *d;
int i;
s = mallocz(sizeof(*s));
b = mallocz(sizeof(PCIBus));
b->bus_num = 0;
b->mem_map = mem_map;
b->port_map = port_map;
s->pic_irqs = pic_irqs;
for(i = 0; i < 4; i++) {
irq_init(&b->irq[i], i440fx_set_irq, s, i);
}
cpu_register_device(port_map, 0xcf8, 1, s, i440fx_read_addr, i440fx_write_addr,
DEVIO_SIZE32);
cpu_register_device(port_map, 0xcfc, 4, s, i440fx_read_data, i440fx_write_data,
DEVIO_SIZE8 | DEVIO_SIZE16 | DEVIO_SIZE32);
d = pci_register_device(b, "i440FX", 0, 0x8086, 0x1237, 0x02, 0x0600);
put_le16(&d->config[PCI_SUBSYSTEM_VENDOR_ID], 0x1af4); /* Red Hat, Inc. */
put_le16(&d->config[PCI_SUBSYSTEM_ID], 0x1100); /* QEMU virtual machine */
s->pci_dev = d;
s->pci_bus = b;
s->piix3_dev = pci_register_device(b, "PIIX3", 8, 0x8086, 0x7000,
0x00, 0x0601);
pci_device_set_config8(s->piix3_dev, 0x0e, 0x80); /* header type */
*pbus = b;
*ppiix3_devfn = s->piix3_dev->devfn;
return s;
}
/* in case no BIOS is used, map the interrupts. */
void i440fx_map_interrupts(I440FXState *s, uint8_t *elcr,
const uint8_t *pci_irqs)
{
PCIBus *b = s->pci_bus;
PCIDevice *d, *hd;
int irq_num, pic_irq, devfn, i;
/* set a default PCI IRQ mapping to PIC IRQs */
hd = s->piix3_dev;
elcr[0] = 0;
elcr[1] = 0;
for(i = 0; i < 4; i++) {
irq_num = pci_irqs[i];
hd->config[0x60 + i] = irq_num;
elcr[irq_num >> 3] |= (1 << (irq_num & 7));
}
for(devfn = 0; devfn < 256; devfn++) {
d = b->device[devfn];
if (!d)
continue;
if (d->config[PCI_INTERRUPT_PIN]) {
irq_num = 0;
irq_num = bus_map_irq(d, irq_num);
pic_irq = hd->config[0x60 + irq_num];
if (pic_irq < 16) {
d->config[PCI_INTERRUPT_LINE] = pic_irq;
}
}
}
}