blob: f64196a2af078a6650540cca902b294959fc957b [file] [log] [blame] [raw]
/* scp.c: simulator control program
Copyright (c) 1993-2009, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
08-Feb-09 RMS Fixed warnings in help printouts
29-Dec-08 RMS Fixed implementation of MTAB_NC
24-Nov-08 RMS Revised RESTORE unit logic for consistency
05-Sep-08 JDB "detach_all" ignores error status returns if shutting down
17-Aug-08 RMS Revert RUN/BOOT to standard, rather than powerup, reset
25-Jul-08 JDB DO cmd missing params now default to null string
29-Jun-08 JDB DO cmd sub_args now allows "\\" to specify literal backslash
31-Mar-08 RMS Fixed bug in local/global register search (found by Mark Pizzolato)
Fixed bug in restore of RO units (from Mark Pizzolato)
06-Feb-08 RMS Added SET/SHO/NO BR with default argument
18-Jul-07 RMS Modified match_ext for VMS ext;version support
28-Apr-07 RMS Modified sim_instr invocation to call sim_rtcn_init_all
Fixed bug in get_sim_opt
Fixed bug in restoration with changed memory size
08-Mar-07 JDB Fixed breakpoint actions in DO command file processing
30-Jan-07 RMS Fixed bugs in get_ipaddr
17-Oct-06 RMS Added idle support
04-Oct-06 JDB DO cmd failure now echoes cmd unless -q
14-Jul-06 RMS Added sim_activate_abs
02-Jun-06 JDB Fixed do_cmd to exit nested files on assertion failure
Added -E switch to do_cmd to exit on any error
14-Feb-06 RMS Upgraded save file format to V3.5
18-Jan-06 RMS Added fprint_stopped_gen
Added breakpoint spaces
Fixed unaligned register access (found by Doug Carman)
22-Sep-05 RMS Fixed declarations (from Sterling Garwood)
30-Aug-05 RMS Revised to trim trailing spaces on file names
25-Aug-05 RMS Added variable default device support
23-Aug-05 RMS Added Linux line history support
16-Aug-05 RMS Fixed C++ declaration and cast problems
01-May-05 RMS Revised syntax for SET DEBUG (from Dave Bryan)
22-Mar-05 JDB Modified DO command to allow ten-level nesting
18-Mar-05 RMS Moved DETACH tests into detach_unit (from Dave Bryan)
Revised interface to fprint_sym, fparse_sym
07-Feb-05 RMS Added ASSERT command (from Dave Bryan)
02-Feb-05 RMS Fixed bug in global register search
26-Dec-04 RMS Qualified SAVE examine, RESTORE deposit with SIM_SW_REST
10-Nov-04 JDB Fixed logging of errors from cmds in "do" file
05-Nov-04 RMS Moved SET/SHOW DEBUG under CONSOLE hierarchy
Renamed unit OFFLINE/ONLINE to DISABLED/ENABLED (from Dave Bryan)
Revised to flush output files after simulation stop (from Dave Bryan)
15-Oct-04 RMS Fixed HELP to suppress duplicate descriptions
27-Sep-04 RMS Fixed comma-separation options in set (from David Bryan)
09-Sep-04 RMS Added -p option for RESET
13-Aug-04 RMS Qualified RESTORE detach with SIM_SW_REST
17-Jul-04 RMS Added ECHO command (from Dave Bryan)
12-Jul-04 RMS Fixed problem ATTACHing to read only files
(found by John Dundas)
28-May-04 RMS Added SET/SHOW CONSOLE
14-Feb-04 RMS Updated SAVE/RESTORE (V3.2)
RMS Added debug print routines (from Dave Hittner)
RMS Added sim_vm_parse_addr and sim_vm_fprint_addr
RMS Added REG_VMAD support
RMS Split out libraries
RMS Moved logging function to SCP
RMS Exposed step counter interface(s)
RMS Fixed double logging of SHOW BREAK (found by Mark Pizzolato)
RMS Fixed implementation of REG_VMIO
RMS Added SET/SHOW DEBUG, SET/SHOW <device> DEBUG,
SHOW <device> MODIFIERS, SHOW <device> RADIX
RMS Changed sim_fsize to take uptr argument
29-Dec-03 RMS Added Telnet console output stall support
01-Nov-03 RMS Cleaned up implicit detach on attach/restore
Fixed bug in command line read while logging (found by Mark Pizzolato)
01-Sep-03 RMS Fixed end-of-file problem in dep, idep
Fixed error on trailing spaces in dep, idep
15-Jul-03 RMS Removed unnecessary test in reset_all
15-Jun-03 RMS Added register flag REG_VMIO
25-Apr-03 RMS Added extended address support (V3.0)
Fixed bug in SAVE (found by Peter Schorn)
Added u5, u6 fields
Added logical name support
03-Mar-03 RMS Added sim_fsize
27-Feb-03 RMS Fixed bug in multiword deposits to files
08-Feb-03 RMS Changed sim_os_sleep to void, match_ext to char*
Added multiple actions, .ini file support
Added multiple switch evaluations per line
07-Feb-03 RMS Added VMS support for ! (from Mark Pizzolato)
01-Feb-03 RMS Added breakpoint table extension, actions
14-Jan-03 RMS Added missing function prototypes
10-Jan-03 RMS Added attach/restore flag, dynamic memory size support,
case sensitive SET options
22-Dec-02 RMS Added ! (OS command) feature (from Mark Pizzolato)
17-Dec-02 RMS Added get_ipaddr
02-Dec-02 RMS Added EValuate command
16-Nov-02 RMS Fixed bug in register name match algorithm
13-Oct-02 RMS Fixed Borland compiler warnings (found by Hans Pufal)
05-Oct-02 RMS Fixed bugs in set_logon, ssh_break (found by David Hittner)
Added support for fixed buffer devices
Added support for Telnet console, removed VT support
Added help <command>
Added VMS file optimizations (from Robert Alan Byer)
Added quiet mode, DO with parameters, GUI interface,
extensible commands (from Brian Knittel)
Added device enable/disable commands
14-Jul-02 RMS Fixed exit bug in do, added -v switch (from Brian Knittel)
17-May-02 RMS Fixed bug in fxread/fxwrite error usage (found by
Norm Lastovic)
02-May-02 RMS Added VT emulation interface, changed {NO}LOG to SET {NO}LOG
22-Apr-02 RMS Fixed laptop sleep problem in clock calibration, added
magtape record length error (found by Jonathan Engdahl)
26-Feb-02 RMS Fixed initialization bugs in do_cmd, get_aval
(found by Brian Knittel)
10-Feb-02 RMS Fixed problem in clock calibration
06-Jan-02 RMS Moved device enable/disable to simulators
30-Dec-01 RMS Generalized timer packaged, added circular arrays
19-Dec-01 RMS Fixed DO command bug (found by John Dundas)
07-Dec-01 RMS Implemented breakpoint package
05-Dec-01 RMS Fixed bug in universal register logic
03-Dec-01 RMS Added read-only units, extended SET/SHOW, universal registers
24-Nov-01 RMS Added unit-based registers
16-Nov-01 RMS Added DO command
28-Oct-01 RMS Added relative range addressing
08-Oct-01 RMS Added SHOW VERSION
30-Sep-01 RMS Relaxed attach test in BOOT
27-Sep-01 RMS Added queue count routine, fixed typo in ex/mod
17-Sep-01 RMS Removed multiple console support
07-Sep-01 RMS Removed conditional externs on function prototypes
Added special modifier print
31-Aug-01 RMS Changed int64 to t_int64 for Windoze (V2.7)
18-Jul-01 RMS Minor changes for Macintosh port
12-Jun-01 RMS Fixed bug in big-endian I/O (found by Dave Conroy)
27-May-01 RMS Added multiple console support
16-May-01 RMS Added logging
15-May-01 RMS Added features from Tim Litt
12-May-01 RMS Fixed missing return in disable_cmd
25-Mar-01 RMS Added ENABLE/DISABLE
14-Mar-01 RMS Revised LOAD/DUMP interface (again)
05-Mar-01 RMS Added clock calibration support
05-Feb-01 RMS Fixed bug, DETACH buffered unit with hwmark = 0
04-Feb-01 RMS Fixed bug, RESTORE not using device's attach routine
21-Jan-01 RMS Added relative time
22-Dec-00 RMS Fixed find_device for devices ending in numbers
08-Dec-00 RMS V2.5a changes
30-Oct-00 RMS Added output file option to examine
11-Jul-99 RMS V2.5 changes
13-Apr-99 RMS Fixed handling of 32b addresses
04-Oct-98 RMS V2.4 changes
20-Aug-98 RMS Added radix commands
05-Jun-98 RMS Fixed bug in ^D handling for UNIX
10-Apr-98 RMS Added switches to all commands
26-Oct-97 RMS Added search capability
25-Jan-97 RMS Revised data types
23-Jan-97 RMS Added bi-endian I/O
06-Sep-96 RMS Fixed bug in variable length IEXAMINE
16-Jun-96 RMS Changed interface to parse/print_sym
06-Apr-96 RMS Added error checking in reset all
07-Jan-96 RMS Added register buffers in save/restore
11-Dec-95 RMS Fixed ordering bug in save/restore
22-May-95 RMS Added symbolic input
13-Apr-95 RMS Added symbolic printouts
*/
/* Macros and data structures */
#include "sim_defs.h"
#include "sim_rev.h"
#include <signal.h>
#include <ctype.h>
#define EX_D 0 /* deposit */
#define EX_E 1 /* examine */
#define EX_I 2 /* interactive */
#define SCH_OR 0 /* search logicals */
#define SCH_AND 1
#define SCH_XOR 2
#define SCH_E 0 /* search booleans */
#define SCH_N 1
#define SCH_G 2
#define SCH_L 3
#define SCH_EE 4
#define SCH_NE 5
#define SCH_GE 6
#define SCH_LE 7
#define SSH_ST 0 /* set */
#define SSH_SH 1 /* show */
#define SSH_CL 2 /* clear */
#define DO_NEST_LVL 10 /* DO cmd nesting level */
#define SRBSIZ 1024 /* save/restore buffer */
#define SIM_BRK_INILNT 4096 /* bpt tbl length */
#define SIM_BRK_ALLTYP 0xFFFFFFFF
#define UPDATE_SIM_TIME(x) sim_time = sim_time + (x - sim_interval); \
sim_rtime = sim_rtime + ((uint32) (x - sim_interval)); \
x = sim_interval
#define SZ_D(dp) (size_map[((dp)->dwidth + CHAR_BIT - 1) / CHAR_BIT])
#define SZ_R(rp) \
(size_map[((rp)->width + (rp)->offset + CHAR_BIT - 1) / CHAR_BIT])
#if defined (USE_INT64)
#define SZ_LOAD(sz,v,mb,j) \
if (sz == sizeof (uint8)) v = *(((uint8 *) mb) + ((uint32) j)); \
else if (sz == sizeof (uint16)) v = *(((uint16 *) mb) + ((uint32) j)); \
else if (sz == sizeof (uint32)) v = *(((uint32 *) mb) + ((uint32) j)); \
else v = *(((t_uint64 *) mb) + ((uint32) j));
#define SZ_STORE(sz,v,mb,j) \
if (sz == sizeof (uint8)) *(((uint8 *) mb) + j) = (uint8) v; \
else if (sz == sizeof (uint16)) *(((uint16 *) mb) + ((uint32) j)) = (uint16) v; \
else if (sz == sizeof (uint32)) *(((uint32 *) mb) + ((uint32) j)) = (uint32) v; \
else *(((t_uint64 *) mb) + ((uint32) j)) = v;
#else
#define SZ_LOAD(sz,v,mb,j) \
if (sz == sizeof (uint8)) v = *(((uint8 *) mb) + ((uint32) j)); \
else if (sz == sizeof (uint16)) v = *(((uint16 *) mb) + ((uint32) j)); \
else v = *(((uint32 *) mb) + ((uint32) j));
#define SZ_STORE(sz,v,mb,j) \
if (sz == sizeof (uint8)) *(((uint8 *) mb) + ((uint32) j)) = (uint8) v; \
else if (sz == sizeof (uint16)) *(((uint16 *) mb) + ((uint32) j)) = (uint16) v; \
else *(((uint32 *) mb) + ((uint32) j)) = v;
#endif
#define GET_SWITCHES(cp) \
if ((cp = get_sim_sw (cp)) == NULL) return SCPE_INVSW
#define GET_RADIX(val,dft) \
if (sim_switches & SWMASK ('O')) val = 8; \
else if (sim_switches & SWMASK ('D')) val = 10; \
else if (sim_switches & SWMASK ('H')) val = 16; \
else val = dft;
/* VM interface */
extern char sim_name[];
extern DEVICE *sim_devices[];
extern REG *sim_PC;
extern const char *sim_stop_messages[];
extern t_stat sim_instr (void);
extern t_stat sim_load (FILE *ptr, char *cptr, char *fnam, int32 flag);
extern int32 sim_emax;
extern t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val,
UNIT *uptr, int32 sw);
extern t_stat parse_sym (char *cptr, t_addr addr, UNIT *uptr, t_value *val,
int32 sw);
/* The per-simulator init routine is a weak global that defaults to NULL
The other per-simulator pointers can be overrriden by the init routine */
void (*sim_vm_init) (void);
char* (*sim_vm_read) (char *ptr, int32 size, FILE *stream) = NULL;
void (*sim_vm_post) (t_bool from_scp) = NULL;
CTAB *sim_vm_cmd = NULL;
void (*sim_vm_fprint_addr) (FILE *st, DEVICE *dptr, t_addr addr) = NULL;
t_addr (*sim_vm_parse_addr) (DEVICE *dptr, char *cptr, char **tptr) = NULL;
/* Prototypes */
/* Set and show command processors */
t_stat set_dev_radix (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat set_dev_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat set_dev_debug (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat set_unit_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat ssh_break (FILE *st, char *cptr, int32 flg);
t_stat show_cmd_fi (FILE *ofile, int32 flag, char *cptr);
t_stat show_config (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_queue (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_time (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_mod_names (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_log_names (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_dev_radix (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_dev_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_dev_logicals (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_dev_modifiers (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_version (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_break (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
t_stat show_device (FILE *st, DEVICE *dptr, int32 flag);
t_stat show_unit (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag);
t_stat show_all_mods (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flg);
t_stat show_one_mod (FILE *st, DEVICE *dptr, UNIT *uptr, MTAB *mptr, char *cptr, int32 flag);
t_stat sim_check_console (int32 sec);
t_stat sim_save (FILE *sfile);
t_stat sim_rest (FILE *rfile);
/* Breakpoint package */
t_stat sim_brk_init (void);
t_stat sim_brk_set (t_addr loc, int32 sw, int32 ncnt, char *act);
t_stat sim_brk_clr (t_addr loc, int32 sw);
t_stat sim_brk_clrall (int32 sw);
t_stat sim_brk_show (FILE *st, t_addr loc, int32 sw);
t_stat sim_brk_showall (FILE *st, int32 sw);
char *sim_brk_getact (char *buf, int32 size);
void sim_brk_clract (void);
void sim_brk_npc (uint32 cnt);
BRKTAB *sim_brk_new (t_addr loc);
/* Commands support routines */
SCHTAB *get_search (char *cptr, int32 radix, SCHTAB *schptr);
int32 test_search (t_value val, SCHTAB *schptr);
char *get_glyph_gen (char *iptr, char *optr, char mchar, t_bool uc);
int32 get_switches (char *cptr);
char *get_sim_sw (char *cptr);
t_stat get_aval (t_addr addr, DEVICE *dptr, UNIT *uptr);
t_value get_rval (REG *rptr, uint32 idx);
void put_rval (REG *rptr, uint32 idx, t_value val);
t_value strtotv (char *inptr, char **endptr, uint32 radix);
void fprint_help (FILE *st);
void fprint_stopped (FILE *st, t_stat r);
void fprint_capac (FILE *st, DEVICE *dptr, UNIT *uptr);
char *read_line (char *ptr, int32 size, FILE *stream);
REG *find_reg_glob (char *ptr, char **optr, DEVICE **gdptr);
char *sim_trim_endspc (char *cptr);
/* Forward references */
t_stat scp_attach_unit (DEVICE *dptr, UNIT *uptr, char *cptr);
t_stat scp_detach_unit (DEVICE *dptr, UNIT *uptr);
t_bool qdisable (DEVICE *dptr);
t_stat attach_err (UNIT *uptr, t_stat stat);
t_stat detach_all (int32 start_device, t_bool shutdown);
t_stat assign_device (DEVICE *dptr, char *cptr);
t_stat deassign_device (DEVICE *dptr);
t_stat ssh_break_one (FILE *st, int32 flg, t_addr lo, int32 cnt, char *aptr);
t_stat run_boot_prep (void);
t_stat exdep_reg_loop (FILE *ofile, SCHTAB *schptr, int32 flag, char *cptr,
REG *lowr, REG *highr, uint32 lows, uint32 highs);
t_stat ex_reg (FILE *ofile, t_value val, int32 flag, REG *rptr, uint32 idx);
t_stat dep_reg (int32 flag, char *cptr, REG *rptr, uint32 idx);
t_stat exdep_addr_loop (FILE *ofile, SCHTAB *schptr, int32 flag, char *cptr,
t_addr low, t_addr high, DEVICE *dptr, UNIT *uptr);
t_stat ex_addr (FILE *ofile, int32 flag, t_addr addr, DEVICE *dptr, UNIT *uptr);
t_stat dep_addr (int32 flag, char *cptr, t_addr addr, DEVICE *dptr,
UNIT *uptr, int32 dfltinc);
t_stat step_svc (UNIT *ptr);
void sub_args (char *instr, char *tmpbuf, int32 maxstr, char *do_arg[]);
/* Global data */
DEVICE *sim_dflt_dev = NULL;
UNIT *sim_clock_queue = NULL;
int32 sim_interval = 0;
int32 sim_switches = 0;
FILE *sim_ofile = NULL;
SCHTAB *sim_schptr = FALSE;
DEVICE *sim_dfdev = NULL;
UNIT *sim_dfunit = NULL;
int32 sim_opt_out = 0;
int32 sim_is_running = 0;
uint32 sim_brk_summ = 0;
uint32 sim_brk_types = 0;
uint32 sim_brk_dflt = 0;
char *sim_brk_act = NULL;
BRKTAB *sim_brk_tab = NULL;
int32 sim_brk_ent = 0;
int32 sim_brk_lnt = 0;
int32 sim_brk_ins = 0;
t_bool sim_brk_pend[SIM_BKPT_N_SPC] = { FALSE };
t_addr sim_brk_ploc[SIM_BKPT_N_SPC] = { 0 };
int32 sim_quiet = 0;
int32 sim_step = 0;
static double sim_time;
static uint32 sim_rtime;
static int32 noqueue_time;
volatile int32 stop_cpu = 0;
t_value *sim_eval = NULL;
int32 sim_deb_close = 0; /* 1 = close debug */
FILE *sim_log = NULL; /* log file */
FILE *sim_deb = NULL; /* debug file */
static SCHTAB sim_stab;
static UNIT sim_step_unit = { UDATA (&step_svc, 0, 0) };
#if defined USE_INT64
static const char *sim_si64 = "64b data";
#else
static const char *sim_si64 = "32b data";
#endif
#if defined USE_ADDR64
static const char *sim_sa64 = "64b addresses";
#else
static const char *sim_sa64 = "32b addresses";
#endif
#if defined USE_NETWORK
static const char *sim_snet = "Ethernet support";
#else
static const char *sim_snet = "no Ethernet";
#endif
/* Tables and strings */
const char save_vercur[] = "V3.5";
const char save_ver32[] = "V3.2";
const char save_ver30[] = "V3.0";
const char *scp_error_messages[] = {
"Address space exceeded",
"Unit not attached",
"I/O error",
"Checksum error",
"Format error",
"Unit not attachable",
"File open error",
"Memory exhausted",
"Invalid argument",
"Step expired",
"Unknown command",
"Read only argument",
"Command not completed",
"Simulation stopped",
"Goodbye",
"Console input I/O error",
"Console output I/O error",
"End of file",
"Relocation error",
"No settable parameters",
"Unit already attached",
"Hardware timer error",
"SIGINT handler setup error",
"Console terminal setup error",
"Subscript out of range",
"Command not allowed",
"Unit disabled",
"Read only operation not allowed",
"Invalid switch",
"Missing value",
"Too few arguments",
"Too many arguments",
"Non-existent device",
"Non-existent unit",
"Non-existent register",
"Non-existent parameter",
"Nested DO command limit exceeded",
"Internal error",
"Invalid magtape record length",
"Console Telnet connection lost",
"Console Telnet connection timed out",
"Console Telnet output stall",
"Assertion failed"
};
const size_t size_map[] = { sizeof (int8),
sizeof (int8), sizeof (int16), sizeof (int32), sizeof (int32)
#if defined (USE_INT64)
, sizeof (t_int64), sizeof (t_int64), sizeof (t_int64), sizeof (t_int64)
#endif
};
const t_value width_mask[] = { 0,
0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF,
0x1FF, 0x3FF, 0x7FF, 0xFFF,
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF,
0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF,
0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF,
0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF
#if defined (USE_INT64)
, 0x1FFFFFFFF, 0x3FFFFFFFF, 0x7FFFFFFFF, 0xFFFFFFFFF,
0x1FFFFFFFFF, 0x3FFFFFFFFF, 0x7FFFFFFFFF, 0xFFFFFFFFFF,
0x1FFFFFFFFFF, 0x3FFFFFFFFFF, 0x7FFFFFFFFFF, 0xFFFFFFFFFFF,
0x1FFFFFFFFFFF, 0x3FFFFFFFFFFF, 0x7FFFFFFFFFFF, 0xFFFFFFFFFFFF,
0x1FFFFFFFFFFFF, 0x3FFFFFFFFFFFF, 0x7FFFFFFFFFFFF, 0xFFFFFFFFFFFFF,
0x1FFFFFFFFFFFFF, 0x3FFFFFFFFFFFFF, 0x7FFFFFFFFFFFFF, 0xFFFFFFFFFFFFFF,
0x1FFFFFFFFFFFFFF, 0x3FFFFFFFFFFFFFF,
0x7FFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFF,
0x1FFFFFFFFFFFFFFF, 0x3FFFFFFFFFFFFFFF,
0x7FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF
#endif
};
static CTAB cmd_table[] = {
{ "RESET", &reset_cmd, 0,
"r{eset} {ALL|<device>} reset simulator\n" },
{ "EXAMINE", &exdep_cmd, EX_E,
"e{xamine} <list> examine memory or registers\n" },
{ "IEXAMINE", &exdep_cmd, EX_E+EX_I,
"ie{xamine} <list> interactive examine memory or registers\n" },
{ "DEPOSIT", &exdep_cmd, EX_D,
"d{eposit} <list> <val> deposit in memory or registers\n" },
{ "IDEPOSIT", &exdep_cmd, EX_D+EX_I,
"id{eposit} <list> interactive deposit in memory or registers\n" },
{ "EVALUATE", &eval_cmd, 0,
"ev{aluate} <expr> evaluate symbolic expression\n" },
{ "RUN", &run_cmd, RU_RUN,
"ru{n} {new PC} reset and start simulation\n" },
{ "GO", &run_cmd, RU_GO,
"go {new PC} start simulation\n" },
{ "STEP", &run_cmd, RU_STEP,
"s{tep} {n} simulate n instructions\n" },
{ "CONT", &run_cmd, RU_CONT,
"c{ont} continue simulation\n" },
{ "BOOT", &run_cmd, RU_BOOT,
"b{oot} <unit> bootstrap unit\n" },
{ "BREAK", &brk_cmd, SSH_ST,
"br{eak} <list> set breakpoints\n" },
{ "NOBREAK", &brk_cmd, SSH_CL,
"nobr{eak} <list> clear breakpoints\n" },
{ "ATTACH", &attach_cmd, 0,
"at{tach} <unit> <file> attach file to simulated unit\n" },
{ "DETACH", &detach_cmd, 0,
"det{ach} <unit> detach file from simulated unit\n" },
{ "ASSIGN", &assign_cmd, 0,
"as{sign} <device> <name> assign logical name for device\n" },
{ "DEASSIGN", &deassign_cmd, 0,
"dea{ssign} <device> deassign logical name for device\n" },
{ "SAVE", &save_cmd, 0,
"sa{ve} <file> save simulator to file\n" },
{ "RESTORE", &restore_cmd, 0,
"rest{ore}|ge{t} <file> restore simulator from file\n" },
{ "GET", &restore_cmd, 0, NULL },
{ "LOAD", &load_cmd, 0,
"l{oad} <file> {<args>} load binary file\n" },
{ "DUMP", &load_cmd, 1,
"du(mp) <file> {<args>} dump binary file\n" },
{ "EXIT", &exit_cmd, 0,
"exi{t}|q{uit}|by{e} exit from simulation\n" },
{ "QUIT", &exit_cmd, 0, NULL },
{ "BYE", &exit_cmd, 0, NULL },
{ "SET", &set_cmd, 0,
"set console arg{,arg...} set console options\n"
"set break <list> set breakpoints\n"
"set nobreak <list> clear breakpoints\n"
"set throttle x{M|K|%%} set simulation rate\n"
"set nothrottle set simulation rate to maximum\n"
"set <dev> OCT|DEC|HEX set device display radix\n"
"set <dev> ENABLED enable device\n"
"set <dev> DISABLED disable device\n"
"set <dev> DEBUG{=arg} set device debug flags\n"
"set <dev> NODEBUG={arg} clear device debug flags\n"
"set <dev> arg{,arg...} set device parameters\n"
"set <unit> ENABLED enable unit\n"
"set <unit> DISABLED disable unit\n"
"set <unit> arg{,arg...} set unit parameters\n"
},
{ "SHOW", &show_cmd, 0,
"sh{ow} br{eak} <list> show breakpoints\n"
"sh{ow} con{figuration} show configuration\n"
"sh{ow} cons{ole} {arg} show console options\n"
"sh{ow} dev{ices} show devices\n"
"sh{ow} m{odifiers} show modifiers\n"
"sh{ow} n{ames} show logical names\n"
"sh{ow} q{ueue} show event queue\n"
"sh{ow} ti{me} show simulated time\n"
"sh{ow} th{rottle} show simulation rate\n"
"sh{ow} ve{rsion} show simulator version\n"
"sh{ow} <dev> RADIX show device display radix\n"
"sh{ow} <dev> DEBUG show device debug flags\n"
"sh{ow} <dev> MODIFIERS show device modifiers\n"
"sh{ow} <dev} NAMES show device logical name\n"
"sh{ow} <dev> {arg,...} show device parameters\n"
"sh{ow} <unit> {arg,...} show unit parameters\n" },
{ "DO", &do_cmd, 1,
"do <file> {arg,arg...} process command file\n" },
{ "ECHO", &echo_cmd, 0,
"echo <string> display <string>\n" },
{ "ASSERT", &assert_cmd, 0,
"assert {<dev>} <cond> test simulator state against condition\n" },
{ "HELP", &help_cmd, 0,
"h{elp} type this message\n"
"h{elp} <command> type help for command\n" },
{ "!", &spawn_cmd, 0,
"! execute local command interpreter\n"
"! <command> execute local host command\n" },
{ NULL, NULL, 0 }
};
/* Main command loop */
int main (int argc, char *argv[])
{
char cbuf[CBUFSIZE], gbuf[CBUFSIZE], *cptr;
int32 i, sw;
t_bool lookswitch;
t_stat stat;
CTAB *cmdp;
#if defined (__MWERKS__) && defined (macintosh)
argc = ccommand (&argv);
#endif
*cbuf = 0; /* init arg buffer */
sim_switches = 0; /* init switches */
lookswitch = TRUE;
for (i = 1; i < argc; i++) { /* loop thru args */
if (argv[i] == NULL) /* paranoia */
continue;
if ((*argv[i] == '-') && lookswitch) { /* switch? */
if ((sw = get_switches (argv[i])) < 0) {
fprintf (stderr, "Invalid switch %s\n", argv[i]);
return 0;
}
sim_switches = sim_switches | sw;
}
else {
if ((strlen (argv[i]) + strlen (cbuf) + 1) >= CBUFSIZE) {
fprintf (stderr, "Argument string too long\n");
return 0;
}
if (*cbuf) /* concat args */
strcat (cbuf, " ");
strcat (cbuf, argv[i]);
lookswitch = FALSE; /* no more switches */
}
} /* end for */
sim_quiet = sim_switches & SWMASK ('Q'); /* -q means quiet */
if (sim_vm_init != NULL) /* call once only */
(*sim_vm_init)();
sim_finit (); /* init fio package */
stop_cpu = 0;
sim_interval = 0;
sim_time = sim_rtime = 0;
noqueue_time = 0;
sim_clock_queue = NULL;
sim_is_running = 0;
sim_log = NULL;
if (sim_emax <= 0)
sim_emax = 1;
sim_timer_init ();
if ((stat = sim_ttinit ()) != SCPE_OK) {
fprintf (stderr, "Fatal terminal initialization error\n%s\n",
scp_error_messages[stat - SCPE_BASE]);
return 0;
}
if ((sim_eval = (t_value *) calloc (sim_emax, sizeof (t_value))) == NULL) {
fprintf (stderr, "Unable to allocate examine buffer\n");
return 0;
};
if ((stat = reset_all_p (0)) != SCPE_OK) {
fprintf (stderr, "Fatal simulator initialization error\n%s\n",
scp_error_messages[stat - SCPE_BASE]);
return 0;
}
if ((stat = sim_brk_init ()) != SCPE_OK) {
fprintf (stderr, "Fatal breakpoint table initialization error\n%s\n",
scp_error_messages[stat - SCPE_BASE]);
return 0;
}
if (!sim_quiet) {
printf ("\n");
show_version (stdout, NULL, NULL, 0, NULL);
}
if (sim_dflt_dev == NULL) /* if no default */
sim_dflt_dev = sim_devices[0];
if (*cbuf) /* cmd file arg? */
stat = do_cmd (0, cbuf); /* proc cmd file */
else if (*argv[0]) { /* sim name arg? */
char nbuf[PATH_MAX + 7], *np; /* "path.ini" */
nbuf[0] = '"'; /* starting " */
strncpy (nbuf + 1, argv[0], PATH_MAX + 1); /* copy sim name */
if (np = match_ext (nbuf, "EXE")) /* remove .exe */
*np = 0;
strcat (nbuf, ".ini\""); /* add .ini" */
stat = do_cmd (-1, nbuf); /* proc cmd file */
}
while (stat != SCPE_EXIT) { /* in case exit */
printf ("sim> "); /* prompt */
if (cptr = sim_brk_getact (cbuf, CBUFSIZE)) /* pending action? */
printf ("%s\n", cptr); /* echo */
else if (sim_vm_read != NULL) /* sim routine? */
cptr = (*sim_vm_read) (cbuf, CBUFSIZE, stdin);
else cptr = read_line (cbuf, CBUFSIZE, stdin); /* read command line */
if (cptr == NULL) /* ignore EOF */
continue;
if (*cptr == 0) /* ignore blank */
continue;
if (sim_log) /* log cmd */
fprintf (sim_log, "sim> %s\n", cptr);
cptr = get_glyph (cptr, gbuf, 0); /* get command glyph */
sim_switches = 0; /* init switches */
if (cmdp = find_cmd (gbuf)) /* lookup command */
stat = cmdp->action (cmdp->arg, cptr); /* if found, exec */
else stat = SCPE_UNK;
if (stat >= SCPE_BASE) { /* error? */
printf ("%s\n", scp_error_messages[stat - SCPE_BASE]);
if (sim_log)
fprintf (sim_log, "%s\n", scp_error_messages[stat - SCPE_BASE]);
}
if (sim_vm_post != NULL)
(*sim_vm_post) (TRUE);
} /* end while */
detach_all (0, TRUE); /* close files */
sim_set_deboff (0, NULL); /* close debug */
sim_set_logoff (0, NULL); /* close log */
sim_set_notelnet (0, NULL); /* close Telnet */
sim_ttclose (); /* close console */
return 0;
}
/* Find command routine */
CTAB *find_cmd (char *gbuf)
{
CTAB *cmdp = NULL;
if (sim_vm_cmd) /* try ext commands */
cmdp = find_ctab (sim_vm_cmd, gbuf);
if (cmdp == NULL) /* try regular cmds */
cmdp = find_ctab (cmd_table, gbuf);
return cmdp;
}
/* Exit command */
t_stat exit_cmd (int32 flag, char *cptr)
{
return SCPE_EXIT;
}
/* Help command */
void fprint_help (FILE *st)
{
CTAB *cmdp;
for (cmdp = sim_vm_cmd; cmdp && (cmdp->name != NULL); cmdp++) {
if (cmdp->help)
fputs (cmdp->help, st);
}
for (cmdp = cmd_table; cmdp && (cmdp->name != NULL); cmdp++) {
if (cmdp->help && (!sim_vm_cmd || !find_ctab (sim_vm_cmd, cmdp->name)))
fputs (cmdp->help, st);
}
return;
}
t_stat help_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
CTAB *cmdp;
GET_SWITCHES (cptr);
if (*cptr) {
cptr = get_glyph (cptr, gbuf, 0);
if (*cptr)
return SCPE_2MARG;
if (cmdp = find_cmd (gbuf)) {
fputs (cmdp->help, stdout);
if (sim_log)
fputs (cmdp->help, sim_log);
}
else return SCPE_ARG;
}
else {
fprint_help (stdout);
if (sim_log)
fprint_help (sim_log);
}
return SCPE_OK;
}
/* Spawn command */
t_stat spawn_cmd (int32 flag, char *cptr)
{
if ((cptr == NULL) || (strlen (cptr) == 0))
cptr = getenv("SHELL");
if ((cptr == NULL) || (strlen (cptr) == 0))
cptr = getenv("ComSpec");
#if defined (VMS)
if ((cptr == NULL) || (strlen (cptr) == 0))
cptr = "SPAWN/INPUT=SYS$COMMAND:";
#endif
fflush(stdout); /* flush stdout */
if (sim_log) /* flush log if enabled */
fflush (sim_log);
system (cptr);
#if defined (VMS)
printf ("\n");
#endif
return SCPE_OK;
}
/* Echo command */
t_stat echo_cmd (int32 flag, char *cptr)
{
puts (cptr);
if (sim_log)
fprintf (sim_log, "%s\n", cptr);
return SCPE_OK;
}
/* Do command
Syntax: DO {-E} {-V} <filename> {<arguments>...}
-E causes all command errors to be fatal; without it, only EXIT and ASSERT
failure will stop a command file.
-V causes commands to be echoed before execution.
Note that SCPE_STEP ("Step expired") is considered a note and not an error
and so does not abort command execution when using -E.
Inputs:
flag = caller and nesting level indicator
fcptr = filename and optional arguments, space-separated
Outputs:
status = error status
The "flag" input value indicates the source of the call, as follows:
-1 = initialization file (no error if not found)
0 = command line file
1 = "DO" command
>1 = nested "DO" command
*/
#define SCPE_DOFAILED 0040000 /* fail in DO, not subproc */
t_stat do_cmd (int32 flag, char *fcptr)
{
char *cptr, cbuf[CBUFSIZE], gbuf[CBUFSIZE], *c, quote, *do_arg[10];
FILE *fpin;
CTAB *cmdp;
int32 echo, nargs, errabort;
t_bool interactive, isdo, staying;
t_stat stat;
char *ocptr;
stat = SCPE_OK;
staying = TRUE;
interactive = (flag > 0); /* issued interactively? */
if (interactive) { /* get switches */
GET_SWITCHES (fcptr);
}
echo = sim_switches & SWMASK ('V'); /* -v means echo */
errabort = sim_switches & SWMASK ('E'); /* -e means abort on error */
c = fcptr;
for (nargs = 0; nargs < 10; ) { /* extract arguments */
while (isspace (*c)) /* skip blanks */
c++;
if (*c == 0) /* all done? */
do_arg [nargs++] = NULL; /* null argument */
else {
if (*c == '\'' || *c == '"') /* quoted string? */
quote = *c++;
else quote = 0;
do_arg[nargs++] = c; /* save start */
while (*c && (quote ? (*c != quote) : !isspace (*c)))
c++;
if (*c) /* term at quote/spc */
*c++ = 0;
}
} /* end for */
if (nargs <= 0) /* need at least 1 */
return SCPE_2FARG;
if ((fpin = fopen (do_arg[0], "r")) == NULL) { /* file failed to open? */
if (flag == 0) /* cmd line file? */
fprintf (stderr, "Can't open file %s\n", do_arg[0]);
if (flag > 1)
return SCPE_OPENERR | SCPE_DOFAILED; /* return failure with flag */
else
return SCPE_OPENERR; /* return failure */
}
if (flag < 1) /* start at level 1 */
flag = 1;
do {
ocptr = cptr = sim_brk_getact (cbuf, CBUFSIZE); /* get bkpt action */
if (!ocptr) /* no pending action? */
ocptr = cptr = read_line (cbuf, CBUFSIZE, fpin); /* get cmd line */
sub_args (cbuf, gbuf, CBUFSIZE, do_arg); /* substitute args */
if (cptr == NULL) { /* EOF? */
stat = SCPE_OK; /* set good return */
break;
}
if (*cptr == 0) /* ignore blank */
continue;
if (echo) /* echo if -v */
printf("do> %s\n", cptr);
if (echo && sim_log)
fprintf (sim_log, "do> %s\n", cptr);
cptr = get_glyph (cptr, gbuf, 0); /* get command glyph */
sim_switches = 0; /* init switches */
isdo = FALSE;
if (cmdp = find_cmd (gbuf)) { /* lookup command */
isdo = (cmdp->action == &do_cmd);
if (isdo) { /* DO command? */
if (flag >= DO_NEST_LVL) /* nest too deep? */
stat = SCPE_NEST;
else stat = do_cmd (flag + 1, cptr); /* exec DO cmd */
}
else stat = cmdp->action (cmdp->arg, cptr); /* exec other cmd */
}
else stat = SCPE_UNK; /* bad cmd given */
staying = (stat != SCPE_EXIT) && /* decide if staying */
(stat != SCPE_AFAIL) &&
(!errabort || (stat < SCPE_BASE) || (stat == SCPE_STEP));
if ((stat >= SCPE_BASE) && (stat != SCPE_EXIT) && /* error from cmd? */
(stat != SCPE_STEP)) {
if (!echo && !sim_quiet && /* report if not echoing */
(!isdo || (stat & SCPE_DOFAILED))) { /* and not from DO return */
printf("%s> %s\n", do_arg[0], ocptr);
if (sim_log)
fprintf (sim_log, "%s> %s\n", do_arg[0], ocptr);
}
stat = stat & ~SCPE_DOFAILED; /* remove possible flag */
}
if ((staying || !interactive) && /* report error if staying */
(stat >= SCPE_BASE)) { /* or in cmdline file */
printf ("%s\n", scp_error_messages[stat - SCPE_BASE]);
if (sim_log)
fprintf (sim_log, "%s\n", scp_error_messages[stat - SCPE_BASE]);
}
if (sim_vm_post != NULL)
(*sim_vm_post) (TRUE);
} while (staying);
fclose (fpin); /* close file */
return stat;
}
/* Substitute_args - replace %n tokens in 'instr' with the do command's arguments
Calling sequence
instr = input string
tmpbuf = temp buffer
maxstr = min (len (instr), len (tmpbuf))
do_arg[10] = arguments
Token "%0" represents the command file name.
The input sequence "\%" represents a literal "%", and "\\" represents a
literal "\". All other character combinations are rendered literally.
Omitted parameters result in null-string substitutions.
*/
void sub_args (char *instr, char *tmpbuf, int32 maxstr, char *do_arg[])
{
char *ip, *op, *ap, *oend = tmpbuf + maxstr - 2;
for (ip = instr, op = tmpbuf; *ip && (op < oend); ) {
if ((ip [0] == '\\') && /* literal escape? */
((ip [1] == '%') || (ip [1] == '\\'))) { /* and followed by '%' or '\'? */
ip++; /* skip '\' */
*op++ = *ip++; /* copy escaped char */
}
else if ((*ip == '%') && /* %n = sub */
((ip[1] >= '0') && (ip[1] <= ('9')))) {
ap = do_arg[ip[1] - '0'];
ip = ip + 2;
if (ap) { /* non-null arg? */
while (*ap && (op < oend)) /* copy the argument */
*op++ = *ap++;
}
}
else *op++ = *ip++; /* literal character */
}
*op = 0; /* term buffer */
strcpy (instr, tmpbuf);
return;
}
/* Assert command
Syntax: ASSERT {<dev>} <reg>{<logical-op><value>}<conditional-op><value>
If <dev> is not specified, CPU is assumed. <value> is expressed in the radix
specified for <reg>. <logical-op> and <conditional-op> are the same as that
allowed for examine and deposit search specifications. */
t_stat assert_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE], *gptr, *aptr, *tptr;
REG *rptr;
uint32 idx;
t_value val;
t_stat r;
aptr = cptr; /* save assertion */
cptr = get_sim_opt (CMD_OPT_SW|CMD_OPT_DFT, cptr, &r); /* get sw, default */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get register */
rptr = find_reg (gbuf, &gptr, sim_dfdev); /* parse register */
if (!rptr) /* not there */
return SCPE_NXREG;
if (*gptr == '[') { /* subscript? */
if (rptr->depth <= 1) /* array register? */
return SCPE_ARG;
idx = (uint32) strtotv (++gptr, &tptr, 10); /* convert index */
if ((gptr == tptr) || (*tptr++ != ']'))
return SCPE_ARG;
gptr = tptr; /* update */
}
else idx = 0; /* not array */
if (idx >= rptr->depth) /* validate subscript */
return SCPE_SUB;
if (*gptr != 0) /* more? must be search */
get_glyph (gptr, gbuf, 0);
else {
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get search cond */
}
if (*cptr != 0) /* must be done */
return SCPE_2MARG;
if (!get_search (gbuf, rptr->radix, &sim_stab)) /* parse condition */
return SCPE_MISVAL;
val = get_rval (rptr, idx); /* get register value */
if (test_search (val, &sim_stab)) /* test condition */
return SCPE_OK;
return SCPE_AFAIL; /* condition fails */
}
/* Set command */
t_stat set_cmd (int32 flag, char *cptr)
{
int32 lvl;
t_stat r;
char gbuf[CBUFSIZE], *cvptr, *svptr;
DEVICE *dptr;
UNIT *uptr;
MTAB *mptr;
CTAB *gcmdp;
C1TAB *ctbr, *glbr;
static CTAB set_glob_tab[] = {
{ "CONSOLE", &sim_set_console, 0 },
{ "BREAK", &brk_cmd, SSH_ST },
{ "TELNET", &sim_set_telnet, 0 }, /* deprecated */
{ "NOTELNET", &sim_set_notelnet, 0 }, /* deprecated */
{ "LOG", &sim_set_logon, 0 }, /* deprecated */
{ "NOLOG", &sim_set_logoff, 0 }, /* deprecated */
{ "DEBUG", &sim_set_debon, 0 }, /* deprecated */
{ "NODEBUG", &sim_set_deboff, 0 }, /* deprecated */
{ "THROTTLE", &sim_set_throt, 1 },
{ "NOTHROTTLE", &sim_set_throt, 0 },
{ NULL, NULL, 0 }
};
static C1TAB set_dev_tab[] = {
{ "OCTAL", &set_dev_radix, 8 },
{ "DECIMAL", &set_dev_radix, 10 },
{ "HEX", &set_dev_radix, 16 },
{ "ENABLED", &set_dev_enbdis, 1 },
{ "DISABLED", &set_dev_enbdis, 0 },
{ "DEBUG", &set_dev_debug, 1 },
{ "NODEBUG", &set_dev_debug, 0 },
{ NULL, NULL, 0 }
};
static C1TAB set_unit_tab[] = {
{ "ENABLED", &set_unit_enbdis, 1 },
{ "DISABLED", &set_unit_enbdis, 0 },
{ NULL, NULL, 0 }
};
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get glob/dev/unit */
if (dptr = find_dev (gbuf)) { /* device match? */
uptr = dptr->units; /* first unit */
ctbr = set_dev_tab; /* global table */
lvl = MTAB_VDV; /* device match */
}
else if (dptr = find_unit (gbuf, &uptr)) { /* unit match? */
if (uptr == NULL) /* invalid unit */
return SCPE_NXUN;
ctbr = set_unit_tab; /* global table */
lvl = MTAB_VUN; /* unit match */
}
else if (gcmdp = find_ctab (set_glob_tab, gbuf)) /* global? */
return gcmdp->action (gcmdp->arg, cptr); /* do the rest */
else return SCPE_NXDEV; /* no match */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
while (*cptr != 0) { /* do all mods */
cptr = get_glyph (svptr = cptr, gbuf, ','); /* get modifier */
if (cvptr = strchr (gbuf, '=')) /* = value? */
*cvptr++ = 0;
for (mptr = dptr->modifiers; mptr && (mptr->mask != 0); mptr++) {
if ((mptr->mstring) && /* match string */
(MATCH_CMD (gbuf, mptr->mstring) == 0)) { /* matches option? */
if (mptr->mask & MTAB_XTD) { /* extended? */
if ((lvl & mptr->mask) == 0)
return SCPE_ARG;
if ((lvl & MTAB_VUN) && (uptr->flags & UNIT_DIS))
return SCPE_UDIS; /* unit disabled? */
if (mptr->valid) { /* validation rtn? */
if (cvptr && (mptr->mask & MTAB_NC)) {
get_glyph_nc (svptr, gbuf, ',');
if (cvptr = strchr (gbuf, '='))
*cvptr++ = 0;
}
r = mptr->valid (uptr, mptr->match, cvptr, mptr->desc);
if (r != SCPE_OK)
return r;
}
else if (!mptr->desc) /* value desc? */
break;
// else if (mptr->mask & MTAB_VAL) { /* take a value? */
// if (!cvptr) return SCPE_MISVAL; /* none? error */
// r = dep_reg (0, cvptr, (REG *) mptr->desc, 0);
// if (r != SCPE_OK) return r;
// }
else if (cvptr) /* = value? */
return SCPE_ARG;
else *((int32 *) mptr->desc) = mptr->match;
} /* end if xtd */
else { /* old style */
if (cvptr) /* = value? */
return SCPE_ARG;
if (uptr->flags & UNIT_DIS) /* disabled? */
return SCPE_UDIS;
if ((mptr->valid) && /* invalid? */
((r = mptr->valid (uptr, mptr->match, cvptr, mptr->desc)) != SCPE_OK))
return r;
uptr->flags = (uptr->flags & ~(mptr->mask)) |
(mptr->match & mptr->mask); /* set new value */
} /* end else xtd */
break; /* terminate for */
} /* end if match */
} /* end for */
if (!mptr || (mptr->mask == 0)) { /* no match? */
if (glbr = find_c1tab (ctbr, gbuf)) { /* global match? */
r = glbr->action (dptr, uptr, glbr->arg, cvptr); /* do global */
if (r != SCPE_OK)
return r;
}
else if (!dptr->modifiers) /* no modifiers? */
return SCPE_NOPARAM;
else return SCPE_NXPAR;
} /* end if no mat */
} /* end while */
return SCPE_OK; /* done all */
}
/* Match CTAB/CTAB1 name */
CTAB *find_ctab (CTAB *tab, char *gbuf)
{
for (; tab->name != NULL; tab++) {
if (MATCH_CMD (gbuf, tab->name) == 0)
return tab;
}
return NULL;
}
C1TAB *find_c1tab (C1TAB *tab, char *gbuf)
{
for (; tab->name != NULL; tab++) {
if (MATCH_CMD (gbuf, tab->name) == 0)
return tab;
}
return NULL;
}
/* Set device data radix routine */
t_stat set_dev_radix (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
if (cptr)
return SCPE_ARG;
dptr->dradix = flag & 037;
return SCPE_OK;
}
/* Set device enabled/disabled routine */
t_stat set_dev_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
UNIT *up;
uint32 i;
if (cptr)
return SCPE_ARG;
if ((dptr->flags & DEV_DISABLE) == 0) /* allowed? */
return SCPE_NOFNC;
if (flag) { /* enable? */
if ((dptr->flags & DEV_DIS) == 0) /* already enb? ok */
return SCPE_OK;
dptr->flags = dptr->flags & ~DEV_DIS; /* no, enable */
}
else {
if (dptr->flags & DEV_DIS) /* already dsb? ok */
return SCPE_OK;
for (i = 0; i < dptr->numunits; i++) { /* check units */
up = (dptr->units) + i; /* att or active? */
if ((up->flags & UNIT_ATT) || sim_is_active (up))
return SCPE_NOFNC; /* can't do it */
}
dptr->flags = dptr->flags | DEV_DIS; /* disable */
}
if (dptr->reset) /* reset device */
return dptr->reset (dptr);
else return SCPE_OK;
}
/* Set unit enabled/disabled routine */
t_stat set_unit_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
if (cptr)
return SCPE_ARG;
if (!(uptr->flags & UNIT_DISABLE)) /* allowed? */
return SCPE_NOFNC;
if (flag) /* enb? enable */
uptr->flags = uptr->flags & ~UNIT_DIS;
else {
if ((uptr->flags & UNIT_ATT) || /* dsb */
sim_is_active (uptr)) /* more tests */
return SCPE_NOFNC;
uptr->flags = uptr->flags | UNIT_DIS; /* disable */
}
return SCPE_OK;
}
/* Set device debug enabled/disabled routine */
t_stat set_dev_debug (DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
DEBTAB *dep;
if ((dptr->flags & DEV_DEBUG) == 0)
return SCPE_NOFNC;
if (cptr == NULL) { /* no arguments? */
dptr->dctrl = flag; /* disable/enable w/o table */
if (flag && dptr->debflags) { /* enable with table? */
for (dep = dptr->debflags; dep->name != NULL; dep++)
dptr->dctrl = dptr->dctrl | dep->mask; /* set all */
}
return SCPE_OK;
}
if (dptr->debflags == NULL) /* must have table */
return SCPE_ARG;
while (*cptr) {
cptr = get_glyph (cptr, gbuf, ';'); /* get debug flag */
for (dep = dptr->debflags; dep->name != NULL; dep++) {
if (strcmp (dep->name, gbuf) == 0) { /* match? */
if (flag)
dptr->dctrl = dptr->dctrl | dep->mask;
else dptr->dctrl = dptr->dctrl & ~dep->mask;
break;
}
} /* end for */
if (dep->mask == 0) /* no match? */
return SCPE_ARG;
} /* end while */
return SCPE_OK;
}
/* Show command */
t_stat show_cmd (int32 flag, char *cptr)
{
t_stat r;
cptr = get_sim_opt (CMD_OPT_SW|CMD_OPT_OF, cptr, &r); /* get sw, ofile */
if (!cptr) /* error? */
return r;
if (sim_ofile) { /* output file? */
r = show_cmd_fi (sim_ofile, flag, cptr); /* do show */
fclose (sim_ofile);
}
else {
r = show_cmd_fi (stdout, flag, cptr); /* no, stdout, log */
if (sim_log)
show_cmd_fi (sim_log, flag, cptr);
}
return r;
}
t_stat show_cmd_fi (FILE *ofile, int32 flag, char *cptr)
{
int32 lvl;
char gbuf[CBUFSIZE], *cvptr;
DEVICE *dptr;
UNIT *uptr;
MTAB *mptr;
SHTAB *shtb, *shptr;
static SHTAB show_glob_tab[] = {
{ "CONFIGURATION", &show_config, 0 },
{ "DEVICES", &show_config, 1 },
{ "QUEUE", &show_queue, 0 },
{ "TIME", &show_time, 0 },
{ "MODIFIERS", &show_mod_names, 0 },
{ "NAMES", &show_log_names, 0 },
{ "VERSION", &show_version, 1 },
{ "CONSOLE", &sim_show_console, 0 },
{ "BREAK", &show_break, 0 },
{ "LOG", &sim_show_log, 0 }, /* deprecated */
{ "TELNET", &sim_show_telnet, 0 }, /* deprecated */
{ "DEBUG", &sim_show_debug, 0 }, /* deprecated */
{ "THROTTLE", &sim_show_throt, 0 },
{ NULL, NULL, 0 }
};
static SHTAB show_dev_tab[] = {
{ "RADIX", &show_dev_radix, 0 },
{ "DEBUG", &show_dev_debug, 0 },
{ "MODIFIERS", &show_dev_modifiers, 0 },
{ "NAMES", &show_dev_logicals, 0 },
{ NULL, NULL, 0 }
};
static SHTAB show_unit_tab[] = {
{ NULL, NULL, 0 }
};
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (shptr = find_shtab (show_glob_tab, gbuf)) /* global? */
return shptr->action (ofile, NULL, NULL, shptr->arg, cptr);
if (dptr = find_dev (gbuf)) { /* device match? */
uptr = dptr->units; /* first unit */
shtb = show_dev_tab; /* global table */
lvl = MTAB_VDV; /* device match */
}
else if (dptr = find_unit (gbuf, &uptr)) { /* unit match? */
if (uptr == NULL) /* invalid unit */
return SCPE_NXUN;
if (uptr->flags & UNIT_DIS) /* disabled? */
return SCPE_UDIS;
shtb = show_unit_tab; /* global table */
lvl = MTAB_VUN; /* unit match */
}
else return SCPE_NXDEV; /* no match */
if (*cptr == 0) { /* now eol? */
return (lvl == MTAB_VDV)?
show_device (ofile, dptr, 0):
show_unit (ofile, dptr, uptr, -1);
}
if (dptr->modifiers == NULL) /* any modifiers? */
return SCPE_NOPARAM;
while (*cptr != 0) { /* do all mods */
cptr = get_glyph (cptr, gbuf, ','); /* get modifier */
if (cvptr = strchr (gbuf, '=')) /* = value? */
*cvptr++ = 0;
for (mptr = dptr->modifiers; mptr->mask != 0; mptr++) {
if (((mptr->mask & MTAB_XTD)? /* right level? */
(mptr->mask & lvl): (MTAB_VUN & lvl)) &&
((mptr->disp && mptr->pstring && /* named disp? */
(MATCH_CMD (gbuf, mptr->pstring) == 0))
// ||
// ((mptr->mask & MTAB_VAL) && /* named value? */
// mptr->mstring &&
// (MATCH_CMD (gbuf, mptr->mstring) == 0)))
)) {
if (cvptr && !(mptr->mask & MTAB_SHP))
return SCPE_ARG;
show_one_mod (ofile, dptr, uptr, mptr, cvptr, 1);
break;
} /* end if */
} /* end for */
if (mptr->mask == 0) { /* no match? */
if (shptr = find_shtab (shtb, gbuf)) /* global match? */
shptr->action (ofile, dptr, uptr, shptr->arg, cptr);
else return SCPE_ARG;
} /* end if */
} /* end while */
return SCPE_OK;
}
SHTAB *find_shtab (SHTAB *tab, char *gbuf)
{
for (; tab->name != NULL; tab++) {
if (MATCH_CMD (gbuf, tab->name) == 0)
return tab;
}
return NULL;
}
/* Show device and unit */
t_stat show_device (FILE *st, DEVICE *dptr, int32 flag)
{
uint32 j, udbl, ucnt;
UNIT *uptr;
fprintf (st, "%s", sim_dname (dptr)); /* print dev name */
if (qdisable (dptr)) { /* disabled? */
fprintf (st, ", disabled\n");
return SCPE_OK;
}
for (j = ucnt = udbl = 0; j < dptr->numunits; j++) { /* count units */
uptr = dptr->units + j;
if (uptr->flags & UNIT_DISABLE)
udbl++;
if (!(uptr->flags & UNIT_DIS))
ucnt++;
}
show_all_mods (st, dptr, dptr->units, MTAB_VDV); /* show dev mods */
if (dptr->numunits == 0)
fprintf (st, "\n");
else {
if (udbl && (ucnt == 0))
fprintf (st, ", all units disabled\n");
else if (ucnt > 1)
fprintf (st, ", %d units\n", ucnt);
else if (flag)
fprintf (st, "\n");
}
if (flag) /* dev only? */
return SCPE_OK;
for (j = 0; j < dptr->numunits; j++) { /* loop thru units */
uptr = dptr->units + j;
if ((uptr->flags & UNIT_DIS) == 0)
show_unit (st, dptr, uptr, ucnt);
}
return SCPE_OK;
}
t_stat show_unit (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag)
{
int32 u = uptr - dptr->units;
if (flag > 1)
fprintf (st, " %s%d", sim_dname (dptr), u);
else if (flag < 0)
fprintf (st, "%s%d", sim_dname (dptr), u);
if (uptr->flags & UNIT_FIX) {
fprintf (st, ", ");
fprint_capac (st, dptr, uptr);
}
if (uptr->flags & UNIT_ATT) {
fprintf (st, ", attached to %s", uptr->filename);
if (uptr->flags & UNIT_RO)
fprintf (st, ", read only");
}
else if (uptr->flags & UNIT_ATTABLE)
fprintf (st, ", not attached");
show_all_mods (st, dptr, uptr, MTAB_VUN); /* show unit mods */
fprintf (st, "\n");
return SCPE_OK;
}
void fprint_capac (FILE *st, DEVICE *dptr, UNIT *uptr)
{
t_addr kval = (uptr->flags & UNIT_BINK)? 1024: 1000;
t_addr mval = kval * kval;
t_addr psize = uptr->capac;
char scale, width;
if ((dptr->dwidth / dptr->aincr) > 8)
width = 'W';
else width = 'B';
if (uptr->capac < (kval * 10))
scale = 0;
else if (uptr->capac < (mval * 10)) {
scale = 'K';
psize = psize / kval;
}
else {
scale = 'M';
psize = psize / mval;
}
fprint_val (st, (t_value) psize, 10, T_ADDR_W, PV_LEFT);
if (scale)
fputc (scale, st);
fputc (width, st);
return;
}
/* Show <global name> processors */
t_stat show_version (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
int32 vmaj = SIM_MAJOR, vmin = SIM_MINOR, vpat = SIM_PATCH, vdelt = SIM_DELTA;
if (cptr && (*cptr != 0))
return SCPE_2MARG;
fprintf (st, "%s simulator V%d.%d-%d", sim_name, vmaj, vmin, vpat);
if (vdelt)
fprintf (st, "(%d)", vdelt);
if (flag)
fprintf (st, " [%s, %s, %s]", sim_si64, sim_sa64, sim_snet);
fprintf (st, "\n");
return SCPE_OK;
}
t_stat show_config (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, char *cptr)
{
int32 i;
DEVICE *dptr;
if (cptr && (*cptr != 0))
return SCPE_2MARG;
fprintf (st, "%s simulator configuration\n\n", sim_name);
for (i = 0; (dptr = sim_devices[i]) != NULL; i++)
show_device (st, dptr, flag);
return SCPE_OK;
}
t_stat show_log_names (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, char *cptr)
{
int32 i;
DEVICE *dptr;
if (cptr && (*cptr != 0))
return SCPE_2MARG;
for (i = 0; (dptr = sim_devices[i]) != NULL; i++)
show_dev_logicals (st, dptr, NULL, 1, cptr);
return SCPE_OK;
}
t_stat show_dev_logicals (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
if (dptr->lname)
fprintf (st, "%s -> %s\n", dptr->lname, dptr->name);
else if (!flag)
fputs ("no logical name assigned\n", st);
return SCPE_OK;
}
t_stat show_queue (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, char *cptr)
{
DEVICE *dptr;
UNIT *uptr;
int32 accum;
if (cptr && (*cptr != 0))
return SCPE_2MARG;
if (sim_clock_queue == NULL) {
fprintf (st, "%s event queue empty, time = %.0f\n",
sim_name, sim_time);
return SCPE_OK;
}
fprintf (st, "%s event queue status, time = %.0f\n",
sim_name, sim_time);
accum = 0;
for (uptr = sim_clock_queue; uptr != NULL; uptr = uptr->next) {
if (uptr == &sim_step_unit)
fprintf (st, " Step timer");
else if ((dptr = find_dev_from_unit (uptr)) != NULL) {
fprintf (st, " %s", sim_dname (dptr));
if (dptr->numunits > 1) fprintf (st, " unit %d",
(int32) (uptr - dptr->units));
}
else fprintf (st, " Unknown");
fprintf (st, " at %d\n", accum + uptr->time);
accum = accum + uptr->time;
}
return SCPE_OK;
}
t_stat show_time (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
if (cptr && (*cptr != 0))
return SCPE_2MARG;
fprintf (st, "Time:\t%.0f\n", sim_time);
return SCPE_OK;
}
t_stat show_break (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
t_stat r;
if (cptr && (*cptr != 0))
r = ssh_break (st, cptr, 1); /* more? */
else r = sim_brk_showall (st, sim_switches);
return r;
}
t_stat show_dev_radix (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
fprintf (st, "Radix=%d\n", dptr->dradix);
return SCPE_OK;
}
t_stat show_dev_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
int32 any = 0;
DEBTAB *dep;
if (dptr->flags & DEV_DEBUG) {
if (dptr->dctrl == 0)
fputs ("Debugging disabled", st);
else if (dptr->debflags == NULL)
fputs ("Debugging enabled", st);
else {
fputs ("Debug=", st);
for (dep = dptr->debflags; dep->name != NULL; dep++) {
if (dptr->dctrl & dep->mask) {
if (any)
fputc (';', st);
fputs (dep->name, st);
any = 1;
}
}
}
fputc ('\n', st);
return SCPE_OK;
}
else return SCPE_NOFNC;
}
/* Show modifiers */
t_stat show_mod_names (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, char *cptr)
{
int32 i;
DEVICE *dptr;
if (cptr && (*cptr != 0)) /* now eol? */
return SCPE_2MARG;
for (i = 0; (dptr = sim_devices[i]) != NULL; i++)
show_dev_modifiers (st, dptr, NULL, flag, cptr);
return SCPE_OK;
}
t_stat show_dev_modifiers (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr)
{
int any, enb;
MTAB *mptr;
DEBTAB *dep;
any = enb = 0;
if (dptr->modifiers) {
for (mptr = dptr->modifiers; mptr->mask != 0; mptr++) {
if (mptr->mstring) {
if (strcmp (mptr->mstring, "ENABLED") == 0)
enb = 1;
if (any++)
fprintf (st, ", %s", mptr->mstring);
else fprintf (st, "%s\t%s", sim_dname (dptr), mptr->mstring);
}
}
}
if (dptr->flags & DEV_DEBUG) {
if (any++)
fprintf (st, ", DEBUG, NODEBUG");
else fprintf (st, "%s\tDEBUG, NODEBUG", sim_dname (dptr));
}
if (!enb && (dptr->flags & DEV_DISABLE)) {
if (any++)
fprintf (st, ", ENABLED, DISABLED");
else fprintf (st, "%s\tENABLED, DISABLED", sim_dname (dptr));
}
if (any) fprintf (st, "\n");
if ((dptr->flags & DEV_DEBUG) && dptr->debflags) {
fprintf (st, "%s\tDEBUG=", sim_dname (dptr));
for (dep = dptr->debflags; dep->name != NULL; dep++)
fprintf (st, "%s%s", ((dep == dptr->debflags) ? "" : ","), dep->name);
fprintf (st, "\n");
}
return SCPE_OK;
}
t_stat show_all_mods (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag)
{
MTAB *mptr;
if (dptr->modifiers == NULL)
return SCPE_OK;
for (mptr = dptr->modifiers; mptr->mask != 0; mptr++) {
if (mptr->pstring && ((mptr->mask & MTAB_XTD)?
((mptr->mask & flag) && !(mptr->mask & MTAB_NMO)):
((MTAB_VUN & flag) && ((uptr->flags & mptr->mask) == mptr->match)))) {
fputs (", ", st);
show_one_mod (st, dptr, uptr, mptr, NULL, 0);
}
}
return SCPE_OK;
}
t_stat show_one_mod (FILE *st, DEVICE *dptr, UNIT *uptr, MTAB *mptr,
char *cptr, int32 flag)
{
//t_value val;
if (mptr->disp)
mptr->disp (st, uptr, mptr->match, cptr? cptr: mptr->desc);
//else if ((mptr->mask & MTAB_XTD) && (mptr->mask & MTAB_VAL)) {
// REG *rptr = (REG *) mptr->desc;
// fprintf (st, "%s=", mptr->pstring);
// val = get_rval (rptr, 0);
// fprint_val (st, val, rptr->radix, rptr->width,
// rptr->flags & REG_FMT);
// }
else fputs (mptr->pstring, st);
if (flag && !((mptr->mask & MTAB_XTD) && (mptr->mask & MTAB_NMO)))
fputc ('\n', st);
return SCPE_OK;
}
/* Breakpoint commands */
t_stat brk_cmd (int32 flg, char *cptr)
{
GET_SWITCHES (cptr); /* get switches */
return ssh_break (NULL, cptr, flg); /* call common code */
}
t_stat ssh_break (FILE *st, char *cptr, int32 flg)
{
char gbuf[CBUFSIZE], *tptr, *t1ptr, *aptr;
DEVICE *dptr = sim_dflt_dev;
UNIT *uptr = dptr->units;
t_stat r;
t_addr lo, hi, max = uptr->capac - 1;
int32 cnt;
if (sim_brk_types == 0)
return SCPE_NOFNC;
if ((dptr == NULL) || (uptr == NULL))
return SCPE_IERR;
if (aptr = strchr (cptr, ';')) { /* ;action? */
if (flg != SSH_ST) /* only on SET */
return SCPE_ARG;
*aptr++ = 0; /* separate strings */
}
if (*cptr == 0) { /* no argument? */
lo = (t_addr) get_rval (sim_PC, 0); /* use PC */
return ssh_break_one (st, flg, lo, 0, aptr);
}
while (*cptr) {
cptr = get_glyph (cptr, gbuf, ',');
tptr = get_range (dptr, gbuf, &lo, &hi, dptr->aradix, max, 0);
if (tptr == NULL)
return SCPE_ARG;
if (*tptr == '[') {
cnt = (int32) strtotv (tptr + 1, &t1ptr, 10);
if ((tptr == t1ptr) || (*t1ptr != ']') || (flg != SSH_ST))
return SCPE_ARG;
tptr = t1ptr + 1;
}
else cnt = 0;
if (*tptr != 0)
return SCPE_ARG;
if ((lo == 0) && (hi == max)) {
if (flg == SSH_CL)
sim_brk_clrall (sim_switches);
else if (flg == SSH_SH)
sim_brk_showall (st, sim_switches);
else return SCPE_ARG;
}
else {
for ( ; lo <= hi; lo = lo + 1) {
r = ssh_break_one (st, flg, lo, cnt, aptr);
if (r != SCPE_OK)
return r;
}
}
}
return SCPE_OK;
}
t_stat ssh_break_one (FILE *st, int32 flg, t_addr lo, int32 cnt, char *aptr)
{
switch (flg) {
case SSH_ST:
return sim_brk_set (lo, sim_switches, cnt, aptr);
break;
case SSH_CL:
return sim_brk_clr (lo, sim_switches);
break;
case SSH_SH:
return sim_brk_show (st, lo, sim_switches);
break;
default:
return SCPE_ARG;
}
}
/* Reset command and routines
re[set] reset all devices
re[set] all reset all devices
re[set] device reset specific device
*/
t_stat reset_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
DEVICE *dptr;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* reset(cr) */
return (reset_all (0));
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) /* now eol? */
return SCPE_2MARG;
if (strcmp (gbuf, "ALL") == 0)
return (reset_all (0));
dptr = find_dev (gbuf); /* locate device */
if (dptr == NULL) /* found it? */
return SCPE_NXDEV;
if (dptr->reset != NULL)
return dptr->reset (dptr);
else return SCPE_OK;
}
/* Reset devices start..end
Inputs:
start = number of starting device
Outputs:
status = error status
*/
t_stat reset_all (uint32 start)
{
DEVICE *dptr;
uint32 i;
t_stat reason;
for (i = 0; i < start; i++) {
if (sim_devices[i] == NULL)
return SCPE_IERR;
}
for (i = start; (dptr = sim_devices[i]) != NULL; i++) {
if (dptr->reset != NULL) {
reason = dptr->reset (dptr);
if (reason != SCPE_OK)
return reason;
}
}
return SCPE_OK;
}
/* Reset to powerup state
Inputs:
start = number of starting device
Outputs:
status = error status
*/
t_stat reset_all_p (uint32 start)
{
t_stat r;
int32 old_sw = sim_switches;
sim_switches = SWMASK ('P');
r = reset_all (start);
sim_switches = old_sw;
return r;
}
/* Load and dump commands
lo[ad] filename {arg} load specified file
du[mp] filename {arg} dump to specified file
*/
t_stat load_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
FILE *loadfile;
t_stat reason;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph_nc (cptr, gbuf, 0); /* get file name */
loadfile = sim_fopen (gbuf, flag? "wb": "rb"); /* open for wr/rd */
if (loadfile == NULL)
return SCPE_OPENERR;
GET_SWITCHES (cptr); /* get switches */
reason = sim_load (loadfile, cptr, gbuf, flag); /* load or dump */
fclose (loadfile);
return reason;
}
/* Attach command
at[tach] unit file attach specified unit to file
*/
t_stat attach_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
DEVICE *dptr;
UNIT *uptr;
t_stat r;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* now eol? */
return SCPE_2FARG;
dptr = find_unit (gbuf, &uptr); /* locate unit */
if (dptr == NULL) /* found dev? */
return SCPE_NXDEV;
if (uptr == NULL) /* valid unit? */
return SCPE_NXUN;
if (uptr->flags & UNIT_ATT) { /* already attached? */
r = scp_detach_unit (dptr, uptr); /* detach it */
if (r != SCPE_OK) /* error? */
return r;
}
sim_trim_endspc (cptr); /* trim trailing spc */
return scp_attach_unit (dptr, uptr, cptr); /* attach */
}
/* Call device-specific or file-oriented attach unit routine */
t_stat scp_attach_unit (DEVICE *dptr, UNIT *uptr, char *cptr)
{
if (dptr->attach != NULL) /* device routine? */
return dptr->attach (uptr, cptr); /* call it */
return attach_unit (uptr, cptr); /* no, std routine */
}
/* Attach unit to file */
t_stat attach_unit (UNIT *uptr, char *cptr)
{
DEVICE *dptr;
if (uptr->flags & UNIT_DIS) /* disabled? */
return SCPE_UDIS;
if (!(uptr->flags & UNIT_ATTABLE)) /* not attachable? */
return SCPE_NOATT;
if ((dptr = find_dev_from_unit (uptr)) == NULL)
return SCPE_NOATT;
if (dptr->flags & DEV_RAWONLY) /* raw mode only? */
return SCPE_NOFNC;
uptr->filename = (char *) calloc (CBUFSIZE, sizeof (char)); /* alloc name buf */
if (uptr->filename == NULL)
return SCPE_MEM;
strncpy (uptr->filename, cptr, CBUFSIZE); /* save name */
if (sim_switches & SWMASK ('R')) { /* read only? */
if ((uptr->flags & UNIT_ROABLE) == 0) /* allowed? */
return attach_err (uptr, SCPE_NORO); /* no, error */
uptr->fileref = sim_fopen (cptr, "rb"); /* open rd only */
if (uptr->fileref == NULL) /* open fail? */
return attach_err (uptr, SCPE_OPENERR); /* yes, error */
uptr->flags = uptr->flags | UNIT_RO; /* set rd only */
if (!sim_quiet)
printf ("%s: unit is read only\n", sim_dname (dptr));
}
else { /* normal */
uptr->fileref = sim_fopen (cptr, "rb+"); /* open r/w */
if (uptr->fileref == NULL) { /* open fail? */
if ((errno == EROFS) || (errno == EACCES)) { /* read only? */
if ((uptr->flags & UNIT_ROABLE) == 0) /* allowed? */
return attach_err (uptr, SCPE_NORO); /* no error */
uptr->fileref = sim_fopen (cptr, "rb"); /* open rd only */
if (uptr->fileref == NULL) /* open fail? */
return attach_err (uptr, SCPE_OPENERR); /* yes, error */
uptr->flags = uptr->flags | UNIT_RO; /* set rd only */
if (!sim_quiet)
printf ("%s: unit is read only\n", sim_dname (dptr));
}
else { /* doesn't exist */
if (sim_switches & SWMASK ('E')) /* must exist? */
return attach_err (uptr, SCPE_OPENERR); /* yes, error */
uptr->fileref = sim_fopen (cptr, "wb+"); /* open new file */
if (uptr->fileref == NULL) /* open fail? */
return attach_err (uptr, SCPE_OPENERR); /* yes, error */
if (!sim_quiet) printf ("%s: creating new file\n", sim_dname (dptr));
}
} /* end if null */
} /* end else */
if (uptr->flags & UNIT_BUFABLE) { /* buffer? */
uint32 cap = ((uint32) uptr->capac) / dptr->aincr; /* effective size */
if (uptr->flags & UNIT_MUSTBUF) /* dyn alloc? */
uptr->filebuf = calloc (cap, SZ_D (dptr)); /* allocate */
if (uptr->filebuf == NULL) /* no buffer? */
return attach_err (uptr, SCPE_MEM); /* error */
if (!sim_quiet) printf ("%s: buffering file in memory\n", sim_dname (dptr));
uptr->hwmark = sim_fread (uptr->filebuf, /* read file */
SZ_D (dptr), cap, uptr->fileref);
uptr->flags = uptr->flags | UNIT_BUF; /* set buffered */
}
uptr->flags = uptr->flags | UNIT_ATT;
uptr->pos = 0;
return SCPE_OK;
}
t_stat attach_err (UNIT *uptr, t_stat stat)
{
free (uptr->filename);
uptr->filename = NULL;
return stat;
}
/* Detach command
det[ach] all detach all units
det[ach] unit detach specified unit
*/
t_stat detach_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
DEVICE *dptr;
UNIT *uptr;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) /* now eol? */
return SCPE_2MARG;
if (strcmp (gbuf, "ALL") == 0)
return (detach_all (0, FALSE));
dptr = find_unit (gbuf, &uptr); /* locate unit */
if (dptr == NULL) /* found dev? */
return SCPE_NXDEV;
if (uptr == NULL) /* valid unit? */
return SCPE_NXUN;
return scp_detach_unit (dptr, uptr); /* detach */
}
/* Detach devices start..end
Inputs:
start = number of starting device
shutdown = TRUE if simulator shutting down
Outputs:
status = error status
Note that during shutdown, detach routines for non-attachable devices
will be called. These routines can implement simulator shutdown. Error
returns during shutdown are ignored.
*/
t_stat detach_all (int32 start, t_bool shutdown)
{
uint32 i, j;
DEVICE *dptr;
UNIT *uptr;
t_stat r;
if ((start < 0) || (start > 1))
return SCPE_IERR;
for (i = start; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
for (j = 0; j < dptr->numunits; j++) { /* loop thru units */
uptr = (dptr->units) + j;
if ((uptr->flags & UNIT_ATT) || /* attached? */
(shutdown && dptr->detach && /* shutdown, spec rtn, */
!(uptr->flags & UNIT_ATTABLE))) { /* !attachable? */
r = scp_detach_unit (dptr, uptr); /* detach unit */
if ((r != SCPE_OK) && !shutdown) /* error and not shutting down? */
return r; /* bail out now with error status */
}
}
}
return SCPE_OK;
}
/* Call device-specific or file-oriented detach unit routine */
t_stat scp_detach_unit (DEVICE *dptr, UNIT *uptr)
{
if (dptr->detach != NULL) /* device routine? */
return dptr->detach (uptr);
return detach_unit (uptr); /* no, standard */
}
/* Detach unit from file */
t_stat detach_unit (UNIT *uptr)
{
DEVICE *dptr;
if (uptr == NULL)
return SCPE_IERR;
if (!(uptr->flags & UNIT_ATTABLE)) /* attachable? */
return SCPE_NOATT;
if (!(uptr->flags & UNIT_ATT)) /* attached? */
return SCPE_OK;
if ((dptr = find_dev_from_unit (uptr)) == NULL)
return SCPE_OK;
if (uptr->flags & UNIT_BUF) {
uint32 cap = (uptr->hwmark + dptr->aincr - 1) / dptr->aincr;
if (uptr->hwmark && ((uptr->flags & UNIT_RO) == 0)) {
if (!sim_quiet)
printf ("%s: writing buffer to file\n", sim_dname (dptr));
rewind (uptr->fileref);
sim_fwrite (uptr->filebuf, SZ_D (dptr), cap, uptr->fileref);
if (ferror (uptr->fileref))
perror ("I/O error");
}
if (uptr->flags & UNIT_MUSTBUF) { /* dyn alloc? */
free (uptr->filebuf); /* free buf */
uptr->filebuf = NULL;
}
uptr->flags = uptr->flags & ~UNIT_BUF;
}
uptr->flags = uptr->flags & ~(UNIT_ATT | UNIT_RO);
free (uptr->filename);
uptr->filename = NULL;
if (fclose (uptr->fileref) == EOF)
return SCPE_IOERR;
return SCPE_OK;
}
/* Assign command
as[sign] device name assign logical name to device
*/
t_stat assign_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
DEVICE *dptr;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* now eol? */
return SCPE_2FARG;
dptr = find_dev (gbuf); /* locate device */
if (dptr == NULL) /* found dev? */
return SCPE_NXDEV;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) /* must be eol */
return SCPE_2MARG;
if (find_dev (gbuf)) /* name in use */
return SCPE_ARG;
deassign_device (dptr); /* release current */
return assign_device (dptr, gbuf);
}
t_stat assign_device (DEVICE *dptr, char *cptr)
{
dptr->lname = (char *) calloc (CBUFSIZE, sizeof (char));
if (dptr->lname == NULL)
return SCPE_MEM;
strncpy (dptr->lname, cptr, CBUFSIZE);
return SCPE_OK;
}
/* Deassign command
dea[ssign] device deassign logical name
*/
t_stat deassign_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE];
DEVICE *dptr;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) /* now eol? */
return SCPE_2MARG;
dptr = find_dev (gbuf); /* locate device */
if (dptr == NULL) /* found dev? */
return SCPE_NXDEV;
return deassign_device (dptr);
}
t_stat deassign_device (DEVICE *dptr)
{
if (dptr->lname)
free (dptr->lname);
dptr->lname = NULL;
return SCPE_OK;
}
/* Get device display name */
char *sim_dname (DEVICE *dptr)
{
return (dptr->lname? dptr->lname: dptr->name);
}
/* Save command
sa[ve] filename save state to specified file
*/
t_stat save_cmd (int32 flag, char *cptr)
{
FILE *sfile;
t_stat r;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
sim_trim_endspc (cptr);
if ((sfile = sim_fopen (cptr, "wb")) == NULL)
return SCPE_OPENERR;
r = sim_save (sfile);
fclose (sfile);
return r;
}
t_stat sim_save (FILE *sfile)
{
void *mbuf;
int32 l, t;
uint32 i, j;
t_addr k, high;
t_value val;
t_stat r;
t_bool zeroflg;
size_t sz;
DEVICE *dptr;
UNIT *uptr;
REG *rptr;
#define WRITE_I(xx) sim_fwrite (&(xx), sizeof (xx), 1, sfile)
fprintf (sfile, "%s\n%s\n%s\n%s\n%s\n%.0f\n",
save_vercur, /* [V2.5] save format */
sim_name, /* sim name */
sim_si64, sim_sa64, sim_snet, /* [V3.5] options */
sim_time); /* [V3.2] sim time */
WRITE_I (sim_rtime); /* [V2.6] sim rel time */
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru devices */
fputs (dptr->name, sfile); /* device name */
fputc ('\n', sfile);
if (dptr->lname) /* [V3.0] logical name */
fputs (dptr->lname, sfile);
fputc ('\n', sfile);
WRITE_I (dptr->flags); /* [V2.10] flags */
for (j = 0; j < dptr->numunits; j++) {
uptr = dptr->units + j;
t = sim_is_active (uptr);
WRITE_I (j); /* unit number */
WRITE_I (t); /* activation time */
WRITE_I (uptr->u3); /* unit specific */
WRITE_I (uptr->u4);
WRITE_I (uptr->u5); /* [V3.0] more unit */
WRITE_I (uptr->u6);
WRITE_I (uptr->flags); /* [V2.10] flags */
WRITE_I (uptr->capac); /* [V3.5] capacity */
if (uptr->flags & UNIT_ATT)
fputs (uptr->filename, sfile);
fputc ('\n', sfile);
if (((uptr->flags & (UNIT_FIX + UNIT_ATTABLE)) == UNIT_FIX) &&
(dptr->examine != NULL) &&
((high = uptr->capac) != 0)) { /* memory-like unit? */
WRITE_I (high); /* [V2.5] write size */
sz = SZ_D (dptr);
if ((mbuf = calloc (SRBSIZ, sz)) == NULL) {
fclose (sfile);
return SCPE_MEM;
}
for (k = 0; k < high; ) { /* loop thru mem */
zeroflg = TRUE;
for (l = 0; (l < SRBSIZ) && (k < high); l++,
k = k + (dptr->aincr)) { /* check for 0 block */
r = dptr->examine (&val, k, uptr, SIM_SW_REST);
if (r != SCPE_OK)
return r;
if (val) zeroflg = FALSE;
SZ_STORE (sz, val, mbuf, l);
} /* end for l */
if (zeroflg) { /* all zero's? */
l = -l; /* invert block count */
WRITE_I (l); /* write only count */
}
else {
WRITE_I (l); /* block count */
sim_fwrite (mbuf, sz, l, sfile);
}
} /* end for k */
free (mbuf); /* dealloc buffer */
} /* end if mem */
else { /* no memory */
high = 0; /* write 0 */
WRITE_I (high);
} /* end else mem */
} /* end unit loop */
t = -1; /* end units */
WRITE_I (t); /* write marker */
for (rptr = dptr->registers; (rptr != NULL) && /* loop thru regs */
(rptr->name != NULL); rptr++) {
fputs (rptr->name, sfile); /* name */
fputc ('\n', sfile);
WRITE_I (rptr->depth); /* [V2.10] depth */
for (j = 0; j < rptr->depth; j++) { /* loop thru values */
val = get_rval (rptr, j); /* get value */
WRITE_I (val); /* store */
}
}
fputc ('\n', sfile); /* end registers */
}
fputc ('\n', sfile); /* end devices */
return (ferror (sfile))? SCPE_IOERR: SCPE_OK; /* error during save? */
}
/* Restore command
re[store] filename restore state from specified file
*/
t_stat restore_cmd (int32 flag, char *cptr)
{
FILE *rfile;
t_stat r;
GET_SWITCHES (cptr); /* get switches */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
sim_trim_endspc (cptr);
if ((rfile = sim_fopen (cptr, "rb")) == NULL)
return SCPE_OPENERR;
r = sim_rest (rfile);
fclose (rfile);
return r;
}
t_stat sim_rest (FILE *rfile)
{
char buf[CBUFSIZE];
void *mbuf;
int32 j, blkcnt, limit, unitno, time, flg;
uint32 us, depth;
t_addr k, high, old_capac;
t_value val, mask;
t_stat r;
size_t sz;
t_bool v35, v32;
DEVICE *dptr;
UNIT *uptr;
REG *rptr;
#define READ_S(xx) if (read_line ((xx), CBUFSIZE, rfile) == NULL) \
return SCPE_IOERR;
#define READ_I(xx) if (sim_fread (&xx, sizeof (xx), 1, rfile) == 0) \
return SCPE_IOERR;
READ_S (buf); /* [V2.5+] read version */
v35 = v32 = FALSE;
if (strcmp (buf, save_vercur) == 0) /* version 3.5? */
v35 = v32 = TRUE;
else if (strcmp (buf, save_ver32) == 0) /* version 3.2? */
v32 = TRUE;
else if (strcmp (buf, save_ver30) != 0) { /* version 3.0? */
printf ("Invalid file version: %s\n", buf);
return SCPE_INCOMP;
}
READ_S (buf); /* read sim name */
if (strcmp (buf, sim_name)) { /* name match? */
printf ("Wrong system type: %s\n", buf);
return SCPE_INCOMP;
}
if (v35) { /* [V3.5+] options */
READ_S (buf); /* integer size */
if (strcmp (buf, sim_si64) != 0) {
printf ("Incompatible integer size, save file = %s\n", buf);
return SCPE_INCOMP;
}
READ_S (buf); /* address size */
if (strcmp (buf, sim_sa64) != 0) {
printf ("Incompatible address size, save file = %s\n", buf);
return SCPE_INCOMP;
}
READ_S (buf); /* Ethernet */
}
if (v32) { /* [V3.2+] time as string */
READ_S (buf);
sscanf (buf, "%lf", &sim_time);
}
else READ_I (sim_time); /* sim time */
READ_I (sim_rtime); /* [V2.6+] sim rel time */
for ( ;; ) { /* device loop */
READ_S (buf); /* read device name */
if (buf[0] == 0) /* last? */
break;
if ((dptr = find_dev (buf)) == NULL) { /* locate device */
printf ("Invalid device name: %s\n", buf);
return SCPE_INCOMP;
}
READ_S (buf); /* [V3.0+] logical name */
deassign_device (dptr); /* delete old name */
if ((buf[0] != 0) &&
((r = assign_device (dptr, buf)) != SCPE_OK))
return r;
READ_I (flg); /* [V2.10+] ctlr flags */
if (!v32)
flg = ((flg & DEV_UFMASK_31) << (DEV_V_UF - DEV_V_UF_31)) |
(flg & ~DEV_UFMASK_31); /* [V3.2+] flags moved */
dptr->flags = (dptr->flags & ~DEV_RFLAGS) | /* restore ctlr flags */
(flg & DEV_RFLAGS);
for ( ;; ) { /* unit loop */
sim_switches = SIM_SW_REST; /* flag rstr, clr RO */
READ_I (unitno); /* unit number */
if (unitno < 0) /* end units? */
break;
if ((uint32) unitno >= dptr->numunits) { /* too big? */
printf ("Invalid unit number: %s%d\n", sim_dname (dptr), unitno);
return SCPE_INCOMP;
}
READ_I (time); /* event time */
uptr = (dptr->units) + unitno;
sim_cancel (uptr);
if (time > 0)
sim_activate (uptr, time - 1);
READ_I (uptr->u3); /* device specific */
READ_I (uptr->u4);
READ_I (uptr->u5); /* [V3.0+] more dev spec */
READ_I (uptr->u6);
READ_I (flg); /* [V2.10+] unit flags */
old_capac = uptr->capac; /* save current capacity */
if (v35) { /* [V3.5+] capacity */
READ_I (uptr->capac);
}
if (!v32)
flg = ((flg & UNIT_UFMASK_31) << (UNIT_V_UF - UNIT_V_UF_31)) |
(flg & ~UNIT_UFMASK_31); /* [V3.2+] flags moved */
uptr->flags = (uptr->flags & ~UNIT_RFLAGS) |
(flg & UNIT_RFLAGS); /* restore */
READ_S (buf); /* attached file */
if ((uptr->flags & UNIT_ATT) && /* unit currently attached? */
!(dptr->flags & DEV_NET)) { /* and not a net device? */
r = scp_detach_unit (dptr, uptr); /* detach it */
if (r != SCPE_OK)
return r;
}
if ((buf[0] != '\0') && /* unit to be reattached? */
!(dptr->flags & DEV_NET) && /* and not a net device? */
((uptr->flags & UNIT_ATTABLE) || /* and unit is attachable */
(dptr->attach != NULL))) { /* or VM attach routine provided? */
uptr->flags = uptr->flags & ~UNIT_DIS; /* ensure device is enabled */
if (flg & UNIT_RO) /* [V2.10+] saved flgs & RO? */
sim_switches |= SWMASK ('R'); /* RO attach */
r = scp_attach_unit (dptr, uptr, buf); /* reattach unit */
if (r != SCPE_OK)
return r;
}
READ_I (high); /* memory capacity */
if (high > 0) { /* [V2.5+] any memory? */
if (((uptr->flags & (UNIT_FIX + UNIT_ATTABLE)) != UNIT_FIX) ||
(dptr->deposit == NULL)) {
printf ("Can't restore memory: %s%d\n", sim_dname (dptr), unitno);
return SCPE_INCOMP;
}
if (high != old_capac) { /* size change? */
uptr->capac = old_capac; /* temp restore old */
if ((dptr->flags & DEV_DYNM) &&
((dptr->msize == NULL) ||
(dptr->msize (uptr, (int32) high, NULL, NULL) != SCPE_OK))) {
printf ("Can't change memory size: %s%d\n",
sim_dname (dptr), unitno);
return SCPE_INCOMP;
}
uptr->capac = high; /* new memory size */
printf ("Memory size changed: %s%d = ", sim_dname (dptr), unitno);
fprint_capac (stdout, dptr, uptr);
printf ("\n");
}
sz = SZ_D (dptr); /* allocate buffer */
if ((mbuf = calloc (SRBSIZ, sz)) == NULL)
return SCPE_MEM;
for (k = 0; k < high; ) { /* loop thru mem */
READ_I (blkcnt); /* block count */
if (blkcnt < 0) /* compressed? */
limit = -blkcnt;
else limit = sim_fread (mbuf, sz, blkcnt, rfile);
if (limit <= 0) /* invalid or err? */
return SCPE_IOERR;
for (j = 0; j < limit; j++, k = k + (dptr->aincr)) {
if (blkcnt < 0) /* compressed? */
val = 0;
else SZ_LOAD (sz, val, mbuf, j); /* saved value */
r = dptr->deposit (val, k, uptr, SIM_SW_REST);
if (r != SCPE_OK)
return r;
} /* end for j */
} /* end for k */
free (mbuf); /* dealloc buffer */
} /* end if high */
} /* end unit loop */
for ( ;; ) { /* register loop */
READ_S (buf); /* read reg name */
if (buf[0] == 0) /* last? */
break;
READ_I (depth); /* [V2.10+] depth */
if ((rptr = find_reg (buf, NULL, dptr)) == NULL) {
printf ("Invalid register name: %s %s\n", sim_dname (dptr), buf);
for (us = 0; us < depth; us++) { /* skip values */
READ_I (val);
}
continue;
}
if (depth != rptr->depth) /* [V2.10+] mismatch? */
printf ("Register depth mismatch: %s %s, file = %d, sim = %d\n",
sim_dname (dptr), buf, depth, rptr->depth);
mask = width_mask[rptr->width]; /* get mask */
for (us = 0; us < depth; us++) { /* loop thru values */
READ_I (val); /* read value */
if (val > mask) /* value ok? */
printf ("Invalid register value: %s %s\n", sim_dname (dptr), buf);
else if (us < rptr->depth) /* in range? */
put_rval (rptr, us, val);
}
}
} /* end device loop */
return SCPE_OK;
}
/* Run, go, cont, step commands
ru[n] [new PC] reset and start simulation
go [new PC] start simulation
co[nt] start simulation
s[tep] [step limit] start simulation for 'limit' instructions
b[oot] device bootstrap from device and start simulation
*/
t_stat run_cmd (int32 flag, char *cptr)
{
char *tptr, gbuf[CBUFSIZE];
uint32 i, j;
int32 unitno;
t_value pcv;
t_stat r;
DEVICE *dptr;
UNIT *uptr;
void int_handler (int signal);
GET_SWITCHES (cptr); /* get switches */
sim_step = 0;
if ((flag == RU_RUN) || (flag == RU_GO)) { /* run or go */
if (*cptr != 0) { /* argument? */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) /* should be end */
return SCPE_2MARG;
if (sim_vm_parse_addr) /* address parser? */
pcv = sim_vm_parse_addr (sim_dflt_dev, gbuf, &tptr);
else pcv = strtotv (gbuf, &tptr, sim_PC->radix);/* parse PC */
if ((tptr == gbuf) || (*tptr != 0) || /* error? */
(pcv > width_mask[sim_PC->width]))
return SCPE_ARG;
put_rval (sim_PC, 0, pcv);
}
if ((flag == RU_RUN) && /* run? */
((r = run_boot_prep ()) != SCPE_OK)) /* reset sim */
return r;
}
else if (flag == RU_STEP) { /* step */
if (*cptr != 0) { /* argument? */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) /* should be end */
return SCPE_2MARG;
sim_step = (int32) get_uint (gbuf, 10, INT_MAX, &r);
if ((r != SCPE_OK) || (sim_step <= 0)) /* error? */
return SCPE_ARG;
}
else sim_step = 1;
}
else if (flag == RU_BOOT) { /* boot */
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) /* should be end */
return SCPE_2MARG;
dptr = find_unit (gbuf, &uptr); /* locate unit */
if (dptr == NULL) /* found dev? */
return SCPE_NXDEV;
if (uptr == NULL) /* valid unit? */
return SCPE_NXUN;
if (dptr->boot == NULL) /* can it boot? */
return SCPE_NOFNC;
if (uptr->flags & UNIT_DIS) /* disabled? */
return SCPE_UDIS;
if ((uptr->flags & UNIT_ATTABLE) && /* if attable, att? */
!(uptr->flags & UNIT_ATT))
return SCPE_UNATT;
unitno = (int32) (uptr - dptr->units); /* recover unit# */
if ((r = run_boot_prep ()) != SCPE_OK) /* reset sim */
return r;
if ((r = dptr->boot (unitno, dptr)) != SCPE_OK) /* boot device */
return r;
}
else if (flag != RU_CONT) /* must be cont */
return SCPE_IERR;
for (i = 1; (dptr = sim_devices[i]) != NULL; i++) { /* reposition all */
for (j = 0; j < dptr->numunits; j++) { /* seq devices */
uptr = dptr->units + j;
if ((uptr->flags & (UNIT_ATT + UNIT_SEQ)) == (UNIT_ATT + UNIT_SEQ))
sim_fseek (uptr->fileref, uptr->pos, SEEK_SET);
}
}
stop_cpu = 0;
if (signal (SIGINT, int_handler) == SIG_ERR) { /* set WRU */
return SCPE_SIGERR;
}
if (sim_ttrun () != SCPE_OK) { /* set console mode */
sim_ttcmd ();
return SCPE_TTYERR;
}
if ((r = sim_check_console (30)) != SCPE_OK) { /* check console, error? */
sim_ttcmd ();
return r;
}
if (sim_step) /* set step timer */
sim_activate (&sim_step_unit, sim_step);
sim_throt_sched (); /* set throttle */
sim_is_running = 1; /* flag running */
sim_brk_clract (); /* defang actions */
sim_rtcn_init_all (); /* re-init clocks */
r = sim_instr();
sim_is_running = 0; /* flag idle */
sim_ttcmd (); /* restore console */
signal (SIGINT, SIG_DFL); /* cancel WRU */
sim_cancel (&sim_step_unit); /* cancel step timer */
sim_throt_cancel (); /* cancel throttle */
if (sim_clock_queue != NULL) { /* update sim time */
UPDATE_SIM_TIME (sim_clock_queue->time);
}
else {
UPDATE_SIM_TIME (noqueue_time);
}
if (sim_log) /* flush console log */
fflush (sim_log);
if (sim_deb) /* flush debug log */
fflush (sim_deb);
for (i = 1; (dptr = sim_devices[i]) != NULL; i++) { /* flush attached files */
for (j = 0; j < dptr->numunits; j++) { /* if not buffered in mem */
uptr = dptr->units + j;
if ((uptr->flags & UNIT_ATT) && /* attached, */
!(uptr->flags & UNIT_BUF) && /* not buffered, */
(uptr->fileref) && /* real file, */
!(uptr->flags & UNIT_RAW) && /* not raw, */
!(uptr->flags & UNIT_RO)) /* not read only? */
fflush (uptr->fileref);
}
}
#if defined (VMS)
printf ("\n");
#endif
fprint_stopped (stdout, r); /* print msg */
if (sim_log) /* log if enabled */
fprint_stopped (sim_log, r);
return SCPE_OK;
}
/* Common setup for RUN or BOOT */
t_stat run_boot_prep (void)
{
sim_interval = 0; /* reset queue */
sim_time = sim_rtime = 0;
noqueue_time = 0;
sim_clock_queue = NULL;
return reset_all (0);
}
/* Print stopped message */
void fprint_stopped_gen (FILE *st, t_stat v, REG *pc, DEVICE *dptr)
{
int32 i;
t_stat r = 0;
t_addr k;
t_value pcval;
if (v >= SCPE_BASE) fprintf (st, "\n%s, %s: ",
scp_error_messages[v - SCPE_BASE], pc->name);
else fprintf (st, "\n%s, %s: ", sim_stop_messages[v], pc->name);
pcval = get_rval (pc, 0);
if (sim_vm_fprint_addr)
sim_vm_fprint_addr (st, dptr, (t_addr) pcval);
else fprint_val (st, pcval, pc->radix, pc->width,
pc->flags & REG_FMT);
if ((dptr != NULL) && (dptr->examine != NULL)) {
for (i = 0; i < sim_emax; i++)
sim_eval[i] = 0;
for (i = 0, k = (t_addr) pcval; i < sim_emax; i++, k = k + dptr->aincr) {
if ((r = dptr->examine (&sim_eval[i], k, dptr->units, SWMASK ('V'))) != SCPE_OK)
break;
}
if ((r == SCPE_OK) || (i > 0)) {
fprintf (st, " (");
if (fprint_sym (st, (t_addr) pcval, sim_eval, NULL, SWMASK('M')|SIM_SW_STOP) > 0)
fprint_val (st, sim_eval[0], dptr->dradix, dptr->dwidth, PV_RZRO);
fprintf (st, ")");
}
}
fprintf (st, "\n");
return;
}
void fprint_stopped (FILE *st, t_stat v)
{
fprint_stopped_gen (st, v, sim_PC, sim_dflt_dev);
return;
}
/* Unit service for step timeout, originally scheduled by STEP n command
Return step timeout SCP code, will cause simulation to stop */
t_stat step_svc (UNIT *uptr)
{
return SCPE_STEP;
}
/* Cancel scheduled step service */
t_stat sim_cancel_step (void)
{
return sim_cancel (&sim_step_unit);
}
/* Signal handler for ^C signal - set stop simulation flag */
void int_handler (int sig)
{
stop_cpu = 1;
return;
}
/* Examine/deposit commands
ex[amine] [modifiers] list examine
de[posit] [modifiers] list val deposit
ie[xamine] [modifiers] list interactive examine
id[eposit] [modifiers] list interactive deposit
modifiers
@filename output file
-letter(s) switches
devname'n device name and unit number
[{&|^}value]{=|==|!|!=|>|>=|<|<=} value search specification
list list of addresses and registers
addr[:addr|-addr] address range
ALL all addresses
register[:register|-register] register range
STATE all registers
*/
t_stat exdep_cmd (int32 flag, char *cptr)
{
char gbuf[CBUFSIZE], *gptr, *tptr;
int32 opt;
t_addr low, high;
t_stat reason;
DEVICE *tdptr;
REG *lowr, *highr;
FILE *ofile;
opt = CMD_OPT_SW|CMD_OPT_SCH|CMD_OPT_DFT; /* options for all */
if (flag == EX_E) /* extra for EX */
opt = opt | CMD_OPT_OF;
cptr = get_sim_opt (opt, cptr, &reason); /* get cmd options */
if (!cptr) /* error? */
return reason;
if (*cptr == 0) /* must be more */
return SCPE_2FARG;
if (sim_dfunit == NULL) /* got a unit? */
return SCPE_NXUN;
cptr = get_glyph (cptr, gbuf, 0); /* get list */
if ((flag == EX_D) && (*cptr == 0)) /* deposit needs more */
return SCPE_2FARG;
ofile = sim_ofile? sim_ofile: stdout; /* no ofile? use stdout */
for (gptr = gbuf, reason = SCPE_OK;
(*gptr != 0) && (reason == SCPE_OK); gptr = tptr) {
tdptr = sim_dfdev; /* working dptr */
if (strncmp (gptr, "STATE", strlen ("STATE")) == 0) {
tptr = gptr + strlen ("STATE");
if (*tptr && (*tptr++ != ','))
return SCPE_ARG;
if ((lowr = sim_dfdev->registers) == NULL)
return SCPE_NXREG;
for (highr = lowr; highr->name != NULL; highr++) ;
sim_switches = sim_switches | SIM_SW_HIDE;
reason = exdep_reg_loop (ofile, sim_schptr, flag, cptr,
lowr, --highr, 0, 0);
continue;
}
if ((lowr = find_reg (gptr, &tptr, tdptr)) || /* local reg or */
(!(sim_opt_out & CMD_OPT_DFT) && /* no dflt, global? */
(lowr = find_reg_glob (gptr, &tptr, &tdptr)))) {
low = high = 0;
if ((*tptr == '-') || (*tptr == ':')) {
highr = find_reg (tptr + 1, &tptr, tdptr);
if (highr == NULL)
return SCPE_NXREG;
}
else {
highr = lowr;
if (*tptr == '[') {
if (lowr->depth <= 1)
return SCPE_ARG;
tptr = get_range (NULL, tptr + 1, &low, &high,
10, lowr->depth - 1, ']');
if (tptr == NULL)
return SCPE_ARG;
}
}
if (*tptr && (*tptr++ != ','))
return SCPE_ARG;
reason = exdep_reg_loop (ofile, sim_schptr, flag, cptr,
lowr, highr, (uint32) low, (uint32) high);
continue;
}
tptr = get_range (sim_dfdev, gptr, &low, &high, sim_dfdev->aradix,
(((sim_dfunit->capac == 0) || (flag == EX_E))? 0:
sim_dfunit->capac - sim_dfdev->aincr), 0);
if (tptr == NULL)
return SCPE_ARG;
if (*tptr && (*tptr++ != ','))
return SCPE_ARG;
reason = exdep_addr_loop (ofile, sim_schptr, flag, cptr, low, high,
sim_dfdev, sim_dfunit);
} /* end for */
if (sim_ofile) /* close output file */
fclose (sim_ofile);
return reason;
}
/* Loop controllers for examine/deposit
exdep_reg_loop examine/deposit range of registers
exdep_addr_loop examine/deposit range of addresses
*/
t_stat exdep_reg_loop (FILE *ofile, SCHTAB *schptr, int32 flag, char *cptr,
REG *lowr, REG *highr, uint32 lows, uint32 highs)
{
t_stat reason;
uint32 idx;
t_value val;
REG *rptr;
if ((lowr == NULL) || (highr == NULL))
return SCPE_IERR;
if (lowr > highr)
return SCPE_ARG;
for (rptr = lowr; rptr <= highr; rptr++) {
if ((sim_switches & SIM_SW_HIDE) &&
(rptr->flags & REG_HIDDEN))
continue;
for (idx = lows; idx <= highs; idx++) {
if (idx >= rptr->depth)
return SCPE_SUB;
val = get_rval (rptr, idx);
if (schptr && !test_search (val, schptr))
continue;
if (flag != EX_D) {
reason = ex_reg (ofile, val, flag, rptr, idx);
if (reason != SCPE_OK)
return reason;
if (sim_log && (ofile == stdout))
ex_reg (sim_log, val, flag, rptr, idx);
}
if (flag != EX_E) {
reason = dep_reg (flag, cptr, rptr, idx);
if (reason != SCPE_OK)
return reason;
}
}
}
return SCPE_OK;
}
t_stat exdep_addr_loop (FILE *ofile, SCHTAB *schptr, int32 flag, char *cptr,
t_addr low, t_addr high, DEVICE *dptr, UNIT *uptr)
{
t_addr i, mask;
t_stat reason;
if (uptr->flags & UNIT_DIS) /* disabled? */
return SCPE_UDIS;
mask = (t_addr) width_mask[dptr->awidth];
if ((low > mask) || (high > mask) || (low > high))
return SCPE_ARG;
for (i = low; i <= high; ) { /* all paths must incr!! */
reason = get_aval (i, dptr, uptr); /* get data */
if (reason != SCPE_OK) /* return if error */
return reason;
if (schptr && !test_search (sim_eval[0], schptr))
i = i + dptr->aincr; /* sch fails, incr */
else { /* no sch or success */
if (flag != EX_D) { /* ex, ie, or id? */
reason = ex_addr (ofile, flag, i, dptr, uptr);
if (reason > SCPE_OK)
return reason;
if (sim_log && (ofile == stdout))
ex_addr (sim_log, flag, i, dptr, uptr);
}
else reason = 1 - dptr->aincr; /* no, dflt incr */
if (flag != EX_E) { /* ie, id, or d? */
reason = dep_addr (flag, cptr, i, dptr, uptr, reason);
if (reason > SCPE_OK)
return reason;
}
i = i + (1 - reason); /* incr */
}
}
return SCPE_OK;
}
/* Examine register routine
Inputs:
ofile = output stream
val = current register value
flag = type of ex/mod command (ex, iex, idep)
rptr = pointer to register descriptor
idx = index
Outputs:
return = error status
*/
t_stat ex_reg (FILE *ofile, t_value val, int32 flag, REG *rptr, uint32 idx)
{
int32 rdx;
if (rptr == NULL)
return SCPE_IERR;
if (rptr->depth > 1)
fprintf (ofile, "%s[%d]:\t", rptr->name, idx);
else fprintf (ofile, "%s:\t", rptr->name);
if (!(flag & EX_E))
return SCPE_OK;
GET_RADIX (rdx, rptr->radix);
if ((rptr->flags & REG_VMAD) && sim_vm_fprint_addr)
sim_vm_fprint_addr (ofile, sim_dflt_dev, (t_addr) val);
else if (!(rptr->flags & REG_VMIO) ||
(fprint_sym (ofile, rdx, &val, NULL, sim_switches | SIM_SW_REG) > 0))
fprint_val (ofile, val, rdx, rptr->width, rptr->flags & REG_FMT);
if (flag & EX_I)
fprintf (ofile, "\t");
else fprintf (ofile, "\n");
return SCPE_OK;
}
/* Get register value
Inputs:
rptr = pointer to register descriptor
idx = index
Outputs:
return = register value
*/
t_value get_rval (REG *rptr, uint32 idx)
{
size_t sz;
t_value val;
UNIT *uptr;
sz = SZ_R (rptr);
if ((rptr->depth > 1) && (rptr->flags & REG_CIRC)) {
idx = idx + rptr->qptr;
if (idx >= rptr->depth) idx = idx - rptr->depth;
}
if ((rptr->depth > 1) && (rptr->flags & REG_UNIT)) {
uptr = ((UNIT *) rptr->loc) + idx;
#if defined (USE_INT64)
if (sz <= sizeof (uint32))
val = *((uint32 *) uptr);
else val = *((t_uint64 *) uptr);
#else
val = *((uint32 *) uptr);
#endif
}
else if (((rptr->depth > 1) || (rptr->flags & REG_FIT)) &&
(sz == sizeof (uint8)))
val = *(((uint8 *) rptr->loc) + idx);
else if (((rptr->depth > 1) || (rptr->flags & REG_FIT)) &&
(sz == sizeof (uint16)))
val = *(((uint16 *) rptr->loc) + idx);
#if defined (USE_INT64)
else if (sz <= sizeof (uint32))
val = *(((uint32 *) rptr->loc) + idx);
else val = *(((t_uint64 *) rptr->loc) + idx);
#else
else val = *(((uint32 *) rptr->loc) + idx);
#endif
val = (val >> rptr->offset) & width_mask[rptr->width];
return val;
}
/* Deposit register routine
Inputs:
flag = type of deposit (normal/interactive)
cptr = pointer to input string
rptr = pointer to register descriptor
idx = index
Outputs:
return = error status
*/
t_stat dep_reg (int32 flag, char *cptr, REG *rptr, uint32 idx)
{
t_stat r;
t_value val, mask;
int32 rdx;
char *tptr, gbuf[CBUFSIZE];
if ((cptr == NULL) || (rptr == NULL))
return SCPE_IERR;
if (rptr->flags & REG_RO)
return SCPE_RO;
if (flag & EX_I) {
cptr = read_line (gbuf, CBUFSIZE, stdin);
if (sim_log)
fprintf (sim_log, (cptr? "%s\n": "\n"), cptr);
if (cptr == NULL) /* force exit */
return 1;
if (*cptr == 0) /* success */
return SCPE_OK;
}
mask = width_mask[rptr->width];
GET_RADIX (rdx, rptr->radix);
if ((rptr->flags & REG_VMAD) && sim_vm_parse_addr) { /* address form? */
val = sim_vm_parse_addr (sim_dflt_dev, cptr, &tptr);
if ((tptr == cptr) || (*tptr != 0) || (val > mask))
return SCPE_ARG;
}
else if (!(rptr->flags & REG_VMIO) || /* dont use sym? */
(parse_sym (cptr, rdx, NULL, &val, sim_switches | SIM_SW_REG) > SCPE_OK)) {
val = get_uint (cptr, rdx, mask, &r);
if (r != SCPE_OK)
return SCPE_ARG;
}
if ((rptr->flags & REG_NZ) && (val == 0))
return SCPE_ARG;
put_rval (rptr, idx, val);
return SCPE_OK;
}
/* Put register value
Inputs:
rptr = pointer to register descriptor
idx = index
val = new value
mask = mask
Outputs:
none
*/
void put_rval (REG *rptr, uint32 idx, t_value val)
{
size_t sz;
t_value mask;
UNIT *uptr;
#define PUT_RVAL(sz,rp,id,v,m) \
*(((sz *) rp->loc) + id) = \
(*(((sz *) rp->loc) + id) & \
~((m) << (rp)->offset)) | ((v) << (rp)->offset)
if (rptr == sim_PC)
sim_brk_npc (0);
sz = SZ_R (rptr);
mask = width_mask[rptr->width];
if ((rptr->depth > 1) && (rptr->flags & REG_CIRC)) {
idx = idx + rptr->qptr;
if (idx >= rptr->depth)
idx = idx - rptr->depth;
}
if ((rptr->depth > 1) && (rptr->flags & REG_UNIT)) {
uptr = ((UNIT *) rptr->loc) + idx;
#if defined (USE_INT64)
if (sz <= sizeof (uint32))
*((uint32 *) uptr) = (*((uint32 *) uptr) &
~(((uint32) mask) << rptr->offset)) |
(((uint32) val) << rptr->offset);
else *((t_uint64 *) uptr) = (*((t_uint64 *) uptr)
& ~(mask << rptr->offset)) | (val << rptr->offset);
#else
*((uint32 *) uptr) = (*((uint32 *) uptr) &
~(((uint32) mask) << rptr->offset)) |
(((uint32) val) << rptr->offset);
#endif
}
else if (((rptr->depth > 1) || (rptr->flags & REG_FIT)) &&
(sz == sizeof (uint8)))
PUT_RVAL (uint8, rptr, idx, (uint32) val, (uint32) mask);
else if (((rptr->depth > 1) || (rptr->flags & REG_FIT)) &&
(sz == sizeof (uint16)))
PUT_RVAL (uint16, rptr, idx, (uint32) val, (uint32) mask);
#if defined (USE_INT64)
else if (sz <= sizeof (uint32))
PUT_RVAL (uint32, rptr, idx, (int32) val, (uint32) mask);
else PUT_RVAL (t_uint64, rptr, idx, val, mask);
#else
else PUT_RVAL (uint32, rptr, idx, val, mask);
#endif
return;
}
/* Examine address routine
Inputs: (sim_eval is an implicit argument)
ofile = output stream
flag = type of ex/mod command (ex, iex, idep)
addr = address to examine
dptr = pointer to device
uptr = pointer to unit
Outputs:
return = if > 0, error status
if <= 0,-number of extra addr units retired
*/
t_stat ex_addr (FILE *ofile, int32 flag, t_addr addr, DEVICE *dptr, UNIT *uptr)
{
t_stat reason;
int32 rdx;
if (sim_vm_fprint_addr)
sim_vm_fprint_addr (ofile, dptr, addr);
else fprint_val (ofile, addr, dptr->aradix, dptr->awidth, PV_LEFT);
fprintf (ofile, ":\t");
if (!(flag & EX_E))
return (1 - dptr->aincr);
GET_RADIX (rdx, dptr->dradix);
if ((reason = fprint_sym (ofile, addr, sim_eval, uptr, sim_switches)) > 0) {
fprint_val (ofile, sim_eval[0], rdx, dptr->dwidth, PV_RZRO);
reason = 1 - dptr->aincr;
}
if (flag & EX_I)
fprintf (ofile, "\t");
else fprintf (ofile, "\n");
return reason;
}
/* Get address routine
Inputs:
flag = type of ex/mod command (ex, iex, idep)
addr = address to examine
dptr = pointer to device
uptr = pointer to unit
Outputs: (sim_eval is an implicit output)
return = error status
*/
t_stat get_aval (t_addr addr, DEVICE *dptr, UNIT *uptr)
{
int32 i;
t_value mask;
t_addr j, loc;
size_t sz;
t_stat reason = SCPE_OK;
if ((dptr == NULL) || (uptr == NULL))
return SCPE_IERR;
mask = width_mask[dptr->dwidth];
for (i = 0; i < sim_emax; i++)
sim_eval[i] = 0;
for (i = 0, j = addr; i < sim_emax; i++, j = j + dptr->aincr) {
if (dptr->examine != NULL) {
reason = dptr->examine (&sim_eval[i], j, uptr, sim_switches);
if (reason != SCPE_OK)
break;
}
else {
if (!(uptr->flags & UNIT_ATT))
return SCPE_UNATT;
if (uptr->flags & UNIT_RAW)
return SCPE_NOFNC;
if ((uptr->flags & UNIT_FIX) && (j >= uptr->capac)) {
reason = SCPE_NXM;
break;
}
sz = SZ_D (dptr);
loc = j / dptr->aincr;
if (uptr->flags & UNIT_BUF) {
SZ_LOAD (sz, sim_eval[i], uptr->filebuf, loc);
}
else {
sim_fseek (uptr->fileref, sz * loc, SEEK_SET);
sim_fread (&sim_eval[i], sz, 1, uptr->fileref);
if ((feof (uptr->fileref)) &&
!(uptr->flags & UNIT_FIX)) {
reason = SCPE_EOF;
break;
}
else if (ferror (uptr->fileref)) {
clearerr (uptr->fileref);
reason = SCPE_IOERR;
break;
}
}
}
sim_eval[i] = sim_eval[i] & mask;
}
if ((reason != SCPE_OK) && (i == 0))
return reason;
return SCPE_OK;
}
/* Deposit address routine
Inputs:
flag = type of deposit (normal/interactive)
cptr = pointer to input string
addr = address to examine
dptr = pointer to device
uptr = pointer to unit
dfltinc = value to return on cr input
Outputs:
return = if > 0, error status
if <= 0, -number of extra address units retired
*/
t_stat dep_addr (int32 flag, char *cptr, t_addr addr, DEVICE *dptr,
UNIT *uptr, int32 dfltinc)
{
int32 i, count, rdx;
t_addr j, loc;
t_stat r, reason;
t_value mask;
size_t sz;
char gbuf[CBUFSIZE];
if (dptr == NULL)
return SCPE_IERR;
if (flag & EX_I) {
cptr = read_line (gbuf, CBUFSIZE, stdin);
if (sim_log)
fprintf (sim_log, (cptr? "%s\n": "\n"), cptr);
if (cptr == NULL) /* force exit */
return 1;
if (*cptr == 0) /* success */
return dfltinc;
}
if (uptr->flags & UNIT_RO) /* read only? */
return SCPE_RO;
mask = width_mask[dptr->dwidth];
GET_RADIX (rdx, dptr->dradix);
if ((reason = parse_sym (cptr, addr, uptr, sim_eval, sim_switches)) > 0) {
sim_eval[0] = get_uint (cptr, rdx, mask, &reason);
if (reason != SCPE_OK)
return reason;
}
count = (1 - reason + (dptr->aincr - 1)) / dptr->aincr;
for (i = 0, j = addr; i < count; i++, j = j + dptr->aincr) {
sim_eval[i] = sim_eval[i] & mask;
if (dptr->deposit != NULL) {
r = dptr->deposit (sim_eval[i], j, uptr, sim_switches);
if (r != SCPE_OK)
return r;
}
else {
if (!(uptr->flags & UNIT_ATT))
return SCPE_UNATT;
if (uptr->flags & UNIT_RAW)
return SCPE_NOFNC;
if ((uptr->flags & UNIT_FIX) && (j >= uptr->capac))
return SCPE_NXM;
sz = SZ_D (dptr);
loc = j / dptr->aincr;
if (uptr->flags & UNIT_BUF) {
SZ_STORE (sz, sim_eval[i], uptr->filebuf, loc);
if (loc >= uptr->hwmark)
uptr->hwmark = (uint32) loc + 1;
}
else {
sim_fseek (uptr->fileref, sz * loc, SEEK_SET);
sim_fwrite (&sim_eval[i], sz, 1, uptr->fileref);
if (ferror (uptr->fileref)) {
clearerr (uptr->fileref);
return SCPE_IOERR;
}
}
}
}
return reason;
}
/* Evaluate command */
t_stat eval_cmd (int32 flg, char *cptr)
{
DEVICE *dptr = sim_dflt_dev;
int32 i, rdx, a, lim;
t_stat r;
GET_SWITCHES (cptr);
GET_RADIX (rdx, dptr->dradix);
for (i = 0; i < sim_emax; i++)
sim_eval[i] = 0;
if (*cptr == 0)
return SCPE_2FARG;
if ((r = parse_sym (cptr, 0, dptr->units, sim_eval, sim_switches)) > 0) {
sim_eval[0] = get_uint (cptr, rdx, width_mask[dptr->dwidth], &r);
if (r != SCPE_OK)
return r;
}
lim = 1 - r;
for (i = a = 0; a < lim; ) {
printf ("%d:\t", a);
if ((r = fprint_sym (stdout, a, &sim_eval[i], dptr->units, sim_switches)) > 0)
r = fprint_val (stdout, sim_eval[i], rdx, dptr->dwidth, PV_RZRO);
printf ("\n");
if (sim_log) {
fprintf (sim_log, "%d\t", i);
if ((r = fprint_sym (sim_log, a, &sim_eval[i], dptr->units, sim_switches)) > 0)
r = fprint_val (sim_log, sim_eval[i], rdx, dptr->dwidth, PV_RZRO);
fprintf (sim_log, "\n");
}
if (r < 0)
a = a + 1 - r;
else a = a + dptr->aincr;
i = a / dptr->aincr;
}
return SCPE_OK;
}
/* String processing routines
read_line read line
Inputs:
cptr = pointer to buffer
size = maximum size
stream = pointer to input stream
Outputs:
optr = pointer to first non-blank character
NULL if EOF
*/
char *read_line (char *cptr, int32 size, FILE *stream)
{
char *tptr;
cptr = fgets (cptr, size, stream); /* get cmd line */
if (cptr == NULL) {
clearerr (stream); /* clear error */
return NULL; /* ignore EOF */
}
for (tptr = cptr; tptr < (cptr + size); tptr++) { /* remove cr or nl */
if ((*tptr == '\n') || (*tptr == '\r') ||
(tptr == (cptr + size - 1))) { /* str max length? */
*tptr = 0; /* terminate */
break;
}
}
while (isspace (*cptr)) /* trim leading spc */
cptr++;
if (*cptr == ';') *cptr = 0; /* ignore comment */
#if defined (HAVE_READLINE)
add_history (cptr);
#endif
return cptr;
}
/* get_glyph get next glyph (force upper case)
get_glyph_nc get next glyph (no conversion)
get_glyph_gen get next glyph (general case)
Inputs:
iptr = pointer to input string
optr = pointer to output string
mchar = optional end of glyph character
flag = TRUE for convert to upper case (_gen only)
Outputs
result = pointer to next character in input string
*/
char *get_glyph_gen (char *iptr, char *optr, char mchar, t_bool uc)
{
while ((isspace (*iptr) == 0) && (*iptr != 0) && (*iptr != mchar)) {
if (islower (*iptr) && uc)
*optr = toupper (*iptr);
else *optr = *iptr;
iptr++; optr++;
}
*optr = 0;
if (mchar && (*iptr == mchar)) /* skip terminator */
iptr++;
while (isspace (*iptr)) /* absorb spaces */
iptr++;
return iptr;
}
char *get_glyph (char *iptr, char *optr, char mchar)
{
return get_glyph_gen (iptr, optr, mchar, TRUE);
}
char *get_glyph_nc (char *iptr, char *optr, char mchar)
{
return get_glyph_gen (iptr, optr, mchar, FALSE);
}
/* Trim trailing spaces from a string
Inputs:
cptr = pointer to string
Outputs:
cptr = pointer to string
*/
char *sim_trim_endspc (char *cptr)
{
char *tptr;
tptr = cptr + strlen (cptr);
while ((--tptr >= cptr) && isspace (*tptr))
*tptr = 0;
return cptr;
}
/* get_yn yes/no question
Inputs:
cptr = pointer to question
deflt = default answer
Outputs:
result = true if yes, false if no
*/
t_stat get_yn (char *ques, t_stat deflt)
{
char cbuf[CBUFSIZE], *cptr;
printf ("%s ", ques);
cptr = read_line (cbuf, CBUFSIZE, stdin);
if ((cptr == NULL) || (*cptr == 0))
return deflt;
if ((*cptr == 'Y') || (*cptr == 'y'))
return TRUE;
return FALSE;
}
/* get_uint unsigned number
Inputs:
cptr = pointer to input string
radix = input radix
max = maximum acceptable value
*status = pointer to error status
Outputs:
val = value
*/
t_value get_uint (char *cptr, uint32 radix, t_value max, t_stat *status)
{
t_value val;
char *tptr;
*status = SCPE_OK;
val = strtotv (cptr, &tptr, radix);
if ((cptr == tptr) || (val > max))
*status = SCPE_ARG;
else {
while (isspace (*tptr)) tptr++;
if (*tptr != 0)
*status = SCPE_ARG;
}
return val;
}
/* get_range range specification
Inputs:
dptr = pointer to device (NULL if none)
cptr = pointer to input string
*lo = pointer to low result
*hi = pointer to high result
aradix = radix
max = default high value
term = terminating character, 0 if none
Outputs:
tptr = input pointer after processing
NULL if error
*/
char *get_range (DEVICE *dptr, char *cptr, t_addr *lo, t_addr *hi,
uint32 rdx, t_addr max, char term)
{
char *tptr;
if (max && strncmp (cptr, "ALL", strlen ("ALL")) == 0) { /* ALL? */
tptr = cptr + strlen ("ALL");
*lo = 0;
*hi = max;
}
else {
if (dptr && sim_vm_parse_addr) /* get low */
*lo = sim_vm_parse_addr (dptr, cptr, &tptr);
else *lo = (t_addr) strtotv (cptr, &tptr, rdx);
if (cptr == tptr) /* error? */
return NULL;
if ((*tptr == '-') || (*tptr == ':')) { /* range? */
cptr = tptr + 1;
if (dptr && sim_vm_parse_addr) /* get high */
*hi = sim_vm_parse_addr (dptr, cptr, &tptr);
else *hi = (t_addr) strtotv (cptr, &tptr, rdx);
if (cptr == tptr)
return NULL;
if (*lo > *hi)
return NULL;
}
else if (*tptr == '/') { /* relative? */
cptr = tptr + 1;
*hi = (t_addr) strtotv (cptr, &tptr, rdx); /* get high */
if ((cptr == tptr) || (*hi == 0))
return NULL;
*hi = *lo + *hi - 1;
}
else *hi = *lo;
}
if (term && (*tptr++ != term))
return NULL;
return tptr;
}
/* get_ipaddr IP address:port
Inputs:
cptr = pointer to input string
Outputs:
ipa = pointer to IP address (may be NULL), 0 = none
ipp = pointer to IP port (may be NULL), 0 = none
result = status
*/
t_stat get_ipaddr (char *cptr, uint32 *ipa, uint32 *ipp)
{
char gbuf[CBUFSIZE];
char *addrp, *portp, *octetp;
uint32 i, addr, port, octet;
t_stat r;
if ((cptr == NULL) || (*cptr == 0))
return SCPE_ARG;
strncpy (gbuf, cptr, CBUFSIZE);
addrp = gbuf; /* default addr */
if (portp = strchr (gbuf, ':')) /* x:y? split */
*portp++ = 0;
else if (strchr (gbuf, '.')) /* x.y...? */
portp = NULL;
else {
portp = gbuf; /* port only */
addrp = NULL; /* no addr */
}
if (portp) { /* port string? */
if (ipp == NULL) /* not wanted? */
return SCPE_ARG;
port = (int32) get_uint (portp, 10, 65535, &r);
if ((r != SCPE_OK) || (port == 0))
return SCPE_ARG;
}
else port = 0;
if (addrp) { /* addr string? */
if (ipa == NULL) /* not wanted? */
return SCPE_ARG;
for (i = addr = 0; i < 4; i++) { /* four octets */
octetp = strchr (addrp, '.'); /* find octet end */
if (octetp != NULL) /* split string */
*octetp++ = 0;
else if (i < 3) /* except last */
return SCPE_ARG;
octet = (int32) get_uint (addrp, 10, 255, &r);
if (r != SCPE_OK)
return SCPE_ARG;
addr = (addr << 8) | octet;
addrp = octetp;
}
if (((addr & 0377) == 0) || ((addr & 0377) == 255))
return SCPE_ARG;
}
else addr = 0;
if (ipp) /* return req values */
*ipp = port;
if (ipa)
*ipa = addr;
return SCPE_OK;
}
/* Find_device find device matching input string
Inputs:
cptr = pointer to input string
Outputs:
result = pointer to device
*/
DEVICE *find_dev (char *cptr)
{
int32 i;
DEVICE *dptr;
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) {
if ((strcmp (cptr, dptr->name) == 0) ||
(dptr->lname &&
(strcmp (cptr, dptr->lname) == 0)))
return dptr;
}
return NULL;
}
/* Find_unit find unit matching input string
Inputs:
cptr = pointer to input string
uptr = pointer to unit pointer
Outputs:
result = pointer to device (null if no dev)
*iptr = pointer to unit (null if nx unit)
*/
DEVICE *find_unit (char *cptr, UNIT **uptr)
{
uint32 i, u;
char *nptr, *tptr;
t_stat r;
DEVICE *dptr;
if (uptr == NULL) /* arg error? */
return NULL;
if (dptr = find_dev (cptr)) { /* exact match? */
if (qdisable (dptr)) /* disabled? */
return NULL;
*uptr = dptr->units; /* unit 0 */
return dptr;
}
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* base + unit#? */
if (dptr->numunits && /* any units? */
(((nptr = dptr->name) &&
(strncmp (cptr, nptr, strlen (nptr)) == 0)) ||
((nptr = dptr->lname) &&
(strncmp (cptr, nptr, strlen (nptr)) == 0)))) {
tptr = cptr + strlen (nptr);
if (isdigit (*tptr)) {
if (qdisable (dptr)) /* disabled? */
return NULL;
u = (uint32) get_uint (tptr, 10, dptr->numunits - 1, &r);
if (r != SCPE_OK) /* error? */
*uptr = NULL;
else *uptr = dptr->units + u;
return dptr;
}
}
}
return NULL;
}
/* Find_dev_from_unit find device for unit
Inputs:
uptr = pointer to unit
Outputs:
result = pointer to device
*/
DEVICE *find_dev_from_unit (UNIT *uptr)
{
DEVICE *dptr;
uint32 i, j;
if (uptr == NULL)
return NULL;
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) {
for (j = 0; j < dptr->numunits; j++) {
if (uptr == (dptr->units + j))
return dptr;
}
}
return NULL;
}
/* Test for disabled device */
t_bool qdisable (DEVICE *dptr)
{
return (dptr->flags & DEV_DIS? TRUE: FALSE);
}
/* find_reg_glob find globally unique register
Inputs:
cptr = pointer to input string
optr = pointer to output pointer (can be null)
gdptr = pointer to global device
Outputs:
result = pointer to register, NULL if error
*optr = pointer to next character in input string
*gdptr = pointer to device where found
*/
REG *find_reg_glob (char *cptr, char **optr, DEVICE **gdptr)
{
int32 i;
DEVICE *dptr;
REG *rptr, *srptr = NULL;
for (i = 0; (dptr = sim_devices[i]) != 0; i++) { /* all dev */
if (dptr->flags & DEV_DIS) /* skip disabled */
continue;
if (rptr = find_reg (cptr, optr, dptr)) { /* found? */
if (srptr) /* ambig? err */
return NULL;
srptr = rptr; /* save reg */
*gdptr = dptr; /* save unit */
}
}
return srptr;
}
/* find_reg find register matching input string
Inputs:
cptr = pointer to input string
optr = pointer to output pointer (can be null)
dptr = pointer to device
Outputs:
result = pointer to register, NULL if error
*optr = pointer to next character in input string
*/
REG *find_reg (char *cptr, char **optr, DEVICE *dptr)
{
char *tptr;
REG *rptr;
uint32 slnt;
if ((cptr == NULL) || (dptr == NULL) || (dptr->registers == NULL))
return NULL;
tptr = cptr;
do {
tptr++;
} while (isalnum (*tptr) || (*tptr == '*') || (*tptr == '_'));
slnt = tptr - cptr;
for (rptr = dptr->registers; rptr->name != NULL; rptr++) {
if ((slnt == strlen (rptr->name)) &&
(strncmp (cptr, rptr->name, slnt) == 0)) {
if (optr != NULL)
*optr = tptr;
return rptr;
}
}
return NULL;
}
/* get_switches get switches from input string
Inputs:
cptr = pointer to input string
Outputs:
sw = switch bit mask
0 if no switches, -1 if error
*/
int32 get_switches (char *cptr)
{
int32 sw;
if (*cptr != '-')
return 0;
sw = 0;
for (cptr++; (isspace (*cptr) == 0) && (*cptr != 0); cptr++) {
if (isalpha (*cptr) == 0)
return -1;
sw = sw | SWMASK (toupper (*cptr));
}
return sw;
}
/* get_sim_sw accumulate sim_switches
Inputs:
cptr = pointer to input string
Outputs:
ptr = pointer to first non-string glyph
NULL if error
*/
char *get_sim_sw (char *cptr)
{
int32 lsw;
char gbuf[CBUFSIZE];
while (*cptr == '-') { /* while switches */
cptr = get_glyph (cptr, gbuf, 0); /* get switch glyph */
lsw = get_switches (gbuf); /* parse */
if (lsw <= 0) /* invalid? */
return NULL;
sim_switches = sim_switches | lsw; /* accumulate */
}
return cptr;
}
/* get_sim_opt get simulator command options
Inputs:
opt = command options
cptr = pointer to input string
Outputs:
ptr = pointer to next glypsh, NULL if error
*stat = error status
*/
char *get_sim_opt (int32 opt, char *cptr, t_stat *st)
{
int32 t;
char *svptr, gbuf[CBUFSIZE];
DEVICE *tdptr;
UNIT *tuptr;
sim_switches = 0; /* no switches */
sim_ofile = NULL; /* no output file */
sim_schptr = NULL; /* no search */
sim_stab.logic = SCH_OR; /* default search params */
sim_stab.boolop = SCH_GE;
sim_stab.mask = 0;
sim_stab.comp = 0;
sim_dfdev = sim_dflt_dev;
sim_dfunit = sim_dfdev->units;
sim_opt_out = 0; /* no options yet */
*st = SCPE_OK;
while (*cptr) { /* loop through modifiers */
svptr = cptr; /* save current position */
if ((opt & CMD_OPT_OF) && (*cptr == '@')) { /* output file spec? */
if (sim_ofile) { /* already got one? */
fclose (sim_ofile); /* one per customer */
*st = SCPE_ARG;
return NULL;
}
cptr = get_glyph_nc (cptr + 1, gbuf, 0);
sim_ofile = sim_fopen (gbuf, "a"); /* open for append */
if (sim_ofile == NULL) { /* open failed? */
*st = SCPE_OPENERR;
return NULL;
}
sim_opt_out |= CMD_OPT_OF; /* got output file */
continue;
}
cptr = get_glyph (cptr, gbuf, 0);
if ((t = get_switches (gbuf)) != 0) { /* try for switches */
if (t < 0) { /* err if bad switch */
*st = SCPE_INVSW;
return NULL;
}
sim_switches = sim_switches | t; /* or in new switches */
}
else if ((opt & CMD_OPT_SCH) && /* if allowed, */
get_search (gbuf, sim_dfdev->dradix, &sim_stab)) { /* try for search */
sim_schptr = &sim_stab; /* set search */
sim_opt_out |= CMD_OPT_SCH; /* got search */
}
else if ((opt & CMD_OPT_DFT) && /* default allowed? */
((sim_opt_out & CMD_OPT_DFT) == 0) && /* none yet? */
(tdptr = find_unit (gbuf, &tuptr)) && /* try for default */
(tuptr != NULL)) {
sim_dfdev = tdptr; /* set as default */
sim_dfunit = tuptr;
sim_opt_out |= CMD_OPT_DFT; /* got default */
}
else return svptr; /* not rec, break out */
}
return cptr;
}
/* Match file extension
Inputs:
fnam = file name
ext = extension, without period
Outputs:
cp = pointer to final '.' if match, NULL if not
*/
char *match_ext (char *fnam, char *ext)
{
char *pptr, *fptr, *eptr;
if ((fnam == NULL) || (ext == NULL)) /* bad arguments? */
return NULL;
pptr = strrchr (fnam, '.'); /* find last . */
if (pptr) { /* any? */
for (fptr = pptr + 1, eptr = ext; /* match characters */
#if defined (VMS) /* VMS: stop at ; or null */
(*fptr != 0) && (*fptr != ';');
#else
*fptr != 0; /* others: stop at null */
#endif
fptr++, eptr++) {
if (toupper (*fptr) != toupper (*eptr))
return NULL;
}
if (*eptr != 0) /* ext exhausted? */
return NULL;
}
return pptr;
}
/* Get search specification
Inputs:
cptr = pointer to input string
radix = radix for numbers
schptr = pointer to search table
Outputs:
return = NULL if error
schptr if valid search specification
*/
SCHTAB *get_search (char *cptr, int32 radix, SCHTAB *schptr)
{
int32 c, logop, cmpop;
t_value logval, cmpval;
char *sptr, *tptr;
const char logstr[] = "|&^", cmpstr[] = "=!><";
logval = cmpval = 0;
if (*cptr == 0) /* check for clause */
return NULL;
for (logop = cmpop = -1; c = *cptr++; ) { /* loop thru clauses */
if (sptr = strchr (logstr, c)) { /* check for mask */
logop = sptr - logstr;
logval = strtotv (cptr, &tptr, radix);
if (cptr == tptr)
return NULL;
cptr = tptr;
}
else if (sptr = strchr (cmpstr, c)) { /* check for boolop */
cmpop = sptr - cmpstr;
if (*cptr == '=') {
cmpop = cmpop + strlen (cmpstr);
cptr++;
}
cmpval = strtotv (cptr, &tptr, radix);
if (cptr == tptr)
return NULL;
cptr = tptr;
}
else return NULL;
} /* end for */
if (logop >= 0) {
schptr->logic = logop;
schptr->mask = logval;
}
if (cmpop >= 0) {
schptr->boolop = cmpop;
schptr->comp = cmpval;
}
return schptr;
}
/* Test value against search specification
Inputs:
val = value to test
schptr = pointer to search table
Outputs:
return = 1 if value passes search criteria, 0 if not
*/
int32 test_search (t_value val, SCHTAB *schptr)
{
if (schptr == NULL) return 0;
switch (schptr->logic) { /* case on logical */
case SCH_OR:
val = val | schptr->mask;
break;
case SCH_AND:
val = val & schptr->mask;
break;
case SCH_XOR:
val = val ^ schptr->mask;
break;
}
switch (schptr->boolop) { /* case on comparison */
case SCH_E: case SCH_EE:
return (val == schptr->comp);
case SCH_N: case SCH_NE:
return (val != schptr->comp);
case SCH_G:
return (val > schptr->comp);
case SCH_GE:
return (val >= schptr->comp);
case SCH_L:
return (val < schptr->comp);
case SCH_LE:
return (val <= schptr->comp);
}
return 0;
}
/* Radix independent input/output package
strtotv - general radix input routine
Inputs:
inptr = string to convert
endptr = pointer to first unconverted character
radix = radix for input
Outputs:
value = converted value
On an error, the endptr will equal the inptr.
*/
t_value strtotv (char *inptr, char **endptr, uint32 radix)
{
int32 nodigit;
t_value val;
uint32 c, digit;
*endptr = inptr; /* assume fails */
if ((radix < 2) || (radix > 36))
return 0;
while (isspace (*inptr)) /* bypass white space */
inptr++;
val = 0;
nodigit = 1;
for (c = *inptr; isalnum(c); c = *++inptr) { /* loop through char */
if (islower (c))
c = toupper (c);
if (isdigit (c)) /* digit? */
digit = c - (uint32) '0';
else if (radix <= 10) /* stop if not expected */
break;
else digit = c + 10 - (uint32) 'A'; /* convert letter */
if (digit >= radix) /* valid in radix? */
return 0;
val = (val * radix) + digit; /* add to value */
nodigit = 0;
}
if (nodigit) /* no digits? */
return 0;
*endptr = inptr; /* result pointer */
return val;
}
/* fprint_val - general radix printing routine
Inputs:
stream = stream designator
val = value to print
radix = radix to print
width = width to print
format = leading zeroes format
Outputs:
status = error status
*/
t_stat fprint_val (FILE *stream, t_value val, uint32 radix,
uint32 width, uint32 format)
{
#define MAX_WIDTH ((int) (CHAR_BIT * sizeof (t_value)))
t_value owtest, wtest;
int32 d, digit, ndigits;
char dbuf[MAX_WIDTH + 1];
for (d = 0; d < MAX_WIDTH; d++)
dbuf[d] = (format == PV_RZRO)? '0': ' ';
dbuf[MAX_WIDTH] = 0;
d = MAX_WIDTH;
do {
d = d - 1;
digit = (int32) (val % radix);
val = val / radix;
dbuf[d] = (digit <= 9)? '0' + digit: 'A' + (digit - 10);
} while ((d > 0) && (val != 0));
if (format != PV_LEFT) {
wtest = owtest = radix;
ndigits = 1;
while ((wtest < width_mask[width]) && (wtest >= owtest)) {
owtest = wtest;
wtest = wtest * radix;
ndigits = ndigits + 1;
}
if ((MAX_WIDTH - ndigits) < d)
d = MAX_WIDTH - ndigits;
}
if (fputs (&dbuf[d], stream) == EOF)
return SCPE_IOERR;
return SCPE_OK;
}
/* Event queue package
sim_activate add entry to event queue
sim_cancel remove entry from event queue
sim_process_event process entries on event queue
sim_is_active see if entry is on event queue
sim_atime return absolute time for an entry
sim_gtime return global time
sim_qcount return event queue entry count
Asynchronous events are set up by queueing a unit data structure
to the event queue with a timeout (in simulator units, relative
to the current time). Each simulator 'times' these events by
counting down interval counter sim_interval. When this reaches
zero the simulator calls sim_process_event to process the event
and to see if further events need to be processed, or sim_interval
reset to count the next one.
The event queue is maintained in clock order; entry timeouts are
RELATIVE to the time in the previous entry.
sim_process_event - process event
Inputs:
none
Outputs:
reason = reason code returned by any event processor,
or 0 (SCPE_OK) if no exceptions
*/
t_stat sim_process_event (void)
{
UNIT *uptr;
t_stat reason;
if (stop_cpu) /* stop CPU? */
return SCPE_STOP;
if (sim_clock_queue == NULL) { /* queue empty? */
UPDATE_SIM_TIME (noqueue_time); /* update sim time */
sim_interval = noqueue_time = NOQUEUE_WAIT; /* flag queue empty */
return SCPE_OK;
}
UPDATE_SIM_TIME (sim_clock_queue->time); /* update sim time */
do {
uptr = sim_clock_queue; /* get first */
sim_clock_queue = uptr->next; /* remove first */
uptr->next = NULL; /* hygiene */
uptr->time = 0;
if (sim_clock_queue != NULL)
sim_interval = sim_clock_queue->time;
else sim_interval = noqueue_time = NOQUEUE_WAIT;
if (uptr->action != NULL)
reason = uptr->action (uptr);
else reason = SCPE_OK;
} while ((reason == SCPE_OK) && (sim_interval == 0));
/* Empty queue forces sim_interval != 0 */
return reason;
}
/* sim_activate - activate (queue) event
Inputs:
uptr = pointer to unit
event_time = relative timeout
Outputs:
reason = result (SCPE_OK if ok)
*/
t_stat sim_activate (UNIT *uptr, int32 event_time)
{
UNIT *cptr, *prvptr;
int32 accum;
if (event_time < 0)
return SCPE_IERR;
if (sim_is_active (uptr)) /* already active? */
return SCPE_OK;
if (sim_clock_queue == NULL) {
UPDATE_SIM_TIME (noqueue_time);
}
else { /* update sim time */
UPDATE_SIM_TIME (sim_clock_queue->time);
}
prvptr = NULL;
accum = 0;
for (cptr = sim_clock_queue; cptr != NULL; cptr = cptr->next) {
if (event_time < (accum + cptr->time))
break;
accum = accum + cptr->time;
prvptr = cptr;
}
if (prvptr == NULL) { /* insert at head */
cptr = uptr->next = sim_clock_queue;
sim_clock_queue = uptr;
}
else {
cptr = uptr->next = prvptr->next; /* insert at prvptr */
prvptr->next = uptr;
}
uptr->time = event_time - accum;
if (cptr != NULL)
cptr->time = cptr->time - uptr->time;
sim_interval = sim_clock_queue->time;
return SCPE_OK;
}
/* sim_activate_abs - activate (queue) event even if event already scheduled
Inputs:
uptr = pointer to unit
event_time = relative timeout
Outputs:
reason = result (SCPE_OK if ok)
*/
t_stat sim_activate_abs (UNIT *uptr, int32 event_time)
{
sim_cancel (uptr);
return sim_activate (uptr, event_time);
}
/* sim_cancel - cancel (dequeue) event
Inputs:
uptr = pointer to unit
Outputs:
reason = result (SCPE_OK if ok)
*/
t_stat sim_cancel (UNIT *uptr)
{
UNIT *cptr, *nptr;
if (sim_clock_queue == NULL)
return SCPE_OK;
UPDATE_SIM_TIME (sim_clock_queue->time); /* update sim time */
nptr = NULL;
if (sim_clock_queue == uptr)
nptr = sim_clock_queue = uptr->next;
else {
for (cptr = sim_clock_queue; cptr != NULL; cptr = cptr->next) {
if (cptr->next == uptr) {
nptr = cptr->next = uptr->next;
break; /* end queue scan */
}
}
}
if (nptr != NULL)
nptr->time = nptr->time + uptr->time;
uptr->next = NULL; /* hygiene */
uptr->time = 0;
if (sim_clock_queue != NULL)
sim_interval = sim_clock_queue->time;
else sim_interval = noqueue_time = NOQUEUE_WAIT;
return SCPE_OK;
}
/* sim_is_active - test for entry in queue, return activation time
Inputs:
uptr = pointer to unit
Outputs:
result = absolute activation time + 1, 0 if inactive
*/
int32 sim_is_active (UNIT *uptr)
{
UNIT *cptr;
int32 accum;
accum = 0;
for (cptr = sim_clock_queue; cptr != NULL; cptr = cptr->next) {
if (cptr == sim_clock_queue) {
if (sim_interval > 0)
accum = accum + sim_interval;
}
else accum = accum + cptr->time;
if (cptr == uptr)
return accum + 1;
}
return 0;
}
/* sim_gtime - return global time
sim_grtime - return global time with rollover
Inputs: none
Outputs:
time = global time
*/
double sim_gtime (void)
{
if (sim_clock_queue == NULL) {
UPDATE_SIM_TIME (noqueue_time);
}
else {
UPDATE_SIM_TIME (sim_clock_queue->time);
}
return sim_time;
}
uint32 sim_grtime (void)
{
if (sim_clock_queue == NULL) {
UPDATE_SIM_TIME (noqueue_time);
}
else {
UPDATE_SIM_TIME (sim_clock_queue->time);
}
return sim_rtime;
}
/* sim_qcount - return queue entry count
Inputs: none
Outputs:
count = number of entries on the queue
*/
int32 sim_qcount (void)
{
int32 cnt;
UNIT *uptr;
cnt = 0;
for (uptr = sim_clock_queue; uptr != NULL; uptr = uptr->next)
cnt++;
return cnt;
}
/* Breakpoint package. This module replaces the VM-implemented one
instruction breakpoint capability.
Breakpoints are stored in table sim_brk_tab, which is ordered by address for
efficient binary searching. A breakpoint consists of a four entry structure:
addr address of the breakpoint
type types of breakpoints set on the address
a bit mask representing letters A-Z
cnt number of iterations before breakp is taken
action pointer command string to be executed
when break is taken
sim_brk_summ is a summary of the types of breakpoints that are currently set (it
is the bitwise OR of all the type fields). A simulator need only check for
a breakpoint of type X if bit SWMASK('X') is set in sim_brk_sum.
The package contains the following public routines:
sim_brk_init initialize
sim_brk_set set breakpoint
sim_brk_clr clear breakpoint
sim_brk_clrall clear all breakpoints
sim_brk_show show breakpoint
sim_brk_showall show all breakpoints
sim_brk_test test for breakpoint
sim_brk_npc PC has been changed
sim_brk_getact get next action
sim_brk_clract clear pending actions
Initialize breakpoint system.
*/
t_stat sim_brk_init (void)
{
sim_brk_lnt = SIM_BRK_INILNT;
sim_brk_tab = (BRKTAB *) calloc (sim_brk_lnt, sizeof (BRKTAB));
if (sim_brk_tab == NULL)
return SCPE_MEM;
sim_brk_ent = sim_brk_ins = 0;
sim_brk_act = NULL;
sim_brk_npc (0);
return SCPE_OK;
}
/* Search for a breakpoint in the sorted breakpoint table */
BRKTAB *sim_brk_fnd (t_addr loc)
{
int32 lo, hi, p;
BRKTAB *bp;
if (sim_brk_ent == 0) { /* table empty? */
sim_brk_ins = 0; /* insrt at head */
return NULL; /* sch fails */
}
lo = 0; /* initial bounds */
hi = sim_brk_ent - 1;
do {
p = (lo + hi) >> 1; /* probe */
bp = sim_brk_tab + p; /* table addr */
if (loc == bp->addr) /* match? */
return bp;
else if (loc < bp->addr) /* go down? p is upper */
hi = p - 1;
else lo = p + 1; /* go up? p is lower */
} while (lo <= hi);
if (loc < bp->addr) /* insrt before or */
sim_brk_ins = p;
else sim_brk_ins = p + 1; /* after last sch */
return NULL;
}
/* Insert a breakpoint */
BRKTAB *sim_brk_new (t_addr loc)
{
int32 i, t;
BRKTAB *bp, *newp;
if (sim_brk_ins < 0)
return NULL;
if (sim_brk_ent >= sim_brk_lnt) { /* out of space? */
t = sim_brk_lnt + SIM_BRK_INILNT; /* new size */
newp = (BRKTAB *) calloc (t, sizeof (BRKTAB)); /* new table */
if (newp == NULL) /* can't extend */
return NULL;
for (i = 0; i < sim_brk_lnt; i++) /* copy table */
*(newp + i) = *(sim_brk_tab + i);
free (sim_brk_tab); /* free old table */
sim_brk_tab = newp; /* new base, lnt */
sim_brk_lnt = t;
}
if (sim_brk_ins != sim_brk_ent) { /* move needed? */
for (bp = sim_brk_tab + sim_brk_ent;
bp > sim_brk_tab + sim_brk_ins; bp--)
*bp = *(bp - 1);
}
bp = sim_brk_tab + sim_brk_ins;
bp->addr = loc;
bp->typ = 0;
bp->cnt = 0;
bp->act = NULL;
sim_brk_ent = sim_brk_ent + 1;
return bp;
}
/* Set a breakpoint of type sw */
t_stat sim_brk_set (t_addr loc, int32 sw, int32 ncnt, char *act)
{
BRKTAB *bp;
if (sw == 0) sw = sim_brk_dflt;
if ((sim_brk_types & sw) == 0)
return SCPE_NOFNC;
bp = sim_brk_fnd (loc); /* present? */
if (!bp) /* no, allocate */
bp = sim_brk_new (loc);
if (!bp) /* still no? mem err */
return SCPE_MEM;
bp->typ = sw; /* set type */
bp->cnt = ncnt; /* set count */
if ((bp->act != NULL) && (act != NULL)) { /* replace old action? */
free (bp->act); /* deallocate */
bp->act = NULL; /* now no action */
}
if ((act != NULL) && (*act != 0)) { /* new action? */
char *newp = (char *) calloc (CBUFSIZE, sizeof (char)); /* alloc buf */
if (newp == NULL) /* mem err? */
return SCPE_MEM;
strncpy (newp, act, CBUFSIZE); /* copy action */
bp->act = newp; /* set pointer */
}
sim_brk_summ = sim_brk_summ | sw;
return SCPE_OK;
}
/* Clear a breakpoint */
t_stat sim_brk_clr (t_addr loc, int32 sw)
{
BRKTAB *bp = sim_brk_fnd (loc);
if (!bp) /* not there? ok */
return SCPE_OK;
if (sw == 0)
sw = SIM_BRK_ALLTYP;
bp->typ = bp->typ & ~sw;
if (bp->typ) /* clear all types? */
return SCPE_OK;
if (bp->act != NULL) /* deallocate action */
free (bp->act);
for ( ; bp < (sim_brk_tab + sim_brk_ent - 1); bp++) /* erase entry */
*bp = *(bp + 1);
sim_brk_ent = sim_brk_ent - 1; /* decrement count */
sim_brk_summ = 0; /* recalc summary */
for (bp = sim_brk_tab; bp < (sim_brk_tab + sim_brk_ent); bp++)
sim_brk_summ = sim_brk_summ | bp->typ;
return SCPE_OK;
}
/* Clear all breakpoints */
t_stat sim_brk_clrall (int32 sw)
{
BRKTAB *bp;
if (sw == 0) sw = SIM_BRK_ALLTYP;
for (bp = sim_brk_tab; bp < (sim_brk_tab + sim_brk_ent); ) {
if (bp->typ & sw)
sim_brk_clr (bp->addr, sw);
else bp++;
}
return SCPE_OK;
}
/* Show a breakpoint */
t_stat sim_brk_show (FILE *st, t_addr loc, int32 sw)
{
BRKTAB *bp = sim_brk_fnd (loc);
DEVICE *dptr;
int32 i, any;
if (sw == 0)
sw = SIM_BRK_ALLTYP;
if (!bp || (!(bp->typ & sw)))
return SCPE_OK;
dptr = sim_dflt_dev;
if (dptr == NULL)
return SCPE_OK;
if (sim_vm_fprint_addr)
sim_vm_fprint_addr (st, dptr, loc);
else fprint_val (st, loc, dptr->aradix, dptr->awidth, PV_LEFT);
fprintf (st, ":\t");
for (i = any = 0; i < 26; i++) {
if ((bp->typ >> i) & 1) {
if (any)
fprintf (st, ", ");
fputc (i + 'A', st);
any = 1;
}
}
if (bp->cnt > 0)
fprintf (st, " [%d]", bp->cnt);
if (bp->act != NULL)
fprintf (st, "; %s", bp->act);
fprintf (st, "\n");
return SCPE_OK;
}
/* Show all breakpoints */
t_stat sim_brk_showall (FILE *st, int32 sw)
{
BRKTAB *bp;
if (sw == 0)
sw = SIM_BRK_ALLTYP;
for (bp = sim_brk_tab; bp < (sim_brk_tab + sim_brk_ent); bp++) {
if (bp->typ & sw)
sim_brk_show (st, bp->addr, sw);
}
return SCPE_OK;
}
/* Test for breakpoint */
uint32 sim_brk_test (t_addr loc, uint32 btyp)
{
BRKTAB *bp;
uint32 spc = (btyp >> SIM_BKPT_V_SPC) & (SIM_BKPT_N_SPC - 1);
if ((bp = sim_brk_fnd (loc)) && (btyp & bp->typ)) { /* in table, type match? */
if ((sim_brk_pend[spc] && (loc == sim_brk_ploc[spc])) || /* previous location? */
(--bp->cnt > 0)) /* count > 0? */
return 0;
bp->cnt = 0; /* reset count */
sim_brk_ploc[spc] = loc; /* save location */
sim_brk_pend[spc] = TRUE; /* don't do twice */
sim_brk_act = bp->act; /* set up actions */
return (btyp & bp->typ);
}
sim_brk_pend[spc] = FALSE;
return 0;
}
/* Get next pending action, if any */
char *sim_brk_getact (char *buf, int32 size)
{
char *ep;
size_t lnt;
if (sim_brk_act == NULL) /* any action? */
return NULL;
while (isspace (*sim_brk_act)) /* skip spaces */
sim_brk_act++;
if (*sim_brk_act == 0) /* now empty? */
return (sim_brk_act = NULL);
if (ep = strchr (sim_brk_act, ';')) { /* cmd delimiter? */
lnt = ep - sim_brk_act; /* cmd length */
memcpy (buf, sim_brk_act, lnt + 1); /* copy with ; */
buf[lnt] = 0; /* erase ; */
sim_brk_act = sim_brk_act + lnt + 1; /* adv ptr */
}
else {
strncpy (buf, sim_brk_act, size); /* copy action */
sim_brk_act = NULL; /* no more */
}
return buf;
}
/* Clear pending actions */
void sim_brk_clract (void)
{
sim_brk_act = NULL;
}
/* New PC */
void sim_brk_npc (uint32 cnt)
{
uint32 i;
if ((cnt == 0) || (cnt > SIM_BKPT_N_SPC))
cnt = SIM_BKPT_N_SPC;
for (i = 0; i < cnt; i++) {
sim_brk_pend[i] = FALSE;
sim_brk_ploc[i] = 0;
}
return;
}
/* Clear breakpoint space */
void sim_brk_clrspc (uint32 spc)
{
if (spc < SIM_BKPT_N_SPC) {
sim_brk_pend[spc] = FALSE;
sim_brk_ploc[spc] = 0;
}
return;
}
/* Debug printout routines, from Dave Hittner */
const char* debug_bstates = "01_^";
const char* debug_fmt = "DBG> %s %s: ";
int32 debug_unterm = 0;
/* Finds debug phrase matching bitmask from from device DEBTAB table */
static char* get_dbg_verb (uint32 dbits, DEVICE* dptr)
{
static char* debtab_none = "DEBTAB_ISNULL";
static char* debtab_nomatch = "DEBTAB_NOMATCH";
int32 offset = 0;
if (dptr->debflags == 0)
return debtab_none;
/* Find matching words for bitmask */
while (dptr->debflags[offset].name && (offset < 32)) {
if (dptr->debflags[offset].mask & dbits)
return dptr->debflags[offset].name;
offset++;
}
return debtab_nomatch;
}
/* Prints standard debug prefix unless previous call unterminated */
static void sim_debug_prefix (uint32 dbits, DEVICE* dptr)
{
if (!debug_unterm) {
char* debug_type = get_dbg_verb (dbits, dptr);
fprintf(sim_deb, debug_fmt, dptr->name, debug_type);
}
}
/* Prints state of a register: bit translation + state (0,1,_,^)
indicating the state and transition of the bit. States:
0=steady(0->0), 1=steady(1->1), _=falling(1->0), ^=rising(0->1) */
void sim_debug_u16(uint32 dbits, DEVICE* dptr, const char* const* bitdefs,
uint16 before, uint16 after, int terminate)
{
if (sim_deb && (dptr->dctrl & dbits)) {
int32 i;
sim_debug_prefix(dbits, dptr); /* print prefix if required */
for (i = 15; i >= 0; i--) { /* print xlation, transition */
int off = ((after >> i) & 1) + (((before ^ after) >> i) & 1) * 2;
fprintf(sim_deb, "%s%c ", bitdefs[i], debug_bstates[off]);
}
if (terminate)
fprintf(sim_deb, "\r\n");
debug_unterm = terminate ? 0 : 1; /* set unterm for next */
}
}
#if defined (_WIN32)
#define vsnprintf _vsnprintf
#endif
#if defined (__DECC) && defined (__VMS)
#define NO_vsnprintf
#endif
#if defined( NO_vsnprintf)
#define STACKBUFSIZE 16384
#else
#define STACKBUFSIZE 2048
#endif
/* Inline debugging - will print debug message if debug file is
set and the bitmask matches the current device debug options.
Extra returns are added for un*x systems, since the output
device is set into 'raw' mode when the cpu is booted,
and the extra returns don't hurt any other systems. */
void sim_debug (uint32 dbits, DEVICE* dptr, const char* fmt, ...)
{
if (sim_deb && (dptr->dctrl & dbits)) {
char stackbuf[STACKBUFSIZE];
int32 bufsize = sizeof(stackbuf);
char *buf = stackbuf;
va_list arglist;
int32 i, j, len;
buf[bufsize-1] = '\0';
sim_debug_prefix(dbits, dptr); /* print prefix if required */
while (1) { /* format passed string, args */
va_start (arglist, fmt);
#if defined(NO_vsnprintf)
#if defined(HAS_vsprintf_void)
/* Note, this could blow beyond the buffer, and we couldn't tell */
/* That is a limitation of the C runtime library available on this platform */
vsprintf (buf, fmt, arglist);
for (len = 0; len < bufsize-1; len++)
if (buf[len] == 0) break;
#else
len = vsprintf (buf, fmt, arglist);
#endif /* HAS_vsprintf_void */
#else /* NO_vsnprintf */
#if defined(HAS_vsnprintf_void)
vsnprintf (buf, bufsize-1, fmt, arglist);
for (len = 0; len < bufsize-1; len++)
if (buf[len] == 0) break;
#else
len = vsnprintf (buf, bufsize-1, fmt, arglist);
#endif /* HAS_vsnprintf_void */
#endif /* NO_vsnprintf */
va_end (arglist);
/* If it didn't fit into the buffer, then grow it and try again */
if ((len < 0) || (len >= bufsize-1)) {
if (buf != stackbuf)
free (buf);
bufsize = bufsize * 2;
buf = (char *) malloc (bufsize);
if (buf == NULL) /* out of memory */
return;
buf[bufsize-1] = '\0';
continue;
}
break;
}
/* Output the formatted data expanding newlines where they exist */
for (i = j = 0; i < len; ++i) {
if ('\n' == buf[i]) {
if (i > j)
fwrite (&buf[j], 1, i-j, sim_deb);
j = i;
fputc('\r', sim_deb);
}
}
if (i > j)
fwrite (&buf[j], 1, i-j, sim_deb);
/* Set unterminated flag for next time */
debug_unterm = (len && (buf[len-1]=='\n')) ? 0 : 1;
if (buf != stackbuf)
free (buf);
}
return;
}