blob: a3b643be5475024023a7c0dd91d6779b26fe9a92 [file] [log] [blame] [raw]
/* pdp18b_rf.c: fixed head disk simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rf (PDP-9) RF09/RF09
(PDP-15) RF15/RS09
26-Apr-01 RMS Added device enable/disable support
15-Feb-01 RMS Fixed 3 cycle data break sequencing
30-Nov-99 RMS Added non-zero requirement to rf_time
14-Apr-99 RMS Changed t_addr to unsigned
The RFxx is a head-per-track disk. It uses the multicycle data break
facility. To minimize overhead, the entire RFxx is buffered in memory.
Two timing parameters are provided:
rf_time Interword timing. Must be non-zero.
rf_burst Burst mode. If 0, DMA occurs cycle by cycle; otherwise,
DMA occurs in a burst.
*/
#include "pdp18b_defs.h"
#include <math.h>
/* Constants */
#define RF_NUMWD 2048 /* words/track */
#define RF_NUMTR 128 /* tracks/disk */
#define RF_NUMDK 8 /* disks/controller */
#define RF_SIZE (RF_NUMDK * RF_NUMTR * RF_NUMWD) /* words/drive */
#define RF_WMASK (RF_NUMWD - 1) /* word mask */
#define RF_WC 036 /* word count */
#define RF_CA 037 /* current addr */
/* Function/status register */
#define RFS_ERR 0400000 /* error */
#define RFS_HDW 0200000 /* hardware error */
#define RFS_APE 0100000 /* addr parity error */
#define RFS_MXF 0040000 /* missed transfer */
#define RFS_WCE 0020000 /* write check error */
#define RFS_DPE 0010000 /* data parity error */
#define RFS_WLO 0004000 /* write lock error */
#define RFS_NED 0002000 /* non-existent disk */
#define RFS_DCH 0001000 /* data chan timing */
#define RFS_PGE 0000400 /* programming error */
#define RFS_DON 0000200 /* transfer complete */
#define RFS_V_FNC 1 /* function */
#define RFS_M_FNC 03
#define RFS_FNC (RFS_M_FNC << RFS_V_FNC)
#define FN_NOP 0
#define FN_READ 1
#define FN_WRITE 2
#define FN_WCHK 3
#define RFS_IE 0000001 /* interrupt enable */
#define RFS_CLR 0000170 /* always clear */
#define RFS_EFLGS (RFS_HDW | RFS_APE | RFS_MXF | RFS_WCE | \
RFS_DPE | RFS_WLO | RFS_NED ) /* error flags */
#define GET_FNC(x) (((x) >> RFS_V_FNC) & RFS_M_FNC)
#define GET_POS(x) ((int) fmod (sim_gtime() / ((double) (x)), \
((double) RF_NUMWD)))
#define RF_BUSY (sim_is_active (&rf_unit))
extern int32 M[];
extern int32 int_req, dev_enb;
extern UNIT cpu_unit;
int32 rf_sta = 0; /* status register */
int32 rf_da = 0; /* disk address */
int32 rf_dbuf = 0; /* data buffer */
int32 rf_wlk[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* write lock */
int32 rf_time = 10; /* inter-word time */
int32 rf_burst = 1; /* burst mode flag */
int32 rf_stopioe = 1; /* stop on error */
t_stat rf_svc (UNIT *uptr);
t_stat rf_reset (DEVICE *dptr);
int32 rf_updsta (int32 new);
/* RF data structures
rf_dev RF device descriptor
rf_unit RF unit descriptor
rf_reg RF register list
*/
UNIT rf_unit =
{ UDATA (&rf_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF,
RF_SIZE) };
REG rf_reg[] = {
{ ORDATA (STA, rf_sta, 18) },
{ ORDATA (DA, rf_da, 21) },
{ ORDATA (WC, M[RF_WC], 18) },
{ ORDATA (CA, M[RF_CA], 18) },
{ ORDATA (BUF, rf_dbuf, 18) },
{ FLDATA (INT, int_req, INT_V_RF) },
{ ORDATA (WLK0, rf_wlk[0], 16) },
{ ORDATA (WLK1, rf_wlk[1], 16) },
{ ORDATA (WLK2, rf_wlk[2], 16) },
{ ORDATA (WLK3, rf_wlk[3], 16) },
{ ORDATA (WLK4, rf_wlk[4], 16) },
{ ORDATA (WLK5, rf_wlk[5], 16) },
{ ORDATA (WLK6, rf_wlk[6], 16) },
{ ORDATA (WLK7, rf_wlk[7], 16) },
{ DRDATA (TIME, rf_time, 24), PV_LEFT + REG_NZ },
{ FLDATA (BURST, rf_burst, 0) },
{ FLDATA (STOP_IOE, rf_stopioe, 0) },
{ FLDATA (*DEVENB, dev_enb, INT_V_RF), REG_HRO },
{ NULL } };
DEVICE rf_dev = {
"RF", &rf_unit, rf_reg, NULL,
1, 8, 21, 1, 8, 18,
NULL, NULL, &rf_reset,
NULL, NULL, NULL };
/* IOT routines */
int32 rf70 (int32 pulse, int32 AC)
{
int32 t;
if (pulse == 001) /* DSSF */
return (rf_sta & (RFS_ERR | RFS_DON))? IOT_SKP + AC: AC;
if (pulse == 021) rf_reset (&rf_dev); /* DSCC */
if ((pulse & 061) == 041) { /* DSCF */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy inhibits */
else rf_sta = rf_sta & ~(RFS_FNC | RFS_IE); } /* clear func */
if (pulse == 002) { /* DRBR */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy sets PGE */
return AC | rf_dbuf; }
if (pulse == 022) { /* DRAL */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy sets PGE */
return rf_da & 0777777; }
if (pulse == 062) { /* DRAH */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy sets PGE */
return (rf_da >> 18) | ((rf_sta & RFS_NED)? 010: 0); }
if ((pulse & 062) == 042) { /* DSFX */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy inhibits */
else rf_sta = rf_sta ^ (AC & (RFS_FNC | RFS_IE)); } /* xor func */
if (pulse == 004) { /* DLBR */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy inhibits */
else rf_dbuf = AC; }
if (pulse == 024) { /* DLAL */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy inhibits */
else rf_da = (rf_da & ~0777777) | AC; }
if (pulse == 064) { /* DLAH */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy inhibits */
else rf_da = (rf_da & 0777777) | ((AC & 07) << 18); }
if ((pulse & 064) == 044) { /* DSCN */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy inhibits */
else if (GET_FNC (rf_sta) != FN_NOP) {
t = (rf_da & RF_WMASK) - GET_POS (rf_time); /* delta to new */
if (t < 0) t = t + RF_NUMWD; /* wrap around? */
sim_activate (&rf_unit, t * rf_time); } } /* schedule op */
rf_updsta (0); /* update status */
return AC;
}
int32 rf72 (int32 pulse, int32 AC)
{
if (pulse == 002) return AC | GET_POS (rf_time) | /* DLOK */
(sim_is_active (&rf_unit)? 0400000: 0);
if (pulse == 042) { /* DSCD */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy inhibits */
else rf_sta = 0;
rf_updsta (0); }
if (pulse == 0062) { /* DSRS */
if (RF_BUSY) rf_sta = rf_sta | RFS_PGE; /* busy sets PGE */
return rf_updsta (0); }
return AC;
}
/* Unit service
This code assumes the entire disk is buffered.
*/
t_stat rf_svc (UNIT *uptr)
{
int32 f, pa, d, t;
if ((uptr -> flags & UNIT_BUF) == 0) { /* not buf? abort */
rf_updsta (RFS_NED | RFS_DON); /* set nxd, done */
return IORETURN (rf_stopioe, SCPE_UNATT); }
f = GET_FNC (rf_sta); /* get function */
do { M[RF_WC] = (M[RF_WC] + 1) & 0777777; /* incr word count */
pa = M[RF_CA] = (M[RF_CA] + 1) & ADDRMASK; /* incr mem addr */
if ((f == FN_READ) && MEM_ADDR_OK (pa)) /* read? */
M[pa] = *(((int32 *) uptr -> filebuf) + rf_da);
if ((f == FN_WCHK) && /* write check? */
(M[pa] != *(((int32 *) uptr -> filebuf) + rf_da))) {
rf_updsta (RFS_WCE); /* flag error */
break; }
if (f == FN_WRITE) { /* write? */
d = (rf_da >> 18) & 07; /* disk */
t = (rf_da >> 14) & 017; /* track groups */
if ((rf_wlk[d] >> t) & 1) { /* write locked? */
rf_updsta (RFS_WLO);
break; }
else { *(((int32 *) uptr -> filebuf) + rf_da) = M[pa];
if (((t_addr) rf_da) >= uptr -> hwmark)
uptr -> hwmark = rf_da + 1; } }
rf_da = rf_da + 1; /* incr disk addr */
if (rf_da > RF_SIZE) { /* disk overflow? */
rf_da = 0;
rf_updsta (RFS_NED); /* nx disk error */
break; } }
while ((M[RF_WC] != 0) && (rf_burst != 0)); /* brk if wc, no brst */
if ((M[RF_WC] != 0) && ((rf_sta & RFS_ERR) == 0)) /* more to do? */
sim_activate (&rf_unit, rf_time); /* sched next */
else rf_updsta (RFS_DON);
return SCPE_OK;
}
/* Update status */
int32 rf_updsta (int32 new)
{
rf_sta = (rf_sta | new) & ~(RFS_ERR | RFS_CLR);
if (rf_sta & RFS_EFLGS) rf_sta = rf_sta | RFS_ERR;
if ((rf_sta & (RFS_ERR | RFS_DON)) && (rf_sta & RFS_IE))
int_req = int_req | INT_RF;
else int_req = int_req & ~INT_RF;
return rf_sta;
}
/* Reset routine */
t_stat rf_reset (DEVICE *dptr)
{
rf_sta = rf_da = rf_dbuf = 0;
rf_updsta (0);
sim_cancel (&rf_unit);
return SCPE_OK;
}
/* IORS routine */
int32 rf_iors (void)
{
return ((rf_sta & (RFS_ERR | RFS_DON))? IOS_RF: 0);
}