Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1 | /* hp3000_mpx.c: HP 3000 30036B Multiplexer Channel simulator
|
| 2 |
|
| 3 | Copyright (c) 2016, J. David Bryan
|
| 4 |
|
| 5 | Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 | of this software and associated documentation files (the "Software"), to deal
|
| 7 | in the Software without restriction, including without limitation the rights
|
| 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 | copies of the Software, and to permit persons to whom the Software is
|
| 10 | furnished to do so, subject to the following conditions:
|
| 11 |
|
| 12 | The above copyright notice and this permission notice shall be included in
|
| 13 | all copies or substantial portions of the Software.
|
| 14 |
|
| 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 | AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
| 19 | ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
| 20 | WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
| 21 |
|
| 22 | Except as contained in this notice, the name of the author shall not be used
|
| 23 | in advertising or otherwise to promote the sale, use or other dealings in
|
| 24 | this Software without prior written authorization from the author.
|
| 25 |
|
| 26 | MPX HP 3000 Series III Multiplexer Channel
|
| 27 |
|
Mark Pizzolato | e370b9e | 2016-09-20 20:34:22 -0700 | [diff] [blame] | 28 | 12-Sep-16 JDB Changed DIB register macro usage from SRDATA to DIB_REG
|
| 29 | 15-Jul-16 JDB Fixed the word count display for DREADSTB trace
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 30 | 08-Jun-16 JDB Corrected %d format to %u for unsigned values
|
| 31 | 07-Jun-16 JDB Corrected ACKSR assertion in State A for chained orders
|
| 32 | 16-May-16 JDB abort_channel parameter is now a pointer-to-constant
|
| 33 | 21-Mar-16 JDB Changed uint16 types to HP_WORD
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 34 | 06-Oct-15 JDB First release version
|
| 35 | 11-Sep-14 JDB Passes the multiplexer channel diagnostic (D422A)
|
| 36 | 10-Feb-13 JDB Created
|
| 37 |
|
| 38 | References:
|
| 39 | - HP 3000 Series II/III System Reference Manual
|
| 40 | (30000-90020, July 1978)
|
| 41 | - HP 3000 Series III Reference/Training Manual
|
| 42 | (30000-90143, February 1980)
|
| 43 | - 30035A Multiplexer Channel Maintenance Manual
|
| 44 | (30035-90001, September 1972)
|
| 45 | - Stand-Alone HP 30036A/B Multiplexer Channel Diagnostic
|
| 46 | (30036-90001, July 1978)
|
| 47 | - HP 3000 Series III Engineering Diagrams Set
|
| 48 | (30000-90141, Apr-1980)
|
| 49 |
|
| 50 |
|
| 51 | The HP 30036B Multiplexer Channel provides high-speed data transfer between
|
| 52 | from one to sixteen devices and main memory. Concurrent transfers for
|
| 53 | multiple devices are multiplexed on a per-word basis, dependent on the
|
| 54 | service request priorities assigned to the participating interfaces.
|
| 55 | Interfaces must have additional hardware to be channel-capable, as the
|
| 56 | channel uses separate control and data signals from those used for direct
|
| 57 | I/O. In addition, the multiplexer and selector channels differ somewhat in
|
| 58 | their use of the signals, so interfaces are generally designed for use with
|
| 59 | one or the other (the Selector Channel Maintenance Board is a notable
|
| 60 | exception that uses jumpers to indicate which channel to use).
|
| 61 |
|
| 62 | The transfer rate of the Series III multiplexer channel is poorly documented.
|
| 63 | Various rates are quoted in different publications: a uniform 990 KB/second
|
| 64 | rate in one, a 1038 KB/second inbound rate and a 952 KB/second outbound rate
|
| 65 | in another. Main memory access time is given as 300 nanoseconds, and the
|
| 66 | cycle time is 700 nanoseconds. The multiplexer channel passes data to and
|
| 67 | from main memory via the I/O Processor.
|
| 68 |
|
| 69 | Once started by an SIO instruction, the channel executes I/O programs
|
| 70 | independently of the CPU. Program words are read, and device status is
|
| 71 | written back, by calls to the I/O Processor.
|
| 72 |
|
| 73 | 32-bit I/O program words are formed from a 16-bit I/O control word (IOCW) and
|
| 74 | a 16-bit I/O address word (IOAW) in this general format:
|
| 75 |
|
| 76 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 77 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 78 | | C | order | X | control word 1/word count | IOCW
|
| 79 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 80 | | control word 2/status/address | IOAW
|
| 81 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 82 |
|
| 83 | Most orders are fully decoded by bits 1-3, but a few use bit 4 to extend the
|
| 84 | definition where bits 4-15 are not otherwise used. I/O programs always
|
| 85 | reside in memory bank 0. The current I/O program pointer resides in word 0
|
| 86 | of the Device Reference Table entry for the active interface.
|
| 87 |
|
| 88 | The Jump and Jump Conditional orders use this format:
|
| 89 |
|
| 90 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 91 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 92 | | - | 0 0 0 | C | - - - - - - - - - - - | IOCW
|
| 93 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 94 | | jump target address | IOAW
|
| 95 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 96 |
|
| 97 | ...where C is 0 for an unconditional jump and 1 for a conditional jump. An
|
| 98 | unconditional jump is handled entirely within the channel. A conditional
|
| 99 | jump asserts the SETJMP signal to the interface. If the interface returns
|
| 100 | JMPMET, the jump will occur; otherwise, execution continues with the next
|
| 101 | program word.
|
| 102 |
|
| 103 | The Return Residue order uses this format:
|
| 104 |
|
| 105 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 106 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 107 | | - | 0 0 1 0 | - - - - - - - - - - - | IOCW
|
| 108 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 109 | | residue of word count | IOAW
|
| 110 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 111 |
|
| 112 | The remaining word count from the last transfer will be returned in the IOAW
|
| 113 | as a two's-complement value. If the transfer completed normally, the
|
| 114 | returned value will be zero.
|
| 115 |
|
| 116 | The Set Bank order uses this format:
|
| 117 |
|
| 118 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 119 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 120 | | - | 0 0 1 1 | - - - - - - - - - - - | IOCW
|
| 121 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 122 | | - - - - - - - - - - - - | bank | IOAW
|
| 123 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 124 |
|
| 125 | This establishes the memory bank to be used for subsequent Write or Read
|
| 126 | orders. Program addresses always use bank 0.
|
| 127 |
|
| 128 | The Interrupt order uses this format:
|
| 129 |
|
| 130 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 131 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 132 | | - | 0 1 0 | - - - - - - - - - - - - | IOCW
|
| 133 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 134 | | - - - - - - - - - - - - - - - - | IOAW
|
| 135 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 136 |
|
| 137 | The SETINT signal is asserted to the interface for this order.
|
| 138 |
|
| 139 | The End and End with Interrupt orders use this format:
|
| 140 |
|
| 141 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 142 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 143 | | - | 0 1 1 | I | - - - - - - - - - - - | IOCW
|
| 144 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 145 | | device status | IOAW
|
| 146 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 147 |
|
| 148 | ...where I is 0 for an End and 1 for an End with Interrupt. The PSTATSTB
|
| 149 | signal is asserted to the interface to obtain the device status, which is
|
| 150 | stored in the IOAW location. If the I bit is set, SETINT will also be
|
| 151 | asserted,
|
| 152 |
|
| 153 | The Control order uses this format:
|
| 154 |
|
| 155 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 156 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 157 | | - | 1 0 0 | control word 1 | IOCW
|
| 158 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 159 | | control word 2 | IOAW
|
| 160 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 161 |
|
| 162 | Both control words are sent to the interface. The full IOCW containing
|
| 163 | control word 1 is sent with the PCMD1 signal asserted. It is followed by the
|
| 164 | IOAW with PCONTSTB asserted.
|
| 165 |
|
| 166 | The Sense order uses this format:
|
| 167 |
|
| 168 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 169 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 170 | | - | 1 0 1 | - - - - - - - - - - - - | IOCW
|
| 171 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 172 | | device status | IOAW
|
| 173 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 174 |
|
| 175 | The PSTATSTB signal is asserted to the interface to obtain the device status,
|
| 176 | which is stored in the IOAW location.
|
| 177 |
|
| 178 | The Write and Read orders use these formats:
|
| 179 |
|
| 180 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 181 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 182 | | C | 1 1 0 | negative word count to write | IOCW
|
| 183 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 184 | | C | 1 1 1 | negative word count to read | IOCW
|
| 185 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 186 | | transfer address | IOAW
|
| 187 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 188 |
|
| 189 | The C bit is the "data chain" flag. If it is set, then this transfer is a
|
| 190 | continuation of a previous Write or Read transfer. This is used to
|
| 191 | circumvent the transfer size limitation inherent in the 12-bit word count
|
| 192 | allocated in the IOCW. For single transfers larger than 4K words, multiple
|
| 193 | contiguous Write or Read orders are used, with all but the last order having
|
| 194 | their data chain bits set.
|
| 195 |
|
| 196 | In simulation, IOCW bits 1-4 are used to index into a 16-element lookup table
|
| 197 | to produce the final I/O order (because some of the orders define IOCW bit 4
|
| 198 | as "don't care", there are only thirteen distinct orders).
|
| 199 |
|
| 200 | Channel-capable interfaces connect via the multiplexer channel bus and
|
| 201 | request channel service by asserting one of the sixteen Service Request
|
| 202 | signals (SR0 through SR15). Jumpers on the interface establish which SR
|
| 203 | number to use. When multiple devices request service simultaneously, the
|
| 204 | channel grants access to the lowest-numbered request.
|
| 205 |
|
| 206 | In simulation, an interface is connected to the channel by setting the
|
| 207 | "service_request" field in the DIB to a value between 0 and 15, representing
|
| 208 | the SR number signal to assert. If the field is set to the SRNO_UNUSED
|
| 209 | value, then it is not connected to the channel.
|
| 210 |
|
| 211 |
|
| 212 | The channel contains a diagnostic interface that provides the capability to
|
| 213 | check the operation independently of channel program execution. The
|
| 214 | interface responds to direct I/O instructions, as follows:
|
| 215 |
|
| 216 | Control Word Format (CIO):
|
| 217 |
|
| 218 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 219 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 220 | | M | - | RAM address | A | O | S | L | I | - - - - - |
|
| 221 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 222 |
|
| 223 | Where:
|
| 224 |
|
| 225 | M = master reset
|
| 226 | A = select the Address RAM and Register
|
| 227 | O = select the Order RAM and Register
|
| 228 | S = select the State RAM and Register
|
| 229 | L = load the registers from the RAMs during the next read
|
| 230 | I = increment the Address or Word Count Registers after the next read
|
| 231 |
|
| 232 | The control word establishes the address and enable(s) to read or write from
|
| 233 | a given RAM location. The RAM address is stored in the control word register
|
| 234 | and is used in lieu of the service request encoding whenever an I/O order
|
| 235 | references the multiplexer device number, effectively providing a
|
| 236 | programmable service request number. The A/O/S/L/I bits enable the
|
| 237 | corresponding actions for the next WIO or RIO instruction.
|
| 238 |
|
| 239 |
|
| 240 | Status Word Format (TIO):
|
| 241 |
|
| 242 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 243 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 244 | | S | D | - | E | RAM address | - - - - - - - - |
|
| 245 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 246 |
|
| 247 | Key:
|
| 248 |
|
| 249 | S = SIO OK (always 0)
|
| 250 | D = direct read/write I/O OK (always 1)
|
| 251 | E = a state parity error exists
|
| 252 |
|
| 253 | A state parity error occurs when the state register contains a value other
|
| 254 | than one of the four defined states. An error causes the RAM address and E
|
| 255 | bit to be stored in the error register, which is then gated to form the
|
| 256 | status return value. The error register is cleared by an IORESET or master
|
| 257 | reset.
|
| 258 |
|
| 259 |
|
| 260 | Write Word Format (WIO):
|
| 261 |
|
| 262 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 263 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 264 | | address | Address RAM
|
| 265 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 266 | | order | word count | Order RAM
|
| 267 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 268 | | - - | A | B | C | D | - - - - - - | bank number | State RAM
|
| 269 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 270 |
|
| 271 | Where:
|
| 272 |
|
| 273 | A = set the state to State A
|
| 274 | B = set the state to State B
|
| 275 | C = set the state to State C
|
| 276 | D = set the state to State D
|
| 277 |
|
| 278 | The address, order, or state RAM value is written to the specified register
|
| 279 | and RAM address set by the last control word. If multiple registers/RAMs
|
| 280 | were selected, then the value is written to all of them.
|
| 281 |
|
| 282 | Setting more than one state bit at a time will generate a state parity error.
|
| 283 |
|
| 284 |
|
| 285 | Read Word Format (RIO):
|
| 286 |
|
| 287 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 288 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 289 | | address | Address RAM
|
| 290 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 291 | | order | word count | Order RAM
|
| 292 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 293 | | - - - - | bank number | T | A | B | C | D | E | P | S | State RAM
|
| 294 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 295 |
|
| 296 | Where:
|
| 297 |
|
| 298 | T = the transfer complete flip-flop value
|
| 299 | A = the state is State A
|
| 300 | B = the state is State B
|
| 301 | C = the state is State C
|
| 302 | D = the state is State D
|
| 303 | E = the end-of-transfer flip-flop value
|
| 304 | P = address parity (odd parity for the address register)
|
| 305 | S = a state parity error exists
|
| 306 |
|
| 307 | The diagnostic tests address parity and state parity. State parity also
|
| 308 | asserts the XFERERROR signal, which aborts a transfer in progress.
|
| 309 |
|
| 310 |
|
| 311 | Implementation notes:
|
| 312 |
|
| 313 | 1. The multiplexer channel must execute more than one I/O order per CPU
|
| 314 | instruction in order to meet the timing requirements of the diagnostic.
|
| 315 | The timing is modeled by establishing a count of channel clock pulses at
|
| 316 | poll entry and then executing orders until the count is exhausted. If
|
| 317 | the clock count was exceeded, the excess count is saved and then
|
| 318 | subtracted from the next entry's count, so that the typical execution
|
| 319 | time is preserved over a number of entries.
|
| 320 | */
|
| 321 |
|
| 322 |
|
| 323 |
|
| 324 | #include "hp3000_defs.h"
|
| 325 | #include "hp3000_cpu.h"
|
| 326 | #include "hp3000_cpu_ims.h"
|
| 327 | #include "hp3000_io.h"
|
| 328 |
|
| 329 |
|
| 330 |
|
| 331 | /* Program constants.
|
| 332 |
|
| 333 | The multiplexer channel clock period is 175 nanoseconds. The channel runs
|
| 334 | concurrently with the CPU, which executes instructions in an average of
|
| 335 | 2.57 microseconds, so multiple cycles are executed per CPU instruction.
|
| 336 |
|
| 337 | In simulation, the channel is called from the instruction execution loop
|
| 338 | after every instruction, and sometimes additionally within instructions that
|
| 339 | have long execution times (e.g., MOVE). The number of event ticks that have
|
| 340 | elapsed since the last call are passed to the channel; this determines the
|
| 341 | number of channel cycles to execute.
|
| 342 |
|
| 343 |
|
| 344 | Implementation notes:
|
| 345 |
|
| 346 | 1. The number of cycles consumed by the channel for various operations are
|
| 347 | educated guesses. There is no documentation available that details the
|
| 348 | cycle timing.
|
| 349 |
|
| 350 | 2. The MPX_STATE values match the values supplied in bits 2-5 of the "write
|
| 351 | state RAM" command.
|
| 352 |
|
| 353 | 3. State "parity" is 1 for an illegal state and 0 for a valid state.
|
| 354 |
|
| 355 | */
|
| 356 |
|
| 357 | #define INTRF_COUNT (SRNO_MAX + 1) /* count of interfaces handled by the multiplexer channel */
|
| 358 |
|
| 359 | #define NS_PER_CYCLE 175 /* each clock cycle is 175 nanoseconds */
|
| 360 |
|
| 361 | #define CYCLES_PER_STATE 2
|
| 362 | #define CYCLES_PER_READ 9
|
| 363 | #define CYCLES_PER_WRITE 9
|
| 364 |
|
| 365 | #define CYCLES_PER_EVENT (int32) (USEC_PER_EVENT * 1000 / NS_PER_CYCLE)
|
| 366 |
|
| 367 |
|
| 368 | typedef enum { /* multiplexer channel sequencer states */
|
| 369 | State_Idle = 000,
|
| 370 | State_D = 001,
|
| 371 | State_C = 002,
|
| 372 | State_B = 004,
|
| 373 | State_A = 010
|
| 374 | } MPX_STATE;
|
| 375 |
|
| 376 | static const char *const state_name [16] = { /* indexed by MPX_STATE */
|
| 377 | "Idle State",
|
| 378 | "State D",
|
| 379 | "State C",
|
| 380 | "invalid state 0011",
|
| 381 | "State B",
|
| 382 | "invalid state 0101",
|
| 383 | "invalid state 0110",
|
| 384 | "invalid state 0111",
|
| 385 | "State A",
|
| 386 | "invalid state 1001",
|
| 387 | "invalid state 1010",
|
| 388 | "invalid state 1011",
|
| 389 | "invalid state 1100",
|
| 390 | "invalid state 1101",
|
| 391 | "invalid state 1110",
|
| 392 | "invalid state 1111"
|
| 393 | };
|
| 394 |
|
| 395 | static const uint8 state_parity [16] = { /* State RAM parity */
|
| 396 | 1, 0, 0, 1, /* 0000, 0001, 0010, 0011 */
|
| 397 | 0, 1, 1, 1, /* 0100, 0101, 0110, 0111 */
|
| 398 | 0, 1, 1, 1, /* 1000, 1001, 1010, 1011 */
|
| 399 | 1, 1, 1, 1 /* 1100, 1101, 1110, 1111 */
|
| 400 | };
|
| 401 |
|
| 402 |
|
| 403 | /* Debug flags */
|
| 404 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 405 | #define DEB_CSRW (1u << 0) /* trace diagnostic and channel command initiations and completions */
|
| 406 | #define DEB_PIO (1u << 1) /* trace programmed I/O commands */
|
| 407 | #define DEB_IOB (1u << 2) /* trace I/O bus signals and data words */
|
| 408 | #define DEB_STATE (1u << 3) /* trace state changes */
|
| 409 | #define DEB_SR (1u << 4) /* trace service requests */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 410 |
|
| 411 |
|
| 412 | /* Control word.
|
| 413 |
|
| 414 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 415 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 416 | | M | - | RAM address | A | O | S | L | I | - - - - - |
|
| 417 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 418 | */
|
| 419 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 420 | #define CN_MR 0100000u /* (M) master reset */
|
| 421 | #define CN_RAM_ADDR_MASK 0036000u /* RAM address mask */
|
| 422 | #define CN_ADDR_RAM 0001000u /* (A) select the address RAM and register */
|
| 423 | #define CN_ORDER_RAM 0000400u /* (O) select the order RAM and register */
|
| 424 | #define CN_STATE_RAM 0000200u /* (S) select the state RAM and register */
|
| 425 | #define CN_LOAD_REGS 0000100u /* (L) load registers from RAM */
|
| 426 | #define CN_INCR_REGS 0000040u /* (I) increment registers */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 427 |
|
| 428 | #define CN_RAM_ADDR_SHIFT 10 /* RAM address alignment shift */
|
| 429 |
|
| 430 | #define CN_RAM_ADDR(c) (((c) & CN_RAM_ADDR_MASK) >> CN_RAM_ADDR_SHIFT)
|
| 431 |
|
| 432 | static const BITSET_NAME control_names [] = { /* Control word names */
|
| 433 | "master reset", /* bit 0 */
|
| 434 | NULL, /* bit 1 */
|
| 435 | NULL, /* bit 2 */
|
| 436 | NULL, /* bit 3 */
|
| 437 | NULL, /* bit 4 */
|
| 438 | NULL, /* bit 5 */
|
| 439 | "address RAM", /* bit 6 */
|
| 440 | "order RAM", /* bit 7 */
|
| 441 | "state RAM", /* bit 9 */
|
| 442 | "load registers", /* bit 9 */
|
| 443 | "increment registers" /* bit 10 */
|
| 444 | };
|
| 445 |
|
| 446 | static const BITSET_FORMAT control_format = /* names, offset, direction, alternates, bar */
|
| 447 | { FMT_INIT (control_names, 5, msb_first, no_alt, append_bar) };
|
| 448 |
|
| 449 |
|
| 450 | /* Status word.
|
| 451 |
|
| 452 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 453 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 454 | | - | D | - | E | RAM address | - - - - - - - - |
|
| 455 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 456 | */
|
| 457 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 458 | #define ST_DIO_OK 0040000u /* (D) direct I/O OK (always set) */
|
| 459 | #define ST_STATE_PARITY 0010000u /* (E) a state error exists */
|
| 460 | #define ST_RAM_ADDR_MASK 0007400u /* RAM address mask */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 461 |
|
| 462 | #define ST_RAM_ADDR_SHIFT 8 /* RAM address alignment shift */
|
| 463 |
|
| 464 | #define ST_RAM_ADDR(c) ((c) << ST_RAM_ADDR_SHIFT & ST_RAM_ADDR_MASK)
|
| 465 |
|
| 466 | #define ST_TO_RAM_ADDR(s) (((s) & ST_RAM_ADDR_MASK) >> ST_RAM_ADDR_SHIFT)
|
| 467 |
|
| 468 | static const BITSET_NAME status_names [] = { /* Status word names */
|
| 469 | "DIO OK", /* bit 1 */
|
| 470 | NULL, /* bit 2 */
|
| 471 | "state error" /* bit 3 */
|
| 472 | };
|
| 473 |
|
| 474 | static const BITSET_FORMAT status_format = /* names, offset, direction, alternates, bar */
|
| 475 | { FMT_INIT (status_names, 12, msb_first, no_alt, append_bar) };
|
| 476 |
|
| 477 |
|
| 478 | /* Write word.
|
| 479 |
|
| 480 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 481 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 482 | | address | Address RAM
|
| 483 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 484 | | order | word count | Order RAM
|
| 485 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 486 | | - - | A | B | C | D | - - - - - - | bank number | State RAM
|
| 487 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 488 | */
|
| 489 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 490 | #define WR_ORDER_MASK 0170000u /* order mask */
|
| 491 | #define WR_COUNT_MASK 0007777u /* word count mask */
|
| 492 | #define WR_STATE_MASK 0036000u /* state mask */
|
| 493 | #define WR_BANK_MASK 0000017u /* bank number mask */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 494 |
|
| 495 | #define WR_ORDER_SHIFT 12 /* order alignment shift */
|
| 496 | #define WR_COUNT_SHIFT 0 /* word count alignment shift */
|
| 497 | #define WR_STATE_SHIFT 10 /* state alignment shift */
|
| 498 | #define WR_BANK_SHIFT 0 /* bank number alignment shift */
|
| 499 |
|
| 500 | #define WR_ORDER(c) (((c) & WR_ORDER_MASK) >> WR_ORDER_SHIFT)
|
| 501 | #define WR_COUNT(c) (((c) & WR_COUNT_MASK) >> WR_COUNT_SHIFT)
|
| 502 | #define WR_STATE(c) (((c) & WR_STATE_MASK) >> WR_STATE_SHIFT)
|
| 503 | #define WR_BANK(c) (((c) & WR_BANK_MASK) >> WR_BANK_SHIFT)
|
| 504 |
|
| 505 |
|
| 506 | /* Read word.
|
| 507 |
|
| 508 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 509 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 510 | | address | Address RAM
|
| 511 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 512 | | order | word count | Order RAM
|
| 513 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 514 | | - - - - | bank number | T | A | B | C | D | E | P | S | State RAM
|
| 515 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 516 | */
|
| 517 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 518 | #define RD_ADDR_MASK 0177777u /* address mask */
|
| 519 | #define RD_ORDER_MASK 0170000u /* order mask */
|
| 520 | #define RD_COUNT_MASK 0007777u /* word count mask */
|
| 521 | #define RD_BANK_MASK 0007400u /* bank number mask */
|
| 522 | #define RD_XFER_COMPLETE 0000200u /* (T) transfer complete */
|
| 523 | #define RD_STATE_MASK 0000170u /* (A/B/C/D) state mask */
|
| 524 | #define RD_XFER_END 0000004u /* (E) end of transfer */
|
| 525 | #define RD_ADDR_PARITY 0000002u /* (P) address parity */
|
| 526 | #define RD_STATE_PARITY 0000001u /* (S) state parity */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 527 |
|
| 528 | #define RD_ORDER_SHIFT 12 /* order alignment shift */
|
| 529 | #define RD_COUNT_SHIFT 0 /* word count alignment shift */
|
| 530 | #define RD_BANK_SHIFT 8 /* bank number alignment shift */
|
| 531 | #define RD_STATE_SHIFT 3 /* state alignment shift */
|
| 532 |
|
| 533 | #define RD_ORDER(c) ((c) << RD_ORDER_SHIFT & RD_ORDER_MASK)
|
| 534 | #define RD_COUNT(c) ((c) << RD_COUNT_SHIFT & RD_COUNT_MASK)
|
| 535 | #define RD_BANK(c) ((c) << RD_BANK_SHIFT & RD_BANK_MASK)
|
| 536 | #define RD_STATE(c) ((c) << RD_STATE_SHIFT & RD_STATE_MASK)
|
| 537 |
|
| 538 | #define RD_SIO_ORDER(o,c) IOCW_ORDER ((o) << RD_ORDER_SHIFT | (c) & RD_COUNT_MASK)
|
| 539 |
|
| 540 | static const BITSET_NAME read_names [] = { /* Read word names */
|
| 541 | "terminal count", /* bit 8 */
|
| 542 | "A", /* bit 9 */
|
| 543 | "B", /* bit 10 */
|
| 544 | "C", /* bit 11 */
|
| 545 | "D", /* bit 12 */
|
| 546 | "end of transfer", /* bit 13 */
|
| 547 | "address parity", /* bit 14 */
|
| 548 | "state parity" /* bit 15 */
|
| 549 | };
|
| 550 |
|
| 551 | static const BITSET_FORMAT read_format = /* names, offset, direction, alternates, bar */
|
| 552 | { FMT_INIT (read_names, 0, msb_first, no_alt, append_bar) };
|
| 553 |
|
| 554 |
|
| 555 | /* Channel RAMs.
|
| 556 |
|
| 557 | In hardware, control information for a transfer-in-progress is stored in one
|
| 558 | of sixteen RAM locations, corresponding the to assigned service request
|
| 559 | number. The RAM is 42 bits wide, partitioned as follows:
|
| 560 |
|
| 561 | - a 4-bit state RAM
|
| 562 | - a 6-bit auxiliary RAM
|
| 563 | - a 16-bit address RAM
|
| 564 | - a 16-bit order RAM
|
| 565 |
|
| 566 | In simulation, the 16-bit order RAM is split into a 5-bit order RAM and a
|
| 567 | 12-bit counter RAM. The order RAM stores the Data Chain bit and the four-bit
|
| 568 | translated SIO order, rather than the DC and three-bit basic channel order.
|
| 569 | This allows direct interpretation of the I/O order, rather than sometimes
|
| 570 | depending on the leading bit of the counter RAM.
|
| 571 |
|
| 572 | Values within the RAMs are formatted as follows:
|
| 573 |
|
| 574 | 0 1 | 2 3 4 | 5 6 7
|
| 575 | +---+---+---+---+---+---+---+---+
|
| 576 | | - - - - | state | State RAM
|
| 577 | +---+---+---+---+---+---+---+---+
|
| 578 | | - - | B | T | bank | Auxiliary RAM
|
| 579 | +---+---+---+---+---+---+---+---+
|
| 580 | | - - - | C | order | Order RAM
|
| 581 | +---+---+---+---+---+---+---+---+
|
| 582 |
|
| 583 | Where:
|
| 584 |
|
| 585 | B = the transfer is within a block
|
| 586 | T = the terminal word count has been reached
|
| 587 | C = the I/O order specifies data chaining
|
| 588 |
|
| 589 | 0 | 1 2 3 | 4 5 6 | 7 8 9 |10 11 12 |13 14 15
|
| 590 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 591 | | - - - - | word count | Counter RAM
|
| 592 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 593 | | address | Address RAM
|
| 594 | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|
| 595 | */
|
| 596 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 597 | #define AUX_IB 040u /* auxiliary RAM in-block flag */
|
| 598 | #define AUX_TC 020u /* auxiliary RAM terminal count flag */
|
| 599 | #define AUX_BANK_MASK 017u /* auxiliary RAM bank mask */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 600 |
|
| 601 | #define AUX_BANK(r) ((r) & AUX_BANK_MASK)
|
| 602 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 603 | #define ORDER_DC 020u /* order RAM data chain flag */
|
| 604 | #define ORDER_MASK 017u /* order RAM current order mask */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 605 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 606 | #define CNTR_MASK 0007777u /* counter RAM word count mask */
|
| 607 | #define CNTR_MAX 0007777u /* counter RAM word count maximum value */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 608 |
|
| 609 | static const BITSET_NAME aux_names [] = { /* Auxiliary RAM word */
|
| 610 | "in block", /* bit 2 */
|
| 611 | "terminal count" /* bit 3 */
|
| 612 | };
|
| 613 |
|
| 614 | static const BITSET_FORMAT aux_format = /* names, offset, direction, alternates, bar */
|
| 615 | { FMT_INIT (aux_names, 4, msb_first, no_alt, append_bar) };
|
| 616 |
|
| 617 |
|
| 618 | /* Channel global state */
|
| 619 |
|
| 620 | t_bool mpx_is_idle = TRUE; /* TRUE if the multiplexer channel is idle */
|
| 621 | uint32 mpx_request_set = 0; /* set of service request bits */
|
| 622 |
|
| 623 |
|
| 624 | /* Channel local state */
|
| 625 |
|
| 626 | static DIB *srs [INTRF_COUNT]; /* indexed by service request number for channel requests */
|
| 627 | static uint32 active_count = 0; /* count of active transfers */
|
| 628 | static int32 excess_cycles = 0; /* count of cycles in excess of allocation */
|
| 629 |
|
| 630 | static HP_WORD control_word = 0; /* diagnostic control word */
|
| 631 | static HP_WORD status_word = 0; /* diagnostic status word */
|
| 632 | static FLIP_FLOP rollover = CLEAR; /* SET if the transfer word count rolls over */
|
| 633 | static FLIP_FLOP device_end = CLEAR; /* SET if DEVEND is asserted by the device */
|
| 634 |
|
| 635 |
|
| 636 | /* Channel per-interface state.
|
| 637 |
|
| 638 | The per-interface state for a transfer-in-progress is stored in the RAM
|
| 639 | location corresponding to the interface's assigned service request number.
|
| 640 | The RAM values are loaded into registers at the start of a channel I/O cycle
|
| 641 | and stored back into the RAM at the end of the cycle.
|
| 642 |
|
| 643 |
|
| 644 | Implementation notes:
|
| 645 |
|
| 646 | 1. SCP requires that arrayed register elements be sized to match their width
|
| 647 | in bits. We want to display multiplexer state RAM entries as four-bit
|
| 648 | values, so state_ram must have 8-bit elements. However, because the
|
| 649 | MPX_STATE enum size is implementation-dependent, state_ram cannot be of
|
| 650 | type MPX_STATE.
|
| 651 | */
|
| 652 |
|
| 653 | static uint8 state_ram [INTRF_COUNT]; /* state RAM */
|
| 654 | static uint8 aux_ram [INTRF_COUNT]; /* auxiliary RAM */
|
| 655 | static uint8 order_ram [INTRF_COUNT]; /* I/O order RAM */
|
| 656 | static HP_WORD cntr_ram [INTRF_COUNT]; /* counter RAM */
|
| 657 | static HP_WORD addr_ram [INTRF_COUNT]; /* I/O address RAM */
|
| 658 |
|
| 659 | static uint8 state_reg; /* state register */
|
| 660 | static uint8 aux_reg; /* auxiliary register */
|
| 661 | static uint8 order_reg; /* order register */
|
| 662 | static HP_WORD cntr_reg; /* word counter register */
|
| 663 | static HP_WORD addr_reg; /* address register */
|
| 664 |
|
| 665 |
|
| 666 | /* Channel local SCP support routines */
|
| 667 |
|
| 668 | static CNTLR_INTRF mpx_interface;
|
| 669 | static t_stat mpx_reset (DEVICE *dptr);
|
| 670 |
|
| 671 |
|
| 672 | /* Channel local utility routines */
|
| 673 |
|
| 674 | static uint8 next_state (uint8 current_state, SIO_ORDER order, t_bool abort);
|
| 675 | static void end_channel (DIB *dibptr);
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 676 | static SIGNALS_DATA abort_channel (DIB *dibptr, const char *reason);
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 677 |
|
| 678 |
|
| 679 | /* Channel SCP data structures */
|
| 680 |
|
| 681 |
|
| 682 | /* Device information block */
|
| 683 |
|
| 684 | static DIB mpx_dib = {
|
| 685 | &mpx_interface, /* device interface */
|
| 686 | 127, /* device number */
|
| 687 | SRNO_UNUSED, /* service request number */
|
| 688 | INTPRI_UNUSED, /* interrupt priority */
|
| 689 | INTMASK_UNUSED /* interrupt mask */
|
| 690 | };
|
| 691 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 692 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 693 | /* Unit list */
|
| 694 |
|
| 695 | static UNIT mpx_unit [] = { /* a dummy unit to satisfy SCP requirements */
|
| 696 | { UDATA (NULL, 0, 0) }
|
| 697 | };
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 698 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 699 |
|
| 700 | /* Register list.
|
| 701 |
|
| 702 |
|
| 703 | Implementation notes:
|
| 704 |
|
| 705 | 1. The "mpx_request_set" and "srs" variables need not be SAVEd or RESTOREd,
|
| 706 | as they are rebuilt during the instruction execution prelude.
|
| 707 |
|
| 708 | 2. The state RAM register array cannot be named "STATE", because SCP uses
|
| 709 | "STATE" to display all of the registers, and it checks the keyword before
|
| 710 | checking for a register of the same name.
|
| 711 | */
|
| 712 |
|
| 713 | static REG mpx_reg [] = {
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 714 | /* Macro Name Location Radix Width Depth Flags */
|
| 715 | /* ------ ------ ------------- ----- ----- ----------- ----------------- */
|
| 716 | { FLDATA (IDLE, mpx_is_idle, 0) },
|
| 717 | { DRDATA (COUNT, active_count, 32), PV_LEFT },
|
| 718 | { DRDATA (EXCESS, excess_cycles, 32), PV_LEFT },
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 719 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 720 | { ORDATA (CNTL, control_word, 16), REG_FIT },
|
| 721 | { ORDATA (STAT, status_word, 16), REG_FIT },
|
| 722 | { FLDATA (ROLOVR, rollover, 0) },
|
| 723 | { FLDATA (DEVEND, device_end, 0) },
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 724 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 725 | { BRDATA (STATR, state_ram, 2, 4, INTRF_COUNT) },
|
| 726 | { BRDATA (AUX, aux_ram, 8, 6, INTRF_COUNT) },
|
| 727 | { BRDATA (ORDER, order_ram, 8, 4, INTRF_COUNT) },
|
| 728 | { BRDATA (CNTR, cntr_ram, 8, 12, INTRF_COUNT) },
|
| 729 | { BRDATA (ADDR, addr_ram, 8, 16, INTRF_COUNT) },
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 730 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 731 | { ORDATA (STAREG, state_reg, 8), REG_FIT | REG_HRO },
|
| 732 | { ORDATA (AUXREG, aux_reg, 8), REG_FIT | REG_HRO },
|
| 733 | { ORDATA (ORDREG, order_reg, 8), REG_FIT | REG_HRO },
|
| 734 | { ORDATA (CTRREG, cntr_reg, 16), REG_FIT | REG_HRO },
|
| 735 | { ORDATA (ADRREG, addr_reg, 16), REG_FIT | REG_HRO },
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 736 |
|
Mark Pizzolato | e370b9e | 2016-09-20 20:34:22 -0700 | [diff] [blame] | 737 | DIB_REGS (mpx_dib),
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 738 |
|
| 739 | { NULL }
|
| 740 | };
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 741 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 742 |
|
| 743 | /* Modifier list */
|
| 744 |
|
| 745 | static MTAB mpx_mod [] = {
|
| 746 | /* Entry Flags Value Print String Match String Validation Display Descriptor */
|
| 747 | /* ----------- --------- ------------ ------------ ----------- ------------ ----------------- */
|
| 748 | { MTAB_XDV, VAL_DEVNO, "DEVNO", "DEVNO", &hp_set_dib, &hp_show_dib, (void *) &mpx_dib },
|
| 749 | { 0 }
|
| 750 | };
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 751 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 752 |
|
| 753 | /* Debugging trace list */
|
| 754 |
|
| 755 | static DEBTAB mpx_deb [] = {
|
| 756 | { "CSRW", DEB_CSRW }, /* channel control, status, read, and write actions */
|
| 757 | { "PIO", DEB_PIO }, /* programmed I/O commands executed */
|
| 758 | { "STATE", DEB_STATE }, /* channel state changes executed */
|
| 759 | { "SR", DEB_SR }, /* service requests received */
|
| 760 | { "IOBUS", DEB_IOB }, /* interface I/O bus signals and data words */
|
| 761 | { NULL, 0 }
|
| 762 | };
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 763 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 764 |
|
| 765 | /* Device descriptor */
|
| 766 |
|
| 767 | DEVICE mpx_dev = {
|
| 768 | "MPX", /* device name */
|
| 769 | mpx_unit, /* unit array */
|
| 770 | mpx_reg, /* register array */
|
| 771 | mpx_mod, /* modifier array */
|
| 772 | 1, /* number of units */
|
| 773 | 8, /* address radix */
|
| 774 | PA_WIDTH, /* address width */
|
| 775 | 1, /* address increment */
|
| 776 | 8, /* data radix */
|
| 777 | DV_WIDTH, /* data width */
|
| 778 | NULL, /* examine routine */
|
| 779 | NULL, /* deposit routine */
|
| 780 | &mpx_reset, /* reset routine */
|
| 781 | NULL, /* boot routine */
|
| 782 | NULL, /* attach routine */
|
| 783 | NULL, /* detach routine */
|
| 784 | &mpx_dib, /* device information block pointer */
|
| 785 | DEV_DEBUG, /* device flags */
|
| 786 | 0, /* debug control flags */
|
| 787 | mpx_deb, /* debug flag name array */
|
| 788 | NULL, /* memory size change routine */
|
| 789 | NULL /* logical device name */
|
| 790 | };
|
| 791 |
|
| 792 |
|
| 793 |
|
| 794 | /* Channel global routines */
|
| 795 |
|
| 796 |
|
| 797 |
|
| 798 | /* Initialize the channel.
|
| 799 |
|
| 800 | This routine is called in the CPU instruction execution prelude to allow the
|
| 801 | service request numbers of interfaces to be reassigned. It sets up the "srs"
|
| 802 | DIB pointer array and the "mpx_request_set" bit vector from the service
|
| 803 | request values in the device DIBs.
|
| 804 |
|
| 805 | The "srs" dispatch table is used to send signals to the interfaces that
|
| 806 | request service by asserting their SR numbers. The request set contains the
|
| 807 | set of interfaces currently requesting channel service.
|
| 808 | */
|
| 809 |
|
| 810 | void mpx_initialize (void)
|
| 811 | {
|
| 812 | uint32 idx;
|
| 813 | DIB *dibptr;
|
| 814 | const DEVICE *dptr;
|
| 815 |
|
| 816 | mpx_request_set = 0; /* set all requests inactive */
|
| 817 |
|
| 818 | memset (srs, 0, sizeof srs); /* clear the service requests table */
|
| 819 |
|
| 820 | for (idx = 0; sim_devices [idx] != NULL; idx++) { /* loop through the device table */
|
| 821 | dptr = sim_devices [idx]; /* get the device pointer */
|
| 822 | dibptr = (DIB *) dptr->ctxt; /* and the associated DIB pointer */
|
| 823 |
|
| 824 | if (dibptr /* if an interface handler exists */
|
| 825 | && !(dptr->flags & DEV_DIS) /* and the device is enabled */
|
| 826 | && dibptr->service_request_number != SRNO_UNUSED) { /* and it is connected to the multiplexer channel */
|
| 827 | srs [dibptr->service_request_number] = dibptr; /* then set the DIB pointer into the dispatch table */
|
| 828 |
|
| 829 | if (dibptr->service_request) /* if the controller has asserted its service request line */
|
| 830 | mpx_request_set |= /* then set the associated request bit */
|
| 831 | 1u << dibptr->service_request_number;
|
| 832 | }
|
| 833 | }
|
| 834 |
|
| 835 | return;
|
| 836 | }
|
| 837 |
|
| 838 |
|
| 839 | /* Start an I/O program.
|
| 840 |
|
| 841 | This routine is called by a device interface in response to a Start I/O (SIO)
|
| 842 | instruction to request that the multiplexer channel begin an I/O program. It
|
| 843 | corresponds in hardware to asserting the REQ signal.
|
| 844 |
|
| 845 | On entry, the service request number from the device's DIB is used as the RAM
|
| 846 | index. The state RAM entry corresponding to the SR number is set to State C,
|
| 847 | and the other RAM entries are cleared. The count of active I/O programs is
|
| 848 | incremented.
|
| 849 |
|
| 850 |
|
| 851 | Implementation notes:
|
| 852 |
|
| 853 | 1. Setting "excess_cycles" to the negative number of cycles per event
|
| 854 | effectively doubles the available state execution time of the first
|
| 855 | multiplexer poll. This is necessary to pass the Stand-Alone HP 30115A
|
| 856 | (7970B/E) Magnetic Tape Diagnostic (D433) steps 252, 255, 260, and 263,
|
| 857 | which check for command rejects. The diagnostic does an SIO / BNE / TIO
|
| 858 | sequence and expects reject status to be set. However, the two available
|
| 859 | multiplexer state execution opportunities (between the instructions) are
|
| 860 | insufficient to execute the C, A, and B states that are necessary for the
|
| 861 | tape controller to reject the command. We therefore lengthen the first
|
| 862 | opportunity, so that all three states are completed before the TIO
|
| 863 | instruction checks for command reject.
|
| 864 | */
|
| 865 |
|
| 866 | void mpx_assert_REQ (DIB *dibptr)
|
| 867 | {
|
| 868 | const uint32 srn = dibptr->service_request_number; /* get the SR number for the RAM index */
|
| 869 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 870 | dprintf (mpx_dev, DEB_CSRW, "Device number %u asserted REQ for channel initialization\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 871 | dibptr->device_number);
|
| 872 |
|
| 873 | state_ram [srn] = State_C; /* set up the initial sequencer state */
|
| 874 | aux_ram [srn] = 0; /* clear */
|
| 875 | order_ram [srn] = sioEND; /* the rest */
|
| 876 | cntr_ram [srn] = 0; /* of the RAM */
|
| 877 | addr_ram [srn] = 0; /* entries */
|
| 878 |
|
| 879 | excess_cycles = - CYCLES_PER_EVENT; /* preset the excess cycle count */
|
| 880 |
|
| 881 | mpx_is_idle = FALSE; /* indicate that the channel is busy */
|
| 882 | active_count = active_count + 1; /* bump reference counter */
|
| 883 |
|
| 884 | return;
|
| 885 | }
|
| 886 |
|
| 887 |
|
| 888 | /* Request channel service.
|
| 889 |
|
| 890 | This routine is called by a device interface to request service from the
|
| 891 | channel. It is called either directly by the interface or indirectly by the
|
| 892 | IOP in response to an SRn signal returned by the interface. A direct call is
|
| 893 | needed for asynchronous assertion, e.g., in response to an event service
|
| 894 | call. Synchronous assertion, i.e., in response to an interface call, is made
|
| 895 | by returning the SRn signal to the IOP. The routine corresponds in hardware
|
| 896 | to asserting the SRn signal associated with the interface to the multiplexer.
|
| 897 |
|
| 898 | On entry, the service_request field in the device's DIB is set to TRUE, and
|
| 899 | the request set bit corresponding the service_request_number field in the DIB
|
| 900 | is set. This enables the channel to service the interface on the next
|
| 901 | multiplexer poll call, assuming that the interface has priority.
|
| 902 | */
|
| 903 |
|
| 904 | void mpx_assert_SRn (DIB *dibptr)
|
| 905 | {
|
| 906 | if (dibptr->service_request == FALSE)
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 907 | dprintf (mpx_dev, DEB_SR, "Device number %u asserted SR%u\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 908 | dibptr->device_number, dibptr->service_request_number);
|
| 909 |
|
| 910 | dibptr->service_request = TRUE; /* set the service request flag */
|
| 911 | mpx_request_set |= 1 << dibptr->service_request_number; /* and the associated request bit */
|
| 912 |
|
| 913 | return;
|
| 914 | }
|
| 915 |
|
| 916 |
|
| 917 | /* Poll the interfaces on the multiplexer channel bus for service requests.
|
| 918 |
|
| 919 | This routine is called in the CPU instruction execution loop to service a
|
| 920 | request from the highest-priority device interface. It corresponds in
|
| 921 | hardware to asserting HSREQ to the IOP, receiving the DATAPOLL IN signal from
|
| 922 | the IOP, and then denying DATAPOLL OUT to the next multiplexer channel in the
|
| 923 | chain. It executes one or more channel cycles for the associated device
|
| 924 | interface and resets the service request flag in the DIB.
|
| 925 |
|
| 926 | The multiplexer channel clock period is 175 nanoseconds. The channel runs
|
| 927 | concurrently with the CPU, which executes instructions in an average of
|
| 928 | 2.57 microseconds, so multiple cycles are executed per CPU instruction.
|
| 929 |
|
| 930 | This routine is called after every instruction, and sometimes additionally
|
| 931 | within instructions that have long execution times (e.g., MOVE). The number
|
| 932 | of event ticks that have elapsed since the last call are passed in; this
|
| 933 | determines the number of channel cycles available to execute.
|
| 934 |
|
| 935 | In hardware, the multiplexer priority-encodes the 16 service request lines,
|
| 936 | selecting the highest-priority request for servicing. In simulation, a
|
| 937 | service request sets the request set bit corresponding to the SR number.
|
| 938 | When a poll is performed, the device corresponding to the highest-priority
|
| 939 | (lowest-order) bit will be the recipient of the current multiplexer channel
|
| 940 | cycles.
|
| 941 |
|
| 942 | On entry, the routine determines the highest-priority interface that is
|
| 943 | requesting service and then executes the next state in the transfer for that
|
| 944 | interface, based on the values in the RAM. The number of multiplexer clock
|
| 945 | counts consumed for the specified state execution is subtracted from the
|
| 946 | number of clock counts available. If more time remains, and one or more
|
| 947 | service requests are still active, another channel cycle is run for
|
| 948 | the (possibly different) interface.
|
| 949 |
|
| 950 | The multiplexer obtains the current state from the State RAM entry
|
| 951 | corresponding to the service request number. If the current state is
|
| 952 | invalid, i.e., not one of the four defined states, the channel aborts the
|
| 953 | transfer by asserting XFERERROR to the interface. Otherwise, control
|
| 954 | branches to one of the four state handlers before returning.
|
| 955 |
|
| 956 | A transfer can be in one of four defined states:
|
| 957 |
|
| 958 | - State A: fetch the first word (IOCW) of the I/O program word
|
| 959 | - State B: fetch or store the second word (IOAW) of the I/O program word
|
| 960 | - State C: fetch or store the I/O program pointer (IOPP)
|
| 961 | - State D: transfer data to or from the interface
|
| 962 |
|
| 963 | All I/O orders except Set Bank, Read, and Write execute states C, A, and B,
|
| 964 | in that order. The Set Bank order executes state C, A, and D. The Read and
|
| 965 | Write orders execute states C, A, B, and then one D state for each word
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 966 | transferred. Some actions are dependent on external signals (JMPMET or
|
| 967 | DEVEND) or internal conditions (terminal count reached [TC] or in a chained
|
| 968 | block transfer [IB]).
|
| 969 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 970 | The actions for the orders are:
|
| 971 |
|
| 972 | Jump (sioJUMP)
|
| 973 |
|
| 974 | State Condition Action Signals
|
| 975 | ----- --------------- ---------- ------------------------------------------
|
| 976 | C IOPP read DEVNODB
|
| 977 | A IOCW read --
|
| 978 | B IOAW read --
|
| 979 | C IOPP write DEVNODB
|
| 980 |
|
| 981 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 982 | Conditional Jump (sioJUMPC)
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 983 |
|
| 984 | State Condition Action Signals
|
| 985 | ----- --------------- ---------- ------------------------------------------
|
| 986 | C IOPP read DEVNODB
|
| 987 | A IOCW read --
|
| 988 | B IOAW read SETJMP
|
| 989 | / C ~ JMPMET IOPP read DEVNODB
|
| 990 | \ C JMPMET IOPP write DEVNODB
|
| 991 |
|
| 992 |
|
| 993 | Return Residue (sioRTRES)
|
| 994 |
|
| 995 | State Condition Action Signals
|
| 996 | ----- --------------- ---------- ------------------------------------------
|
| 997 | C IOPP read DEVNODB
|
| 998 | A IOCW read --
|
| 999 | B IOAW write --
|
| 1000 | C IOPP read DEVNODB
|
| 1001 |
|
| 1002 |
|
| 1003 | Set Bank (sioSBANK)
|
| 1004 |
|
| 1005 | State Condition Action Signals
|
| 1006 | ----- --------------- ---------- ------------------------------------------
|
| 1007 | C IOPP read DEVNODB
|
| 1008 | A IOCW read --
|
| 1009 | D IOAW read --
|
| 1010 | C IOPP read DEVNODB
|
| 1011 |
|
| 1012 |
|
| 1013 | Interrupt (sioINTRP)
|
| 1014 |
|
| 1015 | State Condition Action Signals
|
| 1016 | ----- --------------- ---------- ------------------------------------------
|
| 1017 | C IOPP read DEVNODB
|
| 1018 | A IOCW read --
|
| 1019 | B IOAW read SETINT
|
| 1020 | C IOPP read DEVNODB
|
| 1021 |
|
| 1022 |
|
| 1023 | End (sioEND)
|
| 1024 |
|
| 1025 | State Condition Action Signals
|
| 1026 | ----- --------------- ---------- ------------------------------------------
|
| 1027 | C IOPP read DEVNODB
|
| 1028 | A IOCW read --
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1029 | B IOAW write TOGGLESR | PSTATSTB | TOGGLESIOOK
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1030 | idle
|
| 1031 |
|
| 1032 |
|
| 1033 | End with Interrupt (sioENDIN)
|
| 1034 |
|
| 1035 | State Condition Action Signals
|
| 1036 | ----- --------------- ---------- ------------------------------------------
|
| 1037 | C IOPP read DEVNODB
|
| 1038 | A IOCW read --
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1039 | B IOAW write TOGGLESR | SETINT | PSTATSTB | TOGGLESIOOK
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1040 | idle
|
| 1041 |
|
| 1042 |
|
| 1043 | Control (sioCNTL)
|
| 1044 |
|
| 1045 | State Condition Action Signals
|
| 1046 | ----- --------------- ---------- ------------------------------------------
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1047 | C IOPP read DEVNODB
|
| 1048 | A IOCW read TOGGLESR | PCMD1
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1049 | B IOAW read ACKSR | PCONTSTB
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1050 | C IOPP read ACKSR | TOGGLESR | DEVNODB
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1051 |
|
| 1052 |
|
| 1053 | Sense (sioSENSE)
|
| 1054 |
|
| 1055 | State Condition Action Signals
|
| 1056 | ----- --------------- ---------- ------------------------------------------
|
| 1057 | C IOPP read DEVNODB
|
| 1058 | A IOCW read --
|
| 1059 | B IOAW write PSTATSTB
|
| 1060 | C IOPP read DEVNODB
|
| 1061 |
|
| 1062 |
|
| 1063 | Write (sioWRITE)
|
| 1064 |
|
| 1065 | State Condition Action Signals
|
| 1066 | ----- --------------- ---------- ------------------------------------------
|
| 1067 | C IOPP read DEVNODB
|
| 1068 | A IOCW read ACKSR
|
| 1069 | / B ~ IB IOAW read TOGGLESR | TOGGLEOUTXFER
|
| 1070 | \ B IB IOAW read TOGGLESR
|
| 1071 |
|
| 1072 | / D ~ TC data write ACKSR | PWRITESTB
|
| 1073 | \ D TC data write ACKSR | PWRITESTB | EOT | TOGGLEOUTXFER
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1074 | / D DEVEND * ~ TC IOPP read ACKSR | TOGGLESR | EOT | TOGGLEOUTXFER
|
| 1075 | \ D DEVEND * TC IOPP read ACKSR | TOGGLESR
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1076 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1077 | / C ~ DEVEND IOPP read ACKSR | TOGGLESR | DEVNODB
|
| 1078 | / A ~ DEVEND IOCW read ACKSR
|
| 1079 | \ A DEVEND IOCW read ACKSR
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1080 |
|
| 1081 |
|
| 1082 | Write Chained (sioWRITEC)
|
| 1083 |
|
| 1084 | State Condition Action Signals
|
| 1085 | ----- --------------- ---------- ------------------------------------------
|
| 1086 | C IOPP read DEVNODB
|
| 1087 | A IOCW read --
|
| 1088 | / B ~ IB IOAW read TOGGLESR | TOGGLEOUTXFER
|
| 1089 | \ B IB IOAW read TOGGLESR
|
| 1090 |
|
| 1091 | / D ~ TC data write ACKSR | PWRITESTB
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1092 | \ D TC data write ACKSR | TOGGLESR | PWRITESTB | EOT
|
| 1093 | / D DEVEND * ~ TC IOPP read ACKSR | EOT | TOGGLESR
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1094 | \ D DEVEND * TC IOPP read --
|
| 1095 |
|
| 1096 | / C ~ DEVEND IOPP read DEVNODB
|
| 1097 | \ A DEVEND IOCW read --
|
| 1098 |
|
| 1099 |
|
| 1100 | Read (sioREAD)
|
| 1101 |
|
| 1102 | State Condition Action Signals
|
| 1103 | ----- --------------- ---------- ------------------------------------------
|
| 1104 | C IOPP read DEVNODB
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1105 | A IOCW read --
|
| 1106 | / B ~ IB IOAW read TOGGLESR | TOGGLEINXFER | READNEXTWD
|
| 1107 | \ B IB IOAW read TOGGLESR | READNEXTWD
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1108 |
|
| 1109 | / D ~ TC data write ACKSR | PREADSTB | READNEXTWD
|
| 1110 | \ D TC data write ACKSR | PREADSTB | EOT | TOGGLEINXFER
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1111 | / D DEVEND * ~ TC IOPP read ACKSR | TOGGLESR | EOT | TOGGLEINXFER
|
| 1112 | \ D DEVEND * TC IOPP read ACKSR | TOGGLESR
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1113 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1114 | / C ~ DEVEND IOPP read ACKSR | TOGGLESR | DEVNODB
|
| 1115 | / A ~ DEVEND IOCW read ACKSR
|
| 1116 | \ A DEVEND IOCW read ACKSR
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1117 |
|
| 1118 |
|
| 1119 | Read Chained (sioREADC)
|
| 1120 |
|
| 1121 | State Condition Action Signals
|
| 1122 | ----- --------------- ---------- ------------------------------------------
|
| 1123 | C IOPP read DEVNODB
|
| 1124 | A IOCW read --
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1125 | / B ~ IB IOAW read TOGGLESR | TOGGLEINXFER | READNEXTWD
|
| 1126 | \ B IB IOAW read TOGGLESR | READNEXTWD
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1127 |
|
| 1128 | / D ~ TC data write ACKSR | PREADSTB | READNEXTWD
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1129 | \ D TC data write ACKSR | TOGGLESR | PREADSTB | EOT
|
| 1130 | / D DEVEND * ~ TC IOPP read ACKSR | TOGGLESR | EOT
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1131 | \ D DEVEND * TC IOPP read --
|
| 1132 |
|
| 1133 | / C ~ DEVEND IOPP read DEVNODB
|
| 1134 | \ A DEVEND IOCW read --
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1135 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1136 |
|
| 1137 | Summarizing the State D signals sent to the interface:
|
| 1138 |
|
| 1139 | Normal transfer
|
| 1140 | ---------------
|
| 1141 | - not the last word: ACKSR | PrwSTB { | READNEXTWD }
|
| 1142 | - the last word and not chained: ACKSR | PrwSTB | EOT | TOGGLEioXFER
|
| 1143 | - the last word and chained: ACKSR | PrwSTB | EOT | TOGGLESR
|
| 1144 |
|
| 1145 | DEVEND asserted after a normal transfer
|
| 1146 | ---------------------------------------
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1147 | - not the last word and not chained: ACKSR | TOGGLESR | EOT | TOGGLEioXFER
|
| 1148 | - not the last word and chained: ACKSR | TOGGLESR | EOT
|
| 1149 | - the last word and not chained: ACKSR | TOGGLESR
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1150 | - the last word and chained: (none)
|
| 1151 |
|
| 1152 | In all cases where signals are generated, CHANSO is also included.
|
| 1153 |
|
| 1154 |
|
| 1155 | Implementation notes:
|
| 1156 |
|
| 1157 | 1. In hardware, IOCW bits 1-3 specify the I/O order, except that the Jump,
|
| 1158 | End, Return Residue, and Set Bank orders require an additional bit (IOCW
|
| 1159 | bit 4) to define their orders fully. In simulation, the IOCW_ORDER macro
|
| 1160 | uses IOCW bits 0-4 as an index into a 32-element lookup table to produce
|
| 1161 | the final I/O order (because some of the orders define IOCW bit 4 as
|
| 1162 | "don't care", there are only thirteen distinct orders).
|
| 1163 |
|
| 1164 | 2. In hardware, the Interrupt order loads the address register with the
|
| 1165 | (unused) IOAW value. The simulator maintains this behavior.
|
| 1166 |
|
| 1167 | 3. The word count rollover flip-flop is preset asynchronously by the carry
|
| 1168 | out signal from the word counter and is cleared synchronously by the
|
| 1169 | trailing edge of the write-to-RAMs signal at the end of each state. It
|
| 1170 | is used by the next-state logic to decide whether to remain in State D or
|
| 1171 | exit to State C.
|
| 1172 |
|
| 1173 | 4. In hardware, the Device End flip-flop is clocked at the beginning and end
|
| 1174 | of every I/O cycle and samples the DEVEND signal from the interface. The
|
| 1175 | output controls the state sequencer. In simulation, the flip-flop is
|
| 1176 | cleared at the end of every cycle, which ensures that it's clear for the
|
| 1177 | next cycle entry.
|
| 1178 |
|
| 1179 | 5. The default label in the State B switch statement is necessary to quiet a
|
| 1180 | warning that "inbound_signals" may be used uninitialized, even though all
|
| 1181 | cases are covered. The initialization of "outbound" is also necessary,
|
| 1182 | even though all paths through the while statement set its value.
|
| 1183 | */
|
| 1184 |
|
| 1185 | void mpx_service (uint32 ticks_elapsed)
|
| 1186 | {
|
| 1187 | DIB *dibptr;
|
| 1188 | int32 cycles;
|
| 1189 | uint32 srn, mask, priority_mask;
|
| 1190 | HP_WORD inbound_data, outbound_data, iocw, ioaw;
|
| 1191 | t_bool store_ioaw;
|
| 1192 | SIO_ORDER sio_order;
|
| 1193 | INBOUND_SET inbound_signals;
|
| 1194 | SIGNALS_DATA outbound = IORETURN (NO_SIGNALS, 0); /* needed to quiet warning */
|
| 1195 |
|
| 1196 | cycles = CYCLES_PER_EVENT - excess_cycles; /* decrease the cycles available by any left over */
|
| 1197 |
|
| 1198 | priority_mask = 0; /* request a recalculation of the SR priority */
|
| 1199 |
|
| 1200 | while (cycles > 0) { /* execute as long as cycles remain */
|
| 1201 | if (priority_mask == 0) { /* if priority must be recalculated */
|
| 1202 | priority_mask = IOPRIORITY (mpx_request_set); /* then isolate the highest-priority bit from the set */
|
| 1203 |
|
| 1204 | if (priority_mask == 0) /* if no request is pending */
|
| 1205 | break; /* then we're done for now */
|
| 1206 |
|
| 1207 | for (srn = 0, mask = priority_mask; !(mask & 1); srn++) /* determine the service request number */
|
| 1208 | mask = mask >> 1; /* associated with the request bit */
|
| 1209 |
|
| 1210 | dibptr = srs [srn]; /* get the DIB pointer for the request */
|
| 1211 |
|
| 1212 | state_reg = state_ram [srn]; /* load the pipeline registers */
|
| 1213 | aux_reg = aux_ram [srn]; /* from the selected RAM words */
|
| 1214 | order_reg = order_ram [srn];
|
| 1215 | cntr_reg = cntr_ram [srn];
|
| 1216 | addr_reg = addr_ram [srn];
|
| 1217 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1218 | sio_order = (SIO_ORDER) (order_reg & ORDER_MASK); /* map the order */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1219 | }
|
| 1220 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1221 | dprintf (mpx_dev, DEB_STATE, "Channel SR %u entered %s with %d clock cycles remaining\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1222 | srn, state_name [state_reg], cycles);
|
| 1223 |
|
| 1224 | switch (state_reg) { /* dispatch based on the multiplexer state */
|
| 1225 |
|
| 1226 | case State_A:
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1227 | if (sio_order == sioREAD /* if the previous order */
|
| 1228 | || sio_order == sioWRITE) /* was an unchained Read or Write */
|
| 1229 | inbound_signals = ACKSR | CHANSO; /* then acknowledge the final service request */
|
| 1230 | else /* otherwise */
|
| 1231 | inbound_signals = NO_SIGNALS; /* no acknowledgement is needed */
|
| 1232 |
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1233 | cpu_read_memory (absolute_iop, addr_reg, &iocw); /* fetch the IOCW from memory */
|
| 1234 | cycles = cycles - CYCLES_PER_READ; /* and count the memory access */
|
| 1235 |
|
| 1236 | order_reg = IOCW_ORDER (iocw); /* get the translated order from the IOCW */
|
| 1237 |
|
| 1238 | if (iocw & IOCW_DC) /* if the data chain bit is set */
|
| 1239 | order_reg |= ORDER_DC; /* then set the data chain flag */
|
| 1240 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1241 | sio_order = (SIO_ORDER) (order_reg & ORDER_MASK); /* isolate the I/O order */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1242 |
|
| 1243 | if (sio_order != sioRTRES) /* if this is not a Return Residue order */
|
| 1244 | cntr_reg = IOCW_WCNT (iocw); /* then load the word count */
|
| 1245 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1246 | dprintf (mpx_dev, DEB_PIO, "Channel SR %u loaded IOCW %06o (%s) from address %06o\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1247 | srn, iocw, sio_order_name [sio_order], addr_reg);
|
| 1248 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1249 | if (sio_order == sioCNTL) /* if this a Control order */
|
| 1250 | inbound_signals |= PCMD1 | TOGGLESR | CHANSO; /* then assert the first command strobe */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1251 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1252 | if (inbound_signals) /* call the interface if there are signals to assert */
|
| 1253 | outbound = dibptr->io_interface (dibptr, inbound_signals, iocw);
|
| 1254 | else /* otherwise the interface isn't involved */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1255 | outbound = IORETURN (SRn, 0); /* but assert a service request to continue the program */
|
| 1256 |
|
| 1257 | addr_reg = addr_reg + 1 & R_MASK; /* point at the IOAW program word */
|
| 1258 |
|
| 1259 | break;
|
| 1260 |
|
| 1261 |
|
| 1262 | case State_B:
|
| 1263 | store_ioaw = FALSE; /* assume that a fetch and not a store will be needed */
|
| 1264 |
|
| 1265 | switch (sio_order) { /* dispatch based on the I/O order */
|
| 1266 |
|
| 1267 | case sioJUMPC:
|
| 1268 | inbound_signals = SETJMP | CHANSO;
|
| 1269 | break;
|
| 1270 |
|
| 1271 | case sioRTRES:
|
| 1272 | inbound_signals = NO_SIGNALS; /* no interface call is needed */
|
| 1273 |
|
| 1274 | if (aux_reg & AUX_TC) /* if the count has terminated */
|
| 1275 | outbound = IORETURN (SRn, 0); /* then return a zero count and a service request */
|
| 1276 | else /* otherwise return the two's-complement remainder */
|
| 1277 | outbound = IORETURN (SRn, IOCW_COUNT (cntr_reg));
|
| 1278 |
|
| 1279 | store_ioaw = TRUE; /* set to store the count */
|
| 1280 | break;
|
| 1281 |
|
| 1282 | case sioINTRP:
|
| 1283 | inbound_signals = SETINT | CHANSO;
|
| 1284 | break;
|
| 1285 |
|
| 1286 | case sioEND:
|
| 1287 | inbound_signals = TOGGLESIOOK | TOGGLESR | PSTATSTB | CHANSO;
|
| 1288 | store_ioaw = TRUE; /* set to store the returned status */
|
| 1289 | break;
|
| 1290 |
|
| 1291 | case sioENDIN:
|
| 1292 | inbound_signals = TOGGLESIOOK | TOGGLESR | PSTATSTB | SETINT | CHANSO;
|
| 1293 | store_ioaw = TRUE; /* set to store the returned status */
|
| 1294 | break;
|
| 1295 |
|
| 1296 | case sioCNTL:
|
| 1297 | inbound_signals = ACKSR | PCONTSTB | CHANSO;
|
| 1298 | break;
|
| 1299 |
|
| 1300 | case sioSENSE:
|
| 1301 | inbound_signals = PSTATSTB | CHANSO;
|
| 1302 | store_ioaw = TRUE; /* set to store the returned status */
|
| 1303 | break;
|
| 1304 |
|
| 1305 | case sioWRITE:
|
| 1306 | case sioWRITEC:
|
| 1307 | inbound_signals = TOGGLESR | CHANSO;
|
| 1308 |
|
| 1309 | if ((aux_reg & AUX_IB) == 0) /* if we are not within a block transfer */
|
| 1310 | inbound_signals |= TOGGLEOUTXFER; /* then add the signal to start the transfer */
|
| 1311 | break;
|
| 1312 |
|
| 1313 | case sioREAD:
|
| 1314 | case sioREADC:
|
| 1315 | inbound_signals = READNEXTWD | TOGGLESR | CHANSO;
|
| 1316 |
|
| 1317 | if ((aux_reg & AUX_IB) == 0) /* if we are not within a block transfer */
|
| 1318 | inbound_signals |= TOGGLEINXFER; /* then add the signal to start the transfer */
|
| 1319 | break;
|
| 1320 |
|
| 1321 | default: /* needed to quiet warning about inbound_signals */
|
| 1322 | case sioJUMP: /* these orders do not need */
|
| 1323 | case sioSBANK: /* to call the interface */
|
| 1324 | inbound_signals = NO_SIGNALS; /* so assert a service request */
|
| 1325 | outbound = IORETURN (SRn, 0); /* to continue the program */
|
| 1326 | break;
|
| 1327 | }
|
| 1328 |
|
| 1329 | if (store_ioaw == FALSE) { /* if a fetch is needed */
|
| 1330 | cpu_read_memory (absolute_iop, addr_reg, &ioaw); /* then load the IOAW from memory */
|
| 1331 | cycles = cycles - CYCLES_PER_READ; /* and count the memory access */
|
| 1332 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1333 | dprintf (mpx_dev, DEB_PIO, "Channel SR %u loaded IOAW %06o from address %06o\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1334 | srn, ioaw, addr_reg);
|
| 1335 | }
|
| 1336 |
|
| 1337 | else /* otherwise provide a dummy value */
|
| 1338 | ioaw = 0; /* that will be overwritten */
|
| 1339 |
|
| 1340 | if (inbound_signals) /* if there are signals to assert */
|
| 1341 | outbound = dibptr->io_interface (dibptr, /* then pass them to the interface */
|
| 1342 | inbound_signals, ioaw);
|
| 1343 |
|
| 1344 | if (store_ioaw == TRUE) { /* if a store is needed */
|
| 1345 | ioaw = IODATA (outbound); /* then set the IOAW from the returned value */
|
| 1346 | cpu_write_memory (absolute_iop, addr_reg, ioaw); /* and store it in memory */
|
| 1347 | cycles = cycles - CYCLES_PER_WRITE; /* count the memory access */
|
| 1348 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1349 | dprintf (mpx_dev, DEB_PIO, "Channel SR %u stored IOAW %06o to address %06o\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1350 | srn, ioaw, addr_reg);
|
| 1351 | }
|
| 1352 |
|
| 1353 | switch (sio_order) { /* dispatch based on the I/O order */
|
| 1354 | case sioREAD:
|
| 1355 | case sioREADC:
|
| 1356 | case sioWRITE:
|
| 1357 | case sioWRITEC:
|
| 1358 | aux_reg = aux_reg & ~AUX_TC | AUX_IB; /* clear the terminal count and set the in-block bit */
|
| 1359 | addr_reg = ioaw; /* load the address register with the address word */
|
| 1360 | break;
|
| 1361 |
|
| 1362 | case sioJUMP:
|
| 1363 | case sioJUMPC:
|
| 1364 | case sioINTRP:
|
| 1365 | addr_reg = ioaw; /* load the address register with the address word */
|
| 1366 | break;
|
| 1367 |
|
| 1368 | case sioEND:
|
| 1369 | case sioENDIN:
|
| 1370 | end_channel (dibptr); /* end the channel program */
|
| 1371 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1372 | dprintf (mpx_dev, DEB_STATE, "Channel SR %u entered the %s\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1373 | srn, state_name [State_Idle]);
|
| 1374 | break;
|
| 1375 |
|
| 1376 | case sioCNTL: /* no additional */
|
| 1377 | case sioSBANK: /* processing needed */
|
| 1378 | case sioRTRES: /* for these orders */
|
| 1379 | case sioSENSE:
|
| 1380 | break;
|
| 1381 | }
|
| 1382 |
|
| 1383 | break;
|
| 1384 |
|
| 1385 |
|
| 1386 | case State_C:
|
| 1387 | inbound_signals = DEVNODB | CHANSO; /* assert DEVNODB to get the device number */
|
| 1388 |
|
| 1389 | if (sio_order == sioREAD /* if we're completing */
|
| 1390 | || sio_order == sioWRITE /* a Read, Write, */
|
| 1391 | || sio_order == sioCNTL) /* or Control order */
|
| 1392 | inbound_signals |= ACKSR | TOGGLESR; /* then clear the device and channel SR flip-flops */
|
| 1393 |
|
| 1394 | outbound = dibptr->io_interface (dibptr, inbound_signals, 0);
|
| 1395 |
|
| 1396 | if (sio_order != sioJUMP /* if we're not completing */
|
| 1397 | && (sio_order != sioJUMPC || (outbound & JMPMET) == 0)) { /* a successful jump order */
|
| 1398 | cpu_read_memory (absolute_iop, IODATA (outbound), &addr_reg); /* then get the I/O program pointer */
|
| 1399 | cycles = cycles - CYCLES_PER_READ; /* and count the memory access */
|
| 1400 | }
|
| 1401 |
|
| 1402 | cpu_write_memory (absolute_iop, IODATA (outbound), /* write the updated program pointer */
|
| 1403 | addr_reg + 2 & R_MASK); /* back to the DRT */
|
| 1404 | cycles = cycles - CYCLES_PER_WRITE; /* and count the access */
|
| 1405 |
|
| 1406 | break;
|
| 1407 |
|
| 1408 |
|
| 1409 | case State_D:
|
| 1410 | inbound_data = 0; /* assume there is no inbound data */
|
| 1411 |
|
| 1412 | if (sio_order == sioSBANK) { /* if this is a Set Bank order */
|
| 1413 | cpu_read_memory (absolute_iop, addr_reg, &ioaw); /* then read the IOAW */
|
| 1414 | cycles = cycles - CYCLES_PER_READ; /* and count the memory access */
|
| 1415 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1416 | dprintf (mpx_dev, DEB_PIO, "Channel SR %u loaded IOAW %06o from address %06o\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1417 | srn, ioaw, addr_reg);
|
| 1418 |
|
| 1419 | addr_reg = ioaw; /* store the IOAW into the address register */
|
| 1420 |
|
| 1421 | aux_reg = aux_reg & ~AUX_BANK_MASK /* merge the new bank number */
|
| 1422 | | AUX_BANK (ioaw); /* into the auxiliary register */
|
| 1423 |
|
| 1424 | outbound = IORETURN (SRn, 0); /* assert a service request to continue the program */
|
| 1425 | break; /* no call to the interface is needed */
|
| 1426 | }
|
| 1427 |
|
| 1428 | else if (sio_order == sioREAD /* otherwise if this is a Read order */
|
| 1429 | || sio_order == sioREADC) { /* or a Read Chained order */
|
| 1430 | inbound_signals = ACKSR | PREADSTB | CHANSO; /* then assert the read strobe */
|
| 1431 |
|
| 1432 | if (cntr_reg == CNTR_MAX) { /* if the word count is now exhausted */
|
| 1433 | if (sio_order == sioREADC) /* then if the order is chained */
|
| 1434 | inbound_signals |= EOT | TOGGLESR; /* then assert EOT and toggle the channel SR flip-flop */
|
| 1435 | else /* otherwise */
|
| 1436 | inbound_signals |= EOT | TOGGLEINXFER; /* assert EOT and end the transfer */
|
| 1437 | }
|
| 1438 |
|
| 1439 | else /* otherwise the transfer continues */
|
| 1440 | inbound_signals |= READNEXTWD; /* so request the next word */
|
| 1441 | }
|
| 1442 |
|
| 1443 | else { /* otherwise this is a Write or Write Chained order */
|
| 1444 | inbound_signals = ACKSR | PWRITESTB | CHANSO; /* so assert the write strobe */
|
| 1445 |
|
| 1446 | if (cntr_reg == CNTR_MAX) /* if the word count is now exhausted */
|
| 1447 | if (sio_order == sioWRITEC) /* then if the order is chained */
|
| 1448 | inbound_signals |= EOT | TOGGLESR; /* then assert EOT and toggle the channel SR flip-flop */
|
| 1449 | else /* otherwise */
|
| 1450 | inbound_signals |= EOT | TOGGLEOUTXFER; /* assert EOT and end the transfer */
|
| 1451 |
|
| 1452 | if (cpu_read_memory (dma_iop, /* read the word from memory */
|
| 1453 | TO_PA (AUX_BANK (aux_reg), addr_reg), /* at the indicated bank and offset */
|
| 1454 | &inbound_data)) /* if the read succeeds */
|
| 1455 | cycles = cycles - CYCLES_PER_READ; /* then count the memory access */
|
| 1456 |
|
| 1457 | else { /* otherwise the read failed */
|
| 1458 | outbound = abort_channel (dibptr, "a memory read error"); /* so abort the transfer */
|
| 1459 | break; /* and skip the interface call */
|
| 1460 | }
|
| 1461 | }
|
| 1462 |
|
| 1463 | outbound = dibptr->io_interface (dibptr, inbound_signals, inbound_data); /* call the interface */
|
| 1464 |
|
| 1465 | device_end = D_FF (outbound & DEVEND); /* set the flip-flop if the interface asserted DEVEND */
|
| 1466 |
|
| 1467 | if (device_end == SET) { /* if the transfer was aborted by the interface */
|
| 1468 | outbound_data = IODATA (outbound); /* then it returned the DRT program pointer address */
|
| 1469 |
|
| 1470 | cpu_read_memory (absolute_iop, outbound_data, &addr_reg); /* do the I/O program pointer fetch here */
|
| 1471 | cpu_write_memory (absolute_iop, outbound_data, /* so we don't have to do State C */
|
| 1472 | addr_reg + 2 & R_MASK);
|
| 1473 | cycles = cycles - CYCLES_PER_READ - CYCLES_PER_WRITE; /* count the two memory accesses */
|
| 1474 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1475 | if (cntr_reg == CNTR_MAX) /* if the word count is now exhausted */
|
| 1476 | if (order_reg & ORDER_DC) /* then if the order is chained */
|
| 1477 | inbound_signals = NO_SIGNALS; /* then all required signals have been sent */
|
| 1478 | else /* otherwise */
|
| 1479 | inbound_signals = ACKSR | TOGGLESR | CHANSO; /* toggle the channel SR flip-flop */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1480 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1481 | else { /* otherwise the transfer is incomplete */
|
| 1482 | inbound_signals = ACKSR | EOT | TOGGLESR | CHANSO; /* so assert EOT and toggle the channel SR FF */
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1483 |
|
| 1484 | if (! (order_reg & ORDER_DC)) { /* if the order is not chained */
|
| 1485 | aux_reg &= ~AUX_IB; /* then clear the in-block bit in RAM */
|
| 1486 |
|
| 1487 | if (sio_order == sioREAD) /* if it's a Read order */
|
| 1488 | inbound_signals |= TOGGLEINXFER; /* then terminate the inbound transfer */
|
| 1489 | else /* otherwise it's a Write order */
|
| 1490 | inbound_signals |= TOGGLEOUTXFER; /* so terminate the outbound transfer */
|
| 1491 | }
|
| 1492 | }
|
| 1493 |
|
| 1494 | if (inbound_signals) /* if there are signals to assert */
|
| 1495 | outbound = dibptr->io_interface (dibptr, /* then pass them to the interface */
|
| 1496 | inbound_signals, 0);
|
| 1497 | }
|
| 1498 |
|
| 1499 | else { /* otherwise the transfer succeeded */
|
| 1500 | if (sio_order == sioREAD || sio_order == sioREADC) /* if this is a Read or Read Chained order */
|
| 1501 | if (cpu_write_memory (dma_iop, /* then write the word to memory */
|
| 1502 | TO_PA (AUX_BANK (aux_reg), addr_reg), /* at the indicated bank and offset */
|
| 1503 | IODATA (outbound))) /* if the write succeeds */
|
| 1504 | cycles = cycles - CYCLES_PER_WRITE; /* then count the memory access */
|
| 1505 |
|
| 1506 | else { /* otherwise the write failed */
|
| 1507 | outbound = abort_channel (dibptr, "a memory write error"); /* so abort the transfer */
|
| 1508 | break; /* and bail out now */
|
| 1509 | }
|
| 1510 |
|
| 1511 | addr_reg = addr_reg + 1 & R_MASK; /* point at the next word to transfer */
|
| 1512 | cntr_reg = cntr_reg + 1 & CNTR_MASK; /* and count the word */
|
| 1513 |
|
| 1514 | if (cntr_reg == 0) { /* if the count is exhausted */
|
| 1515 | rollover = SET; /* then set the rollover flip-flop */
|
| 1516 | aux_reg |= AUX_TC; /* and the terminal count flag */
|
| 1517 |
|
| 1518 | if (! (order_reg & ORDER_DC)) /* if the order is not chained */
|
| 1519 | aux_reg &= ~AUX_IB; /* then clear the in-block flag */
|
| 1520 | }
|
| 1521 | }
|
| 1522 |
|
| 1523 | break;
|
| 1524 |
|
| 1525 |
|
| 1526 | default: /* if the channel state is invalid */
|
| 1527 | status_word = ST_STATE_PARITY | ST_RAM_ADDR (srn); /* then save the RAM address */
|
| 1528 | outbound = abort_channel (dibptr, "an invalid state entry"); /* and abort the transfer */
|
| 1529 | break;
|
| 1530 | }
|
| 1531 |
|
| 1532 | cycles = cycles - CYCLES_PER_STATE; /* count the state execution */
|
| 1533 |
|
| 1534 | state_reg = next_state (state_reg, sio_order, device_end); /* get the next state */
|
| 1535 |
|
| 1536 | rollover = CLEAR; /* the end of each state clears */
|
| 1537 | device_end = CLEAR; /* the word count rollover and device end flip-flops */
|
| 1538 |
|
| 1539 | if ((outbound & SRn) == NO_SIGNALS) { /* if the device is no longer requesting service */
|
| 1540 | mpx_request_set &= ~priority_mask; /* then clear its request from the set */
|
| 1541 | dibptr->service_request = FALSE; /* and clear its internal request flag */
|
| 1542 |
|
| 1543 | priority_mask = 0; /* request SR priority recalculation */
|
| 1544 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1545 | dprintf (mpx_dev, DEB_SR, "Device number %u denied SR%u\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1546 | dibptr->device_number, dibptr->service_request_number);
|
| 1547 | }
|
| 1548 |
|
| 1549 | if (outbound & INTREQ) /* if the interface asserted an interrupt request */
|
| 1550 | iop_assert_INTREQ (dibptr); /* then set it up */
|
| 1551 |
|
| 1552 | if (cycles <= 0 || priority_mask == 0) { /* if service for this device is ending */
|
| 1553 | state_ram [srn] = state_reg; /* then write */
|
| 1554 | aux_ram [srn] = aux_reg; /* the pipeline */
|
| 1555 | order_ram [srn] = order_reg; /* registers back */
|
| 1556 | cntr_ram [srn] = cntr_reg; /* to their */
|
| 1557 | addr_ram [srn] = addr_reg; /* associated RAMS */
|
| 1558 | }
|
| 1559 | } /* end while */
|
| 1560 |
|
| 1561 |
|
| 1562 | if (cycles > 0) /* if we exited because there are no service requests */
|
| 1563 | excess_cycles = 0; /* then do a full set of cycles next time */
|
| 1564 | else /* otherwise we ran over our allotment */
|
| 1565 | excess_cycles = - cycles; /* so reduce the next poll by the overage */
|
| 1566 |
|
| 1567 | return;
|
| 1568 | }
|
| 1569 |
|
| 1570 |
|
| 1571 |
|
| 1572 | /* Channel local SCP support routines */
|
| 1573 |
|
| 1574 |
|
| 1575 |
|
| 1576 | /* Multiplexer channel diagnostic interface.
|
| 1577 |
|
| 1578 | The channel diagnostic interface is installed on the IOP bus and receives
|
| 1579 | direct I/O commands from the IOP. It does not respond to programmed I/O
|
| 1580 | (SIO) commands, nor does it interrupt.
|
| 1581 |
|
| 1582 | In simulation, the asserted signals on the bus are represented as bits in the
|
| 1583 | inbound_signals set. Each signal is processed sequentially in numerical
|
| 1584 | order, and a set of similar outbound_signals is assembled and returned to the
|
| 1585 | caller, simulating assertion of the corresponding bus signals.
|
| 1586 |
|
| 1587 | The interface allows a program to write to and read from any desired address
|
| 1588 | in the address, order, state, or auxiliary RAMs. A CIO instruction specifies
|
| 1589 | the RAM address and register to write or read with a subsequent WIO or RIO
|
| 1590 | instruction. In addition, the address and word count registers may be
|
| 1591 | incremented and the resulting values tested for correctness. After the RAMs
|
| 1592 | are written, the next state is computed and written to the state RAM.
|
| 1593 | Reading this value allows the next-state logic to be checked.
|
| 1594 |
|
| 1595 |
|
| 1596 | Implementation notes:
|
| 1597 |
|
| 1598 | 1. In hardware, IOCW bits 1-3 specify the I/O order, except that the Jump,
|
| 1599 | End, Return Residue, and Set Bank orders require an additional bit (IOCW
|
| 1600 | bit 4) to define their orders fully. In simulation, the IOCW_ORDER macro
|
| 1601 | uses IOCW bits 0-4 as an index into a 32-element lookup table to produce
|
| 1602 | the final I/O order (because some of the orders define IOCW bit 4 as
|
| 1603 | "don't care", there are only thirteen distinct orders).
|
| 1604 |
|
| 1605 | 2. In hardware, the "select the Address RAM and Register" bit (bit 6) of the
|
| 1606 | control word is used only to enable reading and incrementing. The
|
| 1607 | address RAM is written by a WIO instruction if the "select the Order RAM
|
| 1608 | and Register" bit (bit 7) is not set. If bit 7 is set, then the Order
|
| 1609 | RAM is written.
|
| 1610 |
|
| 1611 | 3. A WIO instruction writes all of the RAMs simultaneously. The control
|
| 1612 | word select bits simply determine whether RAM data comes from the output
|
| 1613 | word or the corresponding register.
|
| 1614 |
|
| 1615 | 4. A RIO instruction with the "load the registers from the RAMs during the
|
| 1616 | next read" bit (bit 9) of the control word set loads all registers
|
| 1617 | simultaneously. If the load bit and the "increment the Address or Word
|
| 1618 | Count Registers after the next read" bit (bit 10) are both set, the load
|
| 1619 | overrides the increment. An enabled increment occurs after the current
|
| 1620 | value is returned.
|
| 1621 |
|
| 1622 | 5. If multiple registers are enabled in the control word, an RIO instruction
|
| 1623 | will return the logical OR of the several values (in hardware, the
|
| 1624 | selected registers are enabled to the active-low IOD bus).
|
| 1625 | */
|
| 1626 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1627 | static SIGNALS_DATA mpx_interface (DIB *dibptr, INBOUND_SET inbound_signals, HP_WORD inbound_value)
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1628 | {
|
| 1629 | uint32 address;
|
| 1630 | SIO_ORDER sio_order;
|
| 1631 | INBOUND_SIGNAL signal;
|
| 1632 | INBOUND_SET working_set = inbound_signals;
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1633 | HP_WORD outbound_value = 0;
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1634 | OUTBOUND_SET outbound_signals = NO_SIGNALS;
|
| 1635 |
|
| 1636 | dprintf (mpx_dev, DEB_IOB, "Received data %06o with signals %s\n",
|
| 1637 | inbound_value, fmt_bitset (inbound_signals, inbound_format));
|
| 1638 |
|
| 1639 | while (working_set) {
|
| 1640 | signal = IONEXTSIG (working_set); /* isolate the next signal */
|
| 1641 |
|
| 1642 | switch (signal) { /* dispatch an I/O signal */
|
| 1643 |
|
| 1644 | case DWRITESTB:
|
| 1645 | address = CN_RAM_ADDR (control_word); /* get the RAM location to address */
|
| 1646 |
|
| 1647 | if (control_word & CN_ORDER_RAM) { /* if the order RAM is enabled */
|
| 1648 | addr_ram [address] = addr_reg; /* then reload the address RAM from its register */
|
| 1649 |
|
| 1650 | order_ram [address] = WR_ORDER (inbound_value); /* set the order RAM from the order field */
|
| 1651 |
|
| 1652 | sio_order = IOCW_ORDER (inbound_value); /* get the translated order */
|
| 1653 |
|
| 1654 | if (sio_order != sioRTRES) /* if it's not a Return Residue order */
|
| 1655 | cntr_ram [address] = WR_COUNT (inbound_value); /* then set the counter RAM from the counter field */
|
| 1656 | }
|
| 1657 |
|
| 1658 | else { /* otherwise the order RAM is disabled */
|
| 1659 | addr_ram [address] = inbound_value; /* so set the address RAM from the value */
|
| 1660 |
|
| 1661 | sio_order = RD_SIO_ORDER (order_reg, cntr_reg); /* get the current SIO order */
|
| 1662 |
|
| 1663 | order_ram [address] = order_reg; /* reload the order and counter RAMs */
|
| 1664 | cntr_ram [address] = cntr_reg; /* from their respective registers */
|
| 1665 | }
|
| 1666 |
|
| 1667 | state_ram [address] = next_state (state_reg, sio_order, FALSE); /* store the next state into the state RAM */
|
| 1668 |
|
| 1669 | if (control_word & CN_STATE_RAM) { /* if the state RAM is enabled */
|
| 1670 | state_ram [address] |= WR_STATE (inbound_value); /* then merge the new state values */
|
| 1671 |
|
| 1672 | aux_ram [address] = aux_reg & (AUX_IB | AUX_TC) /* set the new bank value */
|
| 1673 | | WR_BANK (inbound_value); /* while preserving the flag bits */
|
| 1674 | }
|
| 1675 |
|
| 1676 | else /* otherwise the state RAM is disabled */
|
| 1677 | aux_ram [address] = aux_reg; /* so reload the auxiliary RAM from its register */
|
| 1678 |
|
| 1679 | if (state_reg == State_B) /* if the current state is State B */
|
| 1680 | rollover = CLEAR; /* then clear the word count rollover flip-flop */
|
| 1681 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1682 | dprintf (mpx_dev, DEB_CSRW, "RAM [%u] stored address %06o | %s | "
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1683 | "counter %04o | %s | %sbank %02o\n",
|
| 1684 | address, addr_ram [address], sio_order_name [sio_order],
|
| 1685 | cntr_ram [address], state_name [state_ram [address]],
|
| 1686 | fmt_bitset (aux_ram [address], aux_format),
|
| 1687 | AUX_BANK (aux_ram [address]));
|
| 1688 | break;
|
| 1689 |
|
| 1690 |
|
| 1691 | case DREADSTB:
|
| 1692 | address = CN_RAM_ADDR (control_word); /* get the RAM location to address */
|
| 1693 |
|
| 1694 | if (control_word & CN_LOAD_REGS) { /* if the load enable bit is set */
|
| 1695 | addr_reg = addr_ram [address]; /* then load all */
|
| 1696 | order_reg = order_ram [address]; /* of the registers */
|
| 1697 | cntr_reg = cntr_ram [address]; /* from their */
|
| 1698 | state_reg = state_ram [address]; /* associated RAMs */
|
| 1699 | aux_reg = aux_ram [address]; /* regardless of any RAM enables */
|
| 1700 |
|
| 1701 | sio_order = RD_SIO_ORDER (order_reg, cntr_reg); /* get the current SIO order */
|
| 1702 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1703 | dprintf (mpx_dev, DEB_CSRW, "RAM [%u] loaded address %06o | %s | "
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1704 | "counter %04o | %s | %sbank %02o\n",
|
| 1705 | address, addr_reg, sio_order_name [sio_order],
|
| 1706 | cntr_reg, state_name [state_reg],
|
| 1707 | fmt_bitset (aux_reg, aux_format),
|
| 1708 | AUX_BANK (aux_reg));
|
| 1709 | }
|
| 1710 |
|
| 1711 | outbound_value = 0; /* start with an inactive IOD bus */
|
| 1712 |
|
| 1713 | if (control_word & CN_STATE_RAM) { /* if the state register is selected */
|
| 1714 | outbound_value = RD_STATE (state_reg) /* then merge the state register */
|
| 1715 | | RD_BANK (aux_reg); /* and bank number to the bus */
|
| 1716 |
|
| 1717 | if (aux_reg & AUX_TC) /* if the transfer-complete flag is set */
|
| 1718 | outbound_value |= RD_XFER_COMPLETE; /* then reflect it in the status */
|
| 1719 |
|
| 1720 | if (rollover == SET) /* if the word count rollover flip-flop is set */
|
| 1721 | outbound_value |= RD_XFER_END; /* then indicate the end of the transfer */
|
| 1722 |
|
| 1723 | if (odd_parity [UPPER_BYTE (addr_reg) /* if the address register value */
|
| 1724 | ^ LOWER_BYTE (addr_reg)]) /* has odd parity */
|
| 1725 | outbound_value |= RD_ADDR_PARITY; /* then set the parity status bit */
|
| 1726 |
|
| 1727 | if (state_parity [state_reg]) /* if the state register does not have exactly one bit set */
|
| 1728 | outbound_value |= RD_STATE_PARITY; /* then set the state parity status bit */
|
| 1729 |
|
| 1730 | dprintf (mpx_dev, DEB_CSRW, "State register value %sbank %02o returned\n",
|
| 1731 | fmt_bitset (outbound_value, read_format),
|
| 1732 | AUX_BANK (aux_reg));
|
| 1733 | }
|
| 1734 |
|
| 1735 | if (control_word & CN_ORDER_RAM) { /* if the order register is selected */
|
| 1736 | outbound_value = RD_ORDER (order_reg) /* then merge the order */
|
| 1737 | | RD_COUNT (cntr_reg); /* and counter registers to the bus */
|
| 1738 |
|
| 1739 | dprintf (mpx_dev, DEB_CSRW, "Order register value %02o (%s) "
|
| 1740 | "and counter register value %d returned\n",
|
| 1741 | order_reg & ORDER_MASK, sio_order_name [IOCW_ORDER (outbound_value)],
|
Mark Pizzolato | e370b9e | 2016-09-20 20:34:22 -0700 | [diff] [blame] | 1742 | SEXT (IOCW_COUNT (outbound_value)));
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1743 | }
|
| 1744 |
|
| 1745 | if (control_word & CN_ADDR_RAM) { /* if the address register is selected */
|
| 1746 | outbound_value |= addr_reg; /* then enable it to drive the bus */
|
| 1747 |
|
| 1748 | dprintf (mpx_dev, DEB_CSRW, "Address register value %06o returned\n",
|
| 1749 | addr_reg);
|
| 1750 | }
|
| 1751 |
|
| 1752 | if (control_word & CN_INCR_REGS) { /* if incrementing is enabled */
|
| 1753 | if (control_word & CN_ADDR_RAM){ /* then if the address register is selected */
|
| 1754 | addr_reg = addr_reg + 1 & RD_ADDR_MASK; /* then increment it */
|
| 1755 |
|
| 1756 | dprintf (mpx_dev, DEB_CSRW, "Address register incremented to %06o\n",
|
| 1757 | addr_reg);
|
| 1758 | }
|
| 1759 |
|
| 1760 | if (control_word & CN_ORDER_RAM) { /* if the order register is selected */
|
| 1761 | cntr_reg = cntr_reg + 1 & RD_COUNT_MASK; /* then increment the counter part of it */
|
| 1762 |
|
| 1763 | dprintf (mpx_dev, DEB_CSRW, "Counter register incremented to %04o\n",
|
| 1764 | cntr_reg);
|
| 1765 |
|
| 1766 | if (cntr_reg == 0) { /* if the counter rolled over */
|
| 1767 | rollover = SET; /* then set the rollover flip-flop */
|
| 1768 | aux_reg |= AUX_TC; /* and the terminal count flag */
|
| 1769 | }
|
| 1770 | }
|
| 1771 | }
|
| 1772 | break;
|
| 1773 |
|
| 1774 |
|
| 1775 | case DSTATSTB:
|
| 1776 | outbound_value = ST_DIO_OK | status_word; /* get the last state parity error, if any */
|
| 1777 |
|
| 1778 | dprintf (mpx_dev, DEB_CSRW, (status_word & ST_STATE_PARITY)
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1779 | ? "Status is %sRAM address %u\n"
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1780 | : "Status is DIO OK\n",
|
| 1781 | fmt_bitset (outbound_value, status_format),
|
| 1782 | ST_TO_RAM_ADDR (outbound_value));
|
| 1783 | break;
|
| 1784 |
|
| 1785 |
|
| 1786 | case DCONTSTB:
|
| 1787 | control_word = inbound_value; /* save the new control word */
|
| 1788 |
|
| 1789 | if (control_word & CN_MR) /* if a master reset is indicated */
|
| 1790 | mpx_reset (&mpx_dev); /* then perform an IORESET */
|
| 1791 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1792 | dprintf (mpx_dev, DEB_CSRW, "Control is %sRAM address %u\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1793 | fmt_bitset (inbound_value, control_format),
|
| 1794 | CN_RAM_ADDR (control_word));
|
| 1795 | break;
|
| 1796 |
|
| 1797 |
|
| 1798 | case DSETINT: /* not used by this interface */
|
| 1799 | case DRESETINT: /* not used by this interface */
|
| 1800 | case DSTARTIO: /* not used by this interface */
|
| 1801 | case DSETMASK: /* not used by this interface */
|
| 1802 | case INTPOLLIN: /* not used by this interface */
|
| 1803 | case XFERERROR: /* not used by this interface */
|
| 1804 | case ACKSR: /* not used by this interface */
|
| 1805 | case TOGGLESR: /* not used by this interface */
|
| 1806 | case TOGGLESIOOK: /* not used by this interface */
|
| 1807 | case TOGGLEINXFER: /* not used by this interface */
|
| 1808 | case TOGGLEOUTXFER: /* not used by this interface */
|
| 1809 | case READNEXTWD: /* not used by this interface */
|
| 1810 | case PREADSTB: /* not used by this interface */
|
| 1811 | case PWRITESTB: /* not used by this interface */
|
| 1812 | case PCMD1: /* not used by this interface */
|
| 1813 | case PCONTSTB: /* not used by this interface */
|
| 1814 | case PSTATSTB: /* not used by this interface */
|
| 1815 | case DEVNODB: /* not used by this interface */
|
| 1816 | case SETINT: /* not used by this interface */
|
| 1817 | case EOT: /* not used by this interface */
|
| 1818 | case SETJMP: /* not used by this interface */
|
| 1819 | case CHANSO: /* not used by this interface */
|
| 1820 | case PFWARN: /* not used by this interface */
|
| 1821 | break;
|
| 1822 | }
|
| 1823 |
|
| 1824 | IOCLEARSIG (working_set, signal); /* remove the current signal from the set */
|
| 1825 | }
|
| 1826 |
|
| 1827 | dprintf (mpx_dev, DEB_IOB, "Returned data %06o with signals %s\n",
|
| 1828 | outbound_value, fmt_bitset (outbound_signals, outbound_format));
|
| 1829 |
|
| 1830 | return IORETURN (outbound_signals, outbound_value); /* return the outbound signals and value */
|
| 1831 | }
|
| 1832 |
|
| 1833 |
|
| 1834 | /* Device reset.
|
| 1835 |
|
| 1836 | This routine is called for a RESET or RESET MPX command. It is the
|
| 1837 | simulation equivalent of the IORESET signal, which is asserted by the front
|
| 1838 | panel LOAD and DUMP switches.
|
| 1839 |
|
| 1840 | For this interface, IORESET is identical to a Programmed Master Reset.
|
| 1841 |
|
| 1842 | A reset does not clear the order, counter, or address registers, nor any of
|
| 1843 | the RAMs.
|
| 1844 | */
|
| 1845 |
|
| 1846 | static t_stat mpx_reset (DEVICE *dptr)
|
| 1847 | {
|
| 1848 | state_reg = 0; /* clear the state */
|
| 1849 | aux_reg = 0; /* and auxiliary registers */
|
| 1850 |
|
| 1851 | control_word = 0; /* clear the control register */
|
| 1852 | status_word = 0; /* and state parity status register */
|
| 1853 |
|
| 1854 | rollover = CLEAR; /* clear the word count rollover */
|
| 1855 | device_end = CLEAR; /* and device end flip-flops */
|
| 1856 |
|
| 1857 | active_count = 0; /* idle the channel */
|
| 1858 | mpx_is_idle = TRUE;
|
| 1859 |
|
| 1860 | return SCPE_OK;
|
| 1861 | }
|
| 1862 |
|
| 1863 |
|
| 1864 |
|
| 1865 | /* Channel local utility routines */
|
| 1866 |
|
| 1867 |
|
| 1868 |
|
| 1869 | /* Determine the next state.
|
| 1870 |
|
| 1871 | All I/O orders except Set Bank, Read, and Write execute states C, A, and B,
|
| 1872 | in that order. The Set Bank order executes state C, A, and D. The Read and
|
| 1873 | Write orders execute states C, A, B, and then one D state for each word
|
| 1874 | transferred.
|
| 1875 |
|
| 1876 | An abort in state D uses that cycle to perform the action of the next initial
|
| 1877 | state C, which is skipped. Following the abort, the next state is state A.
|
| 1878 | */
|
| 1879 |
|
| 1880 | static uint8 next_state (uint8 current_state, SIO_ORDER order, t_bool abort)
|
| 1881 | {
|
| 1882 | switch (current_state) {
|
| 1883 |
|
| 1884 | case State_A: /* from state A */
|
| 1885 | if (order == sioSBANK) /* the Set Bank order */
|
| 1886 | return State_D; /* proceeds to state D */
|
| 1887 | else /* while all other orders */
|
| 1888 | return State_B; /* proceed to state B */
|
| 1889 |
|
| 1890 |
|
| 1891 | case State_B: /* from state B */
|
| 1892 | if (order == sioEND || order == sioENDIN) /* the End and End with Interrupt orders */
|
| 1893 | return State_Idle; /* idle the channel */
|
| 1894 |
|
| 1895 | else if (order >= sioWRITE) /* while the Write and Read orders */
|
| 1896 | return State_D; /* proceed to state D */
|
| 1897 |
|
| 1898 | else /* and all other orders */
|
| 1899 | return State_C; /* proceed to state C */
|
| 1900 |
|
| 1901 |
|
| 1902 | case State_C: /* from state C */
|
| 1903 | return State_A; /* all orders proceed to state A */
|
| 1904 |
|
| 1905 |
|
| 1906 | case State_D: /* from state D */
|
| 1907 | if (order == sioSBANK || rollover == SET) /* the Set Bank order and the terminal count condition */
|
| 1908 | return State_C; /* proceed to state C */
|
| 1909 |
|
| 1910 | else if (abort) /* while the transfer abort condition */
|
| 1911 | return State_A; /* proceeds to state A */
|
| 1912 |
|
| 1913 | else /* and transfer continuation */
|
| 1914 | return State_D; /* remains in state D */
|
| 1915 |
|
| 1916 |
|
| 1917 | default: /* all invalid states */
|
| 1918 | return State_Idle; /* return to the idle condition */
|
| 1919 | }
|
| 1920 | }
|
| 1921 |
|
| 1922 |
|
| 1923 | /* End the channel I/O program.
|
| 1924 |
|
| 1925 | The channel program ends, either normally via an sioEND or sioENDIN order, or
|
| 1926 | abnormally via an XFERERROR abort. The reference count is decreased, and the
|
| 1927 | idle flag set if no more transfers are active.
|
| 1928 | */
|
| 1929 |
|
| 1930 | static void end_channel (DIB *dibptr)
|
| 1931 | {
|
| 1932 | active_count = active_count - 1; /* decrease the reference count */
|
| 1933 | mpx_is_idle = (active_count == 0); /* and idle the channel if no more work */
|
| 1934 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1935 | dprintf (mpx_dev, DEB_CSRW, "Channel SR %u program ended\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1936 | dibptr->service_request_number);
|
| 1937 |
|
| 1938 | return;
|
| 1939 | }
|
| 1940 |
|
| 1941 |
|
| 1942 | /* Abort the transfer in progress.
|
| 1943 |
|
| 1944 | If an internal channel error occurs (e.g., a memory read or write failure,
|
| 1945 | due to an invalid address), the channel asserts the XFERERROR signal to the
|
| 1946 | device and then terminates the channel program. The device will clear its
|
| 1947 | internal logic in response.
|
| 1948 | */
|
| 1949 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1950 | static SIGNALS_DATA abort_channel (DIB *dibptr, const char *reason)
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1951 | {
|
| 1952 | SIGNALS_DATA outbound;
|
| 1953 |
|
Mark Pizzolato | 07f99bb | 2016-07-05 22:09:21 -0700 | [diff] [blame] | 1954 | dprintf (mpx_dev, DEB_CSRW, "Channel SR %u asserted XFERERROR for %s\n",
|
Mark Pizzolato | 3a4e879 | 2016-03-07 20:47:57 -0800 | [diff] [blame] | 1955 | dibptr->service_request_number, reason);
|
| 1956 |
|
| 1957 | outbound = dibptr->io_interface (dibptr, XFERERROR | CHANSO, 0); /* tell the device that the channel has aborted */
|
| 1958 |
|
| 1959 | end_channel (dibptr); /* end the channel program */
|
| 1960 |
|
| 1961 | return outbound;
|
| 1962 | }
|