/* nova_cpu.c: NOVA CPU simulator | |
Copyright (c) 1993-2017, Robert M. Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
cpu Nova central processor | |
07-Sep-17 RMS Fixed sim_eval declaration in history routine (COVERITY) | |
17-Mar-13 RMS Added clarifying brances to IND_STEP macro (Dave Bryan) | |
04-Jul-07 BKR DEV_SET/CLR macros now used, | |
support for non-existant devices added | |
CPU bootstrap code warning: high-speed devices may not boot properly, | |
execution history facility added, | |
documented Nova 3 secret LDB/STB/SAVN behavior, | |
added support for secret Nova 3 LDB/STB/SAVN substitute actions, | |
'ind_max' changed from 16 to 65536 for better unmapped system compatibility, | |
INT_TRAP added for Nova 3, 4 trap instruction handling, | |
28-Apr-07 RMS Removed clock initialization | |
06-Feb-06 RMS Fixed bug in DIVS (Mark Hittinger) | |
22-Sep-05 RMS Fixed declarations (Sterling Garwood) | |
25-Aug-05 RMS Fixed DIVS case 2^31 / - 1 | |
14-Jan-04 RMS Fixed device enable/disable support (Bruce Ray) | |
19-Jan-03 RMS Changed CMASK to CDMASK for Apple Dev Kit conflict | |
03-Oct-02 RMS Added DIB infrastructure | |
30-Dec-01 RMS Added old PC queue | |
07-Dec-01 RMS Revised to use breakpoint package | |
30-Nov-01 RMS Added extended SET/SHOW support | |
10-Aug-01 RMS Removed register in declarations | |
17-Jul-01 RMS Moved function prototype | |
26-Apr-01 RMS Added device enable/disable support | |
05-Mar-01 RMS Added clock calibration | |
22-Dec-00 RMS Added Bruce Ray's second terminal | |
15-Dec-00 RMS Added Charles Owen's CPU bootstrap | |
08-Dec-00 RMS Changes from Bruce Ray | |
-- fixed trap test to include Nova 3 | |
-- fixed DIV and DIVS divide by 0 | |
-- fixed RETN to set SP from FP | |
-- fixed IORST to preserve carry | |
-- added "secret" Nova 4 PSHN/SAVEN instructions | |
-- added plotter support | |
15-Oct-00 RMS Fixed bug in MDV test, added stack, byte, trap instructions | |
14-Apr-98 RMS Changed t_addr to unsigned | |
15-Sep-97 RMS Added read and write breakpoints | |
The register state for the NOVA CPU is: | |
AC[0:3]<0:15> general registers | |
C carry flag | |
PC<0:14> program counter | |
The NOVA has three instruction formats: memory reference, I/O transfer, | |
and operate. The memory reference format is: | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 0| op | AC |in| mode| displacement | memory reference | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
<0:4> mnemonic action | |
00000 JMP PC = MA | |
00001 JMS AC3 = PC, PC = MA | |
00010 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0 | |
00011 DSZ M[MA] = M[MA] - 1, skip if M[MA] == 0 | |
001'n LDA ACn = M[MA] | |
010'n STA M[MA] = ACn | |
<5:7> mode action | |
000 page zero direct MA = zext (IR<8:15>) | |
001 PC relative direct MA = PC + sext (IR<8:15>) | |
010 AC2 relative direct MA = AC2 + sext (IR<8:15>) | |
011 AC3 relative direct MA = AC3 + sext (IR<8:15>) | |
100 page zero indirect MA = M[zext (IR<8:15>)] | |
101 PC relative indirect MA = M[PC + sext (IR<8:15>)] | |
110 AC2 relative indirect MA = M[AC2 + sext (IR<8:15>)] | |
111 AC3 relative indirect MA = M[AC3 + sext (IR<8:15>)] | |
Memory reference instructions can access an address space of 32K words. | |
An instruction can directly reference the first 256 words of memory | |
(called page zero), as well as 256 words relative to the PC, AC2, or | |
AC3; it can indirectly access all 32K words. If an indirect address | |
is in locations 00020-00027, the indirect address is incremented and | |
rewritten to memory before use; if in 00030-00037, decremented and | |
rewritten. | |
The I/O transfer format is: | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 0 1 1| AC | opcode |pulse| device | I/O transfer | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
The IOT instruction sends the opcode, pulse, and specified AC to the | |
specified I/O device. The device may accept data, provide data, | |
initiate or cancel operations, or skip on status. | |
The operate format is: | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 1|srcAC|dstAC| opcode |shift|carry|nl| skip | operate | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
\______/ \___/ \___/ | | | | | |
| | | | | | +--- reverse skip sense | |
| | | | | +--- skip if C == 0 | |
| | | | +--- skip if result == 0 | |
| | | +--- don't load result | |
| | +--- carry in (load as is, | |
| | set to Zero, | |
| | set to One, | |
| | load Complement) | |
| +--- shift (none, | |
| left one, | |
| right one, | |
| byte swap) | |
+--- operation (complement, | |
negate, | |
move, | |
increment, | |
add complement, | |
subtract, | |
add, | |
and) | |
The operate instruction can be microprogrammed to perform operations | |
on the source and destination AC's and the Carry flag. | |
Some notes from Bruce Ray: | |
1. DG uses the value of the autoindex location -before- the | |
modification to determine if additional indirect address | |
levels are to be performed. Most DG emulators conform to | |
this standard, but some vendor machines (i.e. Point 4 Mark 8) | |
do not. | |
2. Infinite indirect references may occur on unmapped systems | |
and can "hang" the hardware. Some DG diagnostics perform | |
10,000s of references during a single instruction. | |
3. Nova 3 adds the following instructions to the standard Nova | |
instruction set: | |
trap instructions | |
stack push/pop instructions | |
save/return instructions | |
stack register manipulation instructions | |
unsigned MUL/DIV | |
4. Nova 4 adds the following instructions to the Nova 3 instruction | |
set: | |
signed MUL/DIV | |
load/store byte | |
secret (undocumented) stack instructions [PSHN, SAVN] | |
5. Nova, Nova 3 and Nova 4 unsigned mul/div instructions are the | |
same instruction code values on all machines. | |
6. Undocumented Nova 3 behaviour for LDB, STB and SAVN has been | |
added to appropriate code. | |
7. Most 3rd party vendors had a user-controlled method to increase the | |
logical address space from 32 KW to 64 KW. This capability came at | |
the expense of disabling multi-level indirect addressing when the 64KW | |
mode is in effect, and keeping DG multi-level indirect compatibility | |
when 64KW mode is inactive. The most common implementation was to use | |
an "NIOP <ac>,CPU" instruction to control whether 32 KW or 64 KW | |
addressing mode was wanted, and <ac> bit 15 (the least-significant bit | |
of an accumulator) determined which mode was set: | |
0 = 32 KW (DG compatible), 1 = 64 KW. | |
This feature has been implemented in our Nova emulation for all to enjoy. | |
This routine is the instruction decode routine for the NOVA. | |
It is called from the simulator control program to execute | |
instructions in simulated memory, starting at the simulated PC. | |
It runs until 'reason' is set non-zero. | |
General notes: | |
1. Reasons to stop. The simulator can be stopped by: | |
HALT instruction | |
breakpoint encountered | |
infinite indirection loop | |
unknown I/O device and STOP_DEV flag set | |
I/O error in I/O simulator | |
2. Interrupts. Interrupts are maintained by four parallel variables: | |
dev_done device done flags | |
dev_disable device interrupt disable flags | |
dev_busy device busy flags | |
int_req interrupt requests | |
In addition, int_req contains the interrupt enable and ION pending | |
flags. If ION and ION pending are set, and at least one interrupt | |
request is pending, then an interrupt occurs. Note that the 16b PIO | |
mask must be mapped to the simulator's device bit mapping. | |
3. Non-existent memory. On the NOVA, reads to non-existent memory | |
return zero, and writes are ignored. In the simulator, the | |
largest possible memory is instantiated and initialized to zero. | |
Thus, only writes need be checked against actual memory size. | |
4. Adding I/O devices. These modules must be modified: | |
nova_defs.h add interrupt request definition | |
nova_sys.c add sim_devices entry | |
*/ | |
#include "nova_defs.h" | |
#define PCQ_SIZE 64 /* must be 2**n */ | |
#define PCQ_MASK (PCQ_SIZE - 1) | |
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = PC | |
#define INCA(x) (((x) + 1) & AMASK) | |
#define DECA(x) (((x) - 1) & AMASK) | |
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): (x)) | |
#define STK_CHECK(x,y) if (((x) & 0377) < (y)) \ | |
int_req = int_req | INT_STK | |
#define IND_STEP(x) M[x] & A_IND; /* return next level indicator */ \ | |
if ( ((x) <= AUTO_TOP) && ((x) >= AUTO_INC) ) { \ | |
if ( (x) < AUTO_DEC ) \ | |
M[x] = (M[x] + 1) & DMASK; \ | |
else \ | |
M[x] = (M[x] - 1) & DMASK; \ | |
} \ | |
x = M[x] & AMASK | |
#define INCREMENT_PC PC = (PC + 1) & AMASK /* increment PC */ | |
#define UNIT_V_MDV (UNIT_V_UF + 0) /* MDV present */ | |
#define UNIT_V_STK (UNIT_V_UF + 1) /* stack instr */ | |
#define UNIT_V_BYT (UNIT_V_UF + 2) /* byte instr */ | |
#define UNIT_V_64KW (UNIT_V_UF + 3) /* 64KW mem support */ | |
#define UNIT_V_MSIZE (UNIT_V_UF + 4) /* dummy mask */ | |
#define UNIT_MDV (1 << UNIT_V_MDV) | |
#define UNIT_STK (1 << UNIT_V_STK) | |
#define UNIT_BYT (1 << UNIT_V_BYT) | |
#define UNIT_64KW (1 << UNIT_V_64KW) | |
#define UNIT_MSIZE (1 << UNIT_V_MSIZE) | |
#define UNIT_IOPT (UNIT_MDV | UNIT_STK | UNIT_BYT | UNIT_64KW) | |
#define UNIT_NOVA3 (UNIT_MDV | UNIT_STK) | |
#define UNIT_NOVA4 (UNIT_MDV | UNIT_STK | UNIT_BYT) | |
#define UNIT_KERONIX (UNIT_MDV | UNIT_64KW) | |
#define MODE_64K (cpu_unit.flags & UNIT_64KW) | |
#define MODE_64K_ACTIVE ((cpu_unit.flags & UNIT_64KW) && (0xFFFF == AMASK)) | |
typedef struct | |
{ | |
int32 pc; | |
int16 ir; | |
int16 ac0 ; | |
int16 ac1 ; | |
int16 ac2 ; | |
int16 ac3 ; | |
int16 carry ; | |
int16 sp ; | |
int16 fp ; | |
int32 devDone ; | |
int32 devBusy ; | |
int32 devDisable ; | |
int32 devIntr ; | |
} Hist_entry ; | |
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */ | |
int32 AC[4] = { 0 }; /* accumulators */ | |
int32 C = 0; /* carry flag */ | |
int32 saved_PC = 0; /* program counter */ | |
int32 SP = 0; /* stack pointer */ | |
int32 FP = 0; /* frame pointer */ | |
int32 SR = 0; /* switch register */ | |
int32 dev_done = 0; /* device done flags */ | |
int32 dev_busy = 0; /* device busy flags */ | |
int32 dev_disable = 0; /* int disable flags */ | |
int32 int_req = 0; /* interrupt requests */ | |
int32 pimask = 0; /* priority int mask */ | |
int32 pwr_low = 0; /* power fail flag */ | |
int32 ind_max = 65536; /* iadr nest limit */ | |
int32 stop_dev = 0; /* stop on ill dev */ | |
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */ | |
int32 pcq_p = 0; /* PC queue ptr */ | |
REG *pcq_r = NULL; /* PC queue reg ptr */ | |
struct ndev dev_table[64]; /* dispatch table */ | |
int32 AMASK = 077777 ; /* current memory address mask */ | |
/* (default to 32KW) */ | |
static int32 hist_p = 0 ; /* history pointer */ | |
static int32 hist_cnt = 0 ; /* history count */ | |
static Hist_entry * hist = NULL ; /* instruction history */ | |
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat cpu_reset (DEVICE *dptr); | |
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); | |
t_stat cpu_boot (int32 unitno, DEVICE *dptr); | |
t_stat build_devtab (void); | |
t_stat hist_set( UNIT * uptr, int32 val, CONST char * cptr, void * desc ) ; | |
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, CONST void * desc ) ; | |
static int hist_save( int32 pc, int32 our_ir ) ; | |
char * devBitNames( int32 flags, char * ptr, char * sepStr ) ; | |
void mask_out (int32 mask); | |
/* CPU data structures | |
cpu_dev CPU device descriptor | |
cpu_unit CPU unit descriptor | |
cpu_reg CPU register list | |
cpu_mod CPU modifiers list | |
*/ | |
UNIT cpu_unit = { | |
UDATA (NULL, UNIT_FIX+UNIT_BINK+UNIT_MDV, DFTMEMSIZE /* MAXMEMSIZE */ ) | |
}; | |
REG cpu_reg[] = { | |
{ ORDATA (PC, saved_PC, 15) }, | |
{ ORDATA (AC0, AC[0], 16) }, | |
{ ORDATA (AC1, AC[1], 16) }, | |
{ ORDATA (AC2, AC[2], 16) }, | |
{ ORDATA (AC3, AC[3], 16) }, | |
{ FLDATA (C, C, 16) }, | |
{ ORDATA (SP, SP, 16) }, | |
{ ORDATA (FP, FP, 16) }, | |
{ ORDATA (SR, SR, 16) }, | |
{ ORDATA (PI, pimask, 16) }, | |
{ FLDATA (ION, int_req, INT_V_ION) }, | |
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) }, | |
{ FLDATA (STKOVF, int_req, INT_V_STK) }, | |
{ FLDATA (PWR, pwr_low, 0) }, | |
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO }, | |
{ ORDATA (BUSY, dev_busy, INT_V_ION+1), REG_RO }, | |
{ ORDATA (DONE, dev_done, INT_V_ION+1), REG_RO }, | |
{ ORDATA (DISABLE, dev_disable, INT_V_ION+1), REG_RO }, | |
{ FLDATA (STOP_DEV, stop_dev, 0) }, | |
{ DRDATA (INDMAX, ind_max, 32), REG_NZ + PV_LEFT }, | |
{ ORDATA (AMASK, AMASK, 16) }, | |
{ DRDATA (MEMSIZE, cpu_unit.capac, 32), REG_NZ + PV_LEFT }, | |
{ BRDATA (PCQ, pcq, 8, 16, PCQ_SIZE), REG_RO+REG_CIRC }, | |
{ ORDATA (PCQP, pcq_p, 6), REG_HRO }, | |
{ ORDATA (WRU, sim_int_char, 8) }, | |
{ NULL } | |
}; | |
MTAB cpu_mod[] = { | |
{ UNIT_IOPT, UNIT_NOVA3, "NOVA3", "NOVA3", NULL }, | |
{ UNIT_IOPT, UNIT_NOVA4, "NOVA4", "NOVA4", NULL }, | |
{ UNIT_IOPT, UNIT_KERONIX, "KERONIX", "KERONIX", NULL }, | |
{ UNIT_IOPT, UNIT_MDV, "MDV", "MDV", NULL }, | |
{ UNIT_IOPT, UNIT_64KW, "EXT64KW", "EXT64KW", NULL }, | |
{ UNIT_IOPT, 0, "none", "NONE", NULL }, | |
{ UNIT_MSIZE, ( 4 * 1024), NULL, "4K", &cpu_set_size }, | |
{ UNIT_MSIZE, ( 8 * 1024), NULL, "8K", &cpu_set_size }, | |
{ UNIT_MSIZE, (12 * 1024), NULL, "12K", &cpu_set_size }, | |
{ UNIT_MSIZE, (16 * 1024), NULL, "16K", &cpu_set_size }, | |
{ UNIT_MSIZE, (20 * 1024), NULL, "20K", &cpu_set_size }, | |
{ UNIT_MSIZE, (24 * 1024), NULL, "24K", &cpu_set_size }, | |
{ UNIT_MSIZE, (28 * 1024), NULL, "28K", &cpu_set_size }, | |
{ UNIT_MSIZE, (32 * 1024), NULL, "32K", &cpu_set_size }, | |
{ UNIT_MSIZE, (36 * 1024), NULL, "36K", &cpu_set_size }, | |
{ UNIT_MSIZE, (40 * 1024), NULL, "40K", &cpu_set_size }, | |
{ UNIT_MSIZE, (44 * 1024), NULL, "44K", &cpu_set_size }, | |
{ UNIT_MSIZE, (48 * 1024), NULL, "48K", &cpu_set_size }, | |
{ UNIT_MSIZE, (52 * 1024), NULL, "52K", &cpu_set_size }, | |
{ UNIT_MSIZE, (56 * 1024), NULL, "56K", &cpu_set_size }, | |
{ UNIT_MSIZE, (60 * 1024), NULL, "60K", &cpu_set_size }, | |
{ UNIT_MSIZE, (64 * 1024), NULL, "64K", &cpu_set_size }, | |
{ MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY", | |
&hist_set, &hist_show }, | |
{ 0 } | |
}; | |
DEVICE cpu_dev = { | |
"CPU", &cpu_unit, cpu_reg, cpu_mod, | |
1, 8, 16 /* = 64 KW, 15 = 32KW */, 1, 8, 16, | |
&cpu_ex, &cpu_dep, &cpu_reset, | |
NULL, NULL, NULL | |
}; | |
t_stat sim_instr (void) | |
{ | |
int32 PC, IR, i; | |
t_stat reason; | |
/* Restore register state */ | |
if (build_devtab () != SCPE_OK) /* build dispatch */ | |
return SCPE_IERR; | |
PC = saved_PC & AMASK; /* load local PC */ | |
C = C & CBIT; | |
mask_out (pimask); /* reset int system */ | |
reason = 0; | |
/* Main instruction fetch/decode loop */ | |
while (reason == 0) { /* loop until halted */ | |
if (sim_interval <= 0) { /* check clock queue */ | |
if ( (reason = sim_process_event ()) ) | |
break; | |
} | |
if (int_req > INT_PENDING) { /* interrupt or exception? */ | |
int32 MA, indf; | |
if (int_req & INT_TRAP) { /* trap instruction? */ | |
int_req = int_req & ~INT_TRAP ; /* clear */ | |
PCQ_ENTRY; /* save old PC */ | |
M[TRP_SAV] = (PC - 1) & AMASK; | |
MA = TRP_JMP; /* jmp @47 */ | |
} | |
else { | |
int_req = int_req & ~INT_ION; /* intr off */ | |
PCQ_ENTRY; /* save old PC */ | |
M[INT_SAV] = PC; | |
if (int_req & INT_STK) { /* stack overflow? */ | |
int_req = int_req & ~INT_STK; /* clear */ | |
MA = STK_JMP; /* jmp @3 */ | |
} | |
else | |
MA = INT_JMP; /* intr: jmp @1 */ | |
} | |
if ( MODE_64K_ACTIVE ) { | |
indf = IND_STEP (MA); | |
} | |
else | |
{ | |
for (i = 0, indf = 1; indf && (i < ind_max); i++) { | |
indf = IND_STEP (MA); /* indirect loop */ | |
} | |
if (i >= ind_max) { | |
reason = STOP_IND_INT; | |
break; | |
} | |
} | |
PC = MA; | |
} /* end interrupt */ | |
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */ | |
reason = STOP_IBKPT; /* stop simulation */ | |
break; | |
} | |
IR = M[PC]; /* fetch instr */ | |
if ( hist_cnt ) | |
{ | |
hist_save( PC, IR ) ; /* PC, int_req unchanged */ | |
} | |
INCREMENT_PC ; | |
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */ | |
sim_interval = sim_interval - 1; | |
/* Operate instruction */ | |
if (IR & I_OPR) { /* operate? */ | |
int32 src, srcAC, dstAC; | |
srcAC = I_GETSRC (IR); /* get reg decodes */ | |
dstAC = I_GETDST (IR); | |
switch (I_GETCRY (IR)) { /* decode carry */ | |
case 0: /* load */ | |
src = AC[srcAC] | C; | |
break; | |
case 1: /* clear */ | |
src = AC[srcAC]; | |
break; | |
case 2: /* set */ | |
src = AC[srcAC] | CBIT; | |
break; | |
case 3: /* complement */ | |
src = AC[srcAC] | (C ^ CBIT); | |
break; | |
} /* end switch carry */ | |
switch (I_GETALU (IR)) { /* decode ALU */ | |
case 0: /* COM */ | |
src = src ^ DMASK; | |
break; | |
case 1: /* NEG */ | |
src = ((src ^ DMASK) + 1) & CDMASK; | |
break; | |
case 2: /* MOV */ | |
break; | |
case 3: /* INC */ | |
src = (src + 1) & CDMASK; | |
break; | |
case 4: /* ADC */ | |
src = ((src ^ DMASK) + AC[dstAC]) & CDMASK; | |
break; | |
case 5: /* SUB */ | |
src = ((src ^ DMASK) + AC[dstAC] + 1) & CDMASK; | |
break; | |
case 6: /* ADD */ | |
src = (src + AC[dstAC]) & CDMASK; | |
break; | |
case 7: /* AND */ | |
src = src & (AC[dstAC] | CBIT); | |
break; | |
} /* end switch oper */ | |
switch (I_GETSHF (IR)) { /* decode shift */ | |
case 0: /* nop */ | |
break; | |
case 1: /* L */ | |
src = ((src << 1) | (src >> 16)) & CDMASK; | |
break; | |
case 2: /* R */ | |
src = ((src >> 1) | (src << 16)) & CDMASK; | |
break; | |
case 3: /* S */ | |
src = ((src & 0377) << 8) | ((src >> 8) & 0377) | | |
(src & CBIT); | |
break; | |
} /* end switch shift */ | |
switch (I_GETSKP (IR)) { /* decode skip */ | |
case 0: /* nop */ | |
if ((IR & I_NLD) && (cpu_unit.flags & UNIT_STK)) { | |
int_req = int_req | INT_TRAP ; /* Nova 3 or 4 trap */ | |
continue ; | |
} | |
break; | |
case 1: /* SKP */ | |
INCREMENT_PC ; | |
break; | |
case 2: /* SZC */ | |
if (src < CBIT) | |
INCREMENT_PC ; | |
break; | |
case 3: /* SNC */ | |
if (src >= CBIT) | |
INCREMENT_PC ; | |
break; | |
case 4: /* SZR */ | |
if ((src & DMASK) == 0) | |
INCREMENT_PC ; | |
break; | |
case 5: /* SNR */ | |
if ((src & DMASK) != 0) | |
INCREMENT_PC ; | |
break; | |
case 6: /* SEZ */ | |
if (src <= CBIT) | |
INCREMENT_PC ; | |
break; | |
case 7: /* SBN */ | |
if (src > CBIT) | |
INCREMENT_PC ; | |
break; | |
} /* end switch skip */ | |
if ((IR & I_NLD) == 0) { /* load? */ | |
AC[dstAC] = src & DMASK; | |
C = src & CBIT; | |
} /* end if load */ | |
} /* end if operate */ | |
/* Memory reference instructions */ | |
else if (IR < 060000) { /* mem ref? */ | |
int32 src, MA, indf; | |
MA = I_GETDISP (IR); /* get disp */ | |
switch (I_GETMODE (IR)) { /* decode mode */ | |
case 0: /* page zero */ | |
break; | |
case 1: /* PC relative */ | |
if (MA & DISPSIGN) | |
MA = 0177400 | MA; | |
MA = (MA + PC - 1) & AMASK; | |
break; | |
case 2: /* AC2 relative */ | |
if (MA & DISPSIGN) | |
MA = 0177400 | MA; | |
MA = (MA + AC[2]) & AMASK; | |
break; | |
case 3: /* AC3 relative */ | |
if (MA & DISPSIGN) | |
MA = 0177400 | MA; | |
MA = (MA + AC[3]) & AMASK; | |
break; | |
} /* end switch mode */ | |
if ( (indf = IR & I_IND) ) { /* indirect? */ | |
if ( MODE_64K_ACTIVE ) { /* 64k mode? */ | |
indf = IND_STEP (MA); | |
} | |
else /* compat mode */ | |
{ | |
for (i = 0; indf && (i < ind_max); i++) { /* count */ | |
indf = IND_STEP (MA); /* resolve indirect */ | |
} | |
if (i >= ind_max) { /* too many? */ | |
reason = STOP_IND; | |
break; | |
} | |
} | |
} | |
switch (I_GETOPAC (IR)) { /* decode op + AC */ | |
case 001: /* JSR */ | |
AC[3] = PC; | |
case 000: /* JMP */ | |
PCQ_ENTRY; | |
PC = MA; | |
break; | |
case 002: /* ISZ */ | |
src = (M[MA] + 1) & DMASK; | |
if (MEM_ADDR_OK(MA)) | |
M[MA] = src; | |
if (src == 0) | |
INCREMENT_PC ; | |
break; | |
case 003: /* DSZ */ | |
src = (M[MA] - 1) & DMASK; | |
if (MEM_ADDR_OK(MA)) | |
M[MA] = src; | |
if (src == 0) | |
INCREMENT_PC ; | |
break; | |
case 004: /* LDA 0 */ | |
AC[0] = M[MA]; | |
break; | |
case 005: /* LDA 1 */ | |
AC[1] = M[MA]; | |
break; | |
case 006: /* LDA 2 */ | |
AC[2] = M[MA]; | |
break; | |
case 007: /* LDA 3 */ | |
AC[3] = M[MA]; | |
break; | |
case 010: /* STA 0 */ | |
if (MEM_ADDR_OK(MA)) | |
M[MA] = AC[0]; | |
break; | |
case 011: /* STA 1 */ | |
if (MEM_ADDR_OK(MA)) | |
M[MA] = AC[1]; | |
break; | |
case 012: /* STA 2 */ | |
if (MEM_ADDR_OK(MA)) | |
M[MA] = AC[2]; | |
break; | |
case 013: /* STA 3 */ | |
if (MEM_ADDR_OK(MA)) | |
M[MA] = AC[3]; | |
break; | |
} /* end switch */ | |
} /* end mem ref */ | |
/* IOT instruction */ | |
else { /* IOT */ | |
int32 dstAC, pulse, code, device, iodata; | |
dstAC = I_GETDST (IR); /* decode fields */ | |
code = I_GETIOT (IR); | |
pulse = I_GETPULSE (IR); | |
device = I_GETDEV (IR); | |
if (code == ioSKP) { /* IO skip? */ | |
switch (pulse) { /* decode IR<8:9> */ | |
case 0: /* skip if busy */ | |
if ((device == DEV_CPU)? (int_req & INT_ION) != 0: | |
(dev_busy & dev_table[device].mask) != 0) | |
INCREMENT_PC ; | |
break; | |
case 1: /* skip if not busy */ | |
if ((device == DEV_CPU)? (int_req & INT_ION) == 0: | |
(dev_busy & dev_table[device].mask) == 0) | |
INCREMENT_PC ; | |
break; | |
case 2: /* skip if done */ | |
if ((device == DEV_CPU)? pwr_low != 0: | |
(dev_done & dev_table[device].mask) != 0) | |
INCREMENT_PC ; | |
break; | |
case 3: /* skip if not done */ | |
if ((device == DEV_CPU)? pwr_low == 0: | |
(dev_done & dev_table[device].mask) == 0) | |
INCREMENT_PC ; | |
break; | |
} /* end switch */ | |
} /* end IO skip */ | |
/* Hmm, this means a Nova 3 _must_ have DEV_MDV enabled - not true in DG land */ | |
else if (device == DEV_MDV) { | |
switch (code) { /* case on opcode */ | |
case ioNIO: /* frame ptr */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) | |
FP = AC[dstAC] & AMASK ; | |
if (pulse == iopC) | |
AC[dstAC] = FP & AMASK ; | |
} | |
break; | |
case ioDIA: /* load byte */ | |
if (cpu_unit.flags & UNIT_BYT) | |
{ | |
AC[dstAC] = (M[AC[pulse] >> 1] >> ((AC[pulse] & 1)? 0: 8)) & 0377 ; | |
} | |
else if (cpu_unit.flags & UNIT_STK) /* if Nova 3 this is really a SAV... 2007-Jun-01, BKR */ | |
{ | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[0]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[1]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[2]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = FP; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = (C >> 1) | (AC[3] & AMASK); | |
AC[3] = FP = SP & AMASK; | |
STK_CHECK (SP, 5); | |
} | |
else | |
{ | |
AC[dstAC] = 0; | |
} | |
break; | |
case ioDOA: /* stack ptr */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) | |
SP = AC[dstAC] & AMASK; | |
if (pulse == iopC) | |
AC[dstAC] = SP & AMASK; | |
} | |
break; | |
case ioDIB: /* push, pop */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) { /* push (PSHA) */ | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[dstAC]; | |
STK_CHECK (SP, 1); | |
} | |
if ((pulse == iopS) && /* Nova 4 pshn (PSHN) */ | |
(cpu_unit.flags & UNIT_BYT)) { | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[dstAC]; | |
if ( (SP & 0xFFFF) > (M[042] & 0xFFFF) ) | |
{ | |
int_req = int_req | INT_STK ; | |
} | |
} | |
if (pulse == iopC) { /* pop (POPA) */ | |
AC[dstAC] = M[SP]; | |
SP = DECA (SP); | |
} | |
} | |
break; | |
case ioDOB: /* store byte */ | |
if (cpu_unit.flags & UNIT_BYT) | |
{ | |
int32 MA, val; | |
MA = AC[pulse] >> 1; | |
val = AC[dstAC] & 0377; | |
if (MEM_ADDR_OK (MA)) M[MA] = (AC[pulse] & 1)? | |
((M[MA] & ~0377) | val) | |
: ((M[MA] & 0377) | (val << 8)); | |
} | |
else if (cpu_unit.flags & UNIT_STK) /* if Nova 3 this is really a SAV... 2007-Jun-01, BKR */ | |
{ | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[0]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[1]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[2]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = FP; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = (C >> 1) | (AC[3] & AMASK); | |
AC[3] = FP = SP & AMASK; | |
STK_CHECK (SP, 5); | |
} | |
break; | |
case ioDIC: /* save, return */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) { /* save */ | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[0]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[1]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[2]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = FP; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = (C >> 1) | (AC[3] & AMASK); | |
AC[3] = FP = SP & AMASK; | |
STK_CHECK (SP, 5); | |
} | |
else if (pulse == iopC) { /* retn */ | |
PCQ_ENTRY; | |
SP = FP & AMASK; | |
C = (M[SP] << 1) & CBIT; | |
PC = M[SP] & AMASK; | |
SP = DECA (SP); | |
AC[3] = M[SP]; | |
SP = DECA (SP); | |
AC[2] = M[SP]; | |
SP = DECA (SP); | |
AC[1] = M[SP]; | |
SP = DECA (SP); | |
AC[0] = M[SP]; | |
SP = DECA (SP); | |
FP = AC[3] & AMASK; | |
} | |
else if ((pulse == iopS) && /* Nova 4 SAVN */ | |
(cpu_unit.flags & UNIT_BYT)) { | |
int32 frameSz = M[PC] ; | |
PC = INCA (PC) ; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[0]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[1]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[2]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = FP; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = (C >> 1) | (AC[3] & AMASK); | |
AC[3] = FP = SP & AMASK ; | |
SP = (SP + frameSz) & AMASK ; | |
if (SP > M[042]) | |
{ | |
int_req = int_req | INT_STK; | |
} | |
} | |
} | |
break; | |
case ioDOC: | |
if ((dstAC == 2) && (cpu_unit.flags & UNIT_MDV)) | |
{ /* Nova, Nova3 or Nova 4 */ | |
uint32 mddata, uAC0, uAC1, uAC2; | |
uAC0 = (uint32) AC[0]; | |
uAC1 = (uint32) AC[1]; | |
uAC2 = (uint32) AC[2]; | |
if (pulse == iopP) | |
{ /* mul */ | |
mddata = (uAC1 * uAC2) + uAC0; | |
AC[0] = (mddata >> 16) & DMASK; | |
AC[1] = mddata & DMASK; | |
} | |
if (pulse == iopS) | |
{ /* div */ | |
if ((uAC0 >= uAC2) || (uAC2 == 0)) | |
{ | |
C = CBIT; | |
} | |
else | |
{ | |
C = 0; | |
mddata = (uAC0 << 16) | uAC1; | |
AC[1] = mddata / uAC2; | |
AC[0] = mddata % uAC2; | |
} | |
} | |
} | |
else if ((dstAC == 3) && (cpu_unit.flags & UNIT_BYT) /* assuming UNIT_BYT = Nova 4 */) | |
{ | |
int32 mddata; | |
if (pulse == iopC) | |
{ /* muls */ | |
mddata = (SEXT (AC[1]) * SEXT (AC[2])) + SEXT (AC[0]); | |
AC[0] = (mddata >> 16) & DMASK; | |
AC[1] = mddata & DMASK; | |
} | |
else if (pulse == iopN) | |
{ /* divs */ | |
if ((AC[2] == 0) || /* overflow? */ | |
((AC[0] == 0100000) && (AC[1] == 0) && (AC[2] == 0177777))) | |
{ | |
C = CBIT; | |
} | |
else | |
{ | |
mddata = (SEXT (AC[0]) << 16) | AC[1]; | |
AC[1] = mddata / SEXT (AC[2]); | |
AC[0] = mddata % SEXT (AC[2]); | |
if ((AC[1] > 077777) || (AC[1] < -0100000)) | |
{ | |
C = CBIT; | |
} | |
else | |
{ | |
C = 0; | |
} | |
AC[0] = AC[0] & DMASK; | |
} | |
} | |
} | |
else if ((dstAC == 3) && (cpu_unit.flags & UNIT_STK)) /* if Nova 3 this is really a PSHA... 2007-Jun-01, BKR */ | |
{ | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) | |
M[SP] = AC[dstAC]; | |
STK_CHECK (SP, 1); | |
} | |
break; | |
} /* end case code */ | |
} /* end if mul/div */ | |
else if (device == DEV_CPU) { /* CPU control */ | |
switch (code) { /* decode IR<5:7> */ | |
case ioNIO: /* NIOP <x> CPU ? */ | |
if ( pulse == iopP ) | |
if ( MODE_64K ) | |
{ | |
/* Keronix/Point4/SCI/INI/IDP (and others) */ | |
/* 64 KW memory extension: */ | |
/* NIOP - set memory mode (32/64 KW) per AC: */ | |
/* B15: 0 = 32 KW, 1 = 64 KW mode */ | |
AMASK = (AC[dstAC] & 0x0001) ? 0177777 : 077777 ; | |
} | |
break ; | |
case ioDIA: /* read switches */ | |
AC[dstAC] = SR; | |
break; | |
case ioDIB: /* int ack */ | |
AC[dstAC] = 0; | |
DEV_UPDATE_INTR ; | |
iodata = int_req & (-int_req); | |
for (i = DEV_LOW; i <= DEV_HIGH; i++) { | |
if (iodata & dev_table[i].mask) { | |
AC[dstAC] = i; | |
break; | |
} | |
} | |
break; | |
case ioDOB: /* mask out */ | |
mask_out (pimask = AC[dstAC]); | |
break; | |
case ioDIC: /* io reset */ | |
reset_all (0); /* reset devices */ | |
mask_out( 0 ) ; /* clear all device masks */ | |
AMASK = 077777 ; /* reset memory mode */ | |
break; | |
case ioDOC: /* halt */ | |
reason = STOP_HALT; | |
break; | |
} /* end switch code */ | |
switch (pulse) { /* decode IR<8:9> */ | |
case iopS: /* ion */ | |
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING; | |
break; | |
case iopC: /* iof */ | |
int_req = int_req & ~INT_ION; | |
break; | |
} /* end switch pulse */ | |
} /* end CPU control */ | |
else if (dev_table[device].routine) { /* normal device */ | |
iodata = dev_table[device].routine (pulse, code, AC[dstAC]); | |
reason = iodata >> IOT_V_REASON; | |
if (code & 1) | |
AC[dstAC] = iodata & 0177777; | |
} | |
/* bkr, 2007-May-30 | |
* if device does not exist certain I/O instructions will still | |
* return data: DIA/B/C will return idle data bus value and | |
* SKPBZ/SKPDZ will sense zero value (and will therefore skip). | |
* | |
* Perform these non-supported device functions only if 'stop_dev' | |
* is zero (i.e. I/O access trap is not in effect). | |
*/ | |
else if ( stop_dev == 0 ) | |
{ | |
switch (code) /* decode IR<5:7> */ | |
{ | |
case ioDIA: | |
case ioDIB: | |
case ioDIC: | |
AC[dstAC] = 0 ; /* idle I/O bus data */ | |
break; | |
case ioSKP: | |
/* (This should have been caught in previous CPU skip code) */ | |
if ( (pulse == 1 /* SKPBZ */) || (pulse == 3 /* SKPDZ */) ) | |
{ | |
INCREMENT_PC ; | |
} | |
} /* end of 'switch' */ | |
} /* end of handling non-existant device */ | |
else reason = stop_dev; | |
} /* end if IOT */ | |
} /* end while */ | |
/* Simulation halted */ | |
saved_PC = PC; | |
pcq_r->qptr = pcq_p; /* update pc q ptr */ | |
return ( reason ) ; | |
} | |
/* New priority mask out */ | |
void mask_out (int32 newmask) | |
{ | |
int32 i; | |
dev_disable = 0; | |
for (i = DEV_LOW; i <= DEV_HIGH; i++) { | |
if (newmask & dev_table[i].pi) | |
dev_disable = dev_disable | dev_table[i].mask; | |
} | |
DEV_UPDATE_INTR ; | |
return; | |
} | |
/* Reset routine */ | |
t_stat cpu_reset (DEVICE *dptr) | |
{ | |
int_req = int_req & ~(INT_ION | INT_STK | INT_TRAP); | |
pimask = 0; | |
dev_disable = 0; | |
pwr_low = 0; | |
AMASK = 077777 ; /* 32KW mode */ | |
pcq_r = find_reg ("PCQ", NULL, dptr); | |
if (pcq_r) | |
pcq_r->qptr = 0; | |
else return SCPE_IERR; | |
sim_brk_types = sim_brk_dflt = SWMASK ('E'); | |
return SCPE_OK; | |
} | |
/* Memory examine */ | |
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
if (addr >= MEMSIZE) | |
return SCPE_NXM; | |
if (vptr != NULL) | |
*vptr = M[addr] & DMASK; | |
return SCPE_OK; | |
} | |
/* Memory deposit */ | |
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
if (addr >= MEMSIZE) | |
return SCPE_NXM; | |
M[addr] = val & DMASK; | |
return SCPE_OK; | |
} | |
/* Alter memory size */ | |
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
int32 mc = 0; | |
t_addr i; | |
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0)) | |
return SCPE_ARG; | |
for (i = val; i < MEMSIZE; i++) | |
mc = mc | M[i]; | |
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE))) | |
return SCPE_OK; | |
MEMSIZE = val; | |
for (i = MEMSIZE; i < MAXMEMSIZE; i++) | |
M[i] = 0; | |
return SCPE_OK; | |
} | |
/* Build dispatch table */ | |
t_stat build_devtab (void) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
int32 i, dn; | |
for (i = 0; i < 64; i++) { /* clr dev_table */ | |
dev_table[i].mask = 0; | |
dev_table[i].pi = 0; | |
dev_table[i].routine = NULL; | |
} | |
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */ | |
if (!(dptr->flags & DEV_DIS) && /* enabled and */ | |
( (dibp = (DIB *) dptr->ctxt)) ) { /* defined DIB? */ | |
dn = dibp->dnum; /* get dev num */ | |
dev_table[dn].mask = dibp->mask; /* copy entries */ | |
dev_table[dn].pi = dibp->pi; | |
dev_table[dn].routine = dibp->routine; | |
} | |
} | |
return SCPE_OK; | |
} | |
/* BKR notes: | |
* | |
* Data General APL (Automatic Program Load) boot code | |
* | |
* - This bootstrap code is called the "APL option" in DG documentation (Automatic | |
* Program Load), and cost ~$400 USD (in 1970 - wow!) to load 32(10) words from | |
* a PROM to main (core) memory location 0 - 32. | |
* - This code is documented in various DG Nova programming manuals and was | |
* quite static (i.e. no revisions or updates to code were made). | |
* - switch register is used to determine device code and device type. | |
* - lower 6-bits of switch register determines device code (0-63.). | |
* - most significant bit determines if device is "low speed" or "high speed". | |
* - "high speed" devices have effective boot program logic of: | |
* | |
* IORST | |
* NIOS <device> | |
* JMP . | |
* | |
* - "high speed" devices use data channel (DCH) to read first sector/record | |
* of device into memory (usually starting at location 0), which then over-writes | |
* the 'JMP .' instruction of boot code. This usually has a jump to some other | |
* device and operating system specific boot code that was loaded from the device. | |
* - "low speed" devices are assumed to be sequential character-oriented devices | |
* (i.e. Teletype (r) reader, paper tape reader). | |
* - "low speed" devices are assumed to start read operations with a 'S' pulse, | |
* read data buffer with a DIA instruction and have standard DG I/O Busy/Done logic. | |
* - "low speed" devices usually read in a more full-featured 'binary loader' with | |
* the APL boot code: | |
* | |
* DG paper tape: 091-000004-xx, Binary Loader (BLDR.AB) | |
* | |
* - The Binary Loader was in turn used to load tapes in the usual DG 'absolute binary' format. | |
*/ | |
#define BOOT_START 00000 | |
#define BOOT_LEN (sizeof(boot_rom) / sizeof(int32)) | |
static const int32 boot_rom[] = { | |
0062677, /* IORST ;reset all I/O */ | |
0060477, /* READS 0 ;read SR into AC0 */ | |
0024026, /* LDA 1,C77 ;get dev mask */ | |
0107400, /* AND 0,1 ;isolate dev code */ | |
0124000, /* COM 1,1 ;- device code - 1 */ | |
0010014, /* LOOP: ISZ OP1 ;device code to all */ | |
0010030, /* ISZ OP2 ;I/O instructions */ | |
0010032, /* ISZ OP3 */ | |
0125404, /* INC 1,1,SZR ;done? */ | |
0000005, /* JMP LOOP ;no, increment again */ | |
0030016, /* LDA 2,C377 ;place JMP 377 into */ | |
0050377, /* STA 2,377 ;location 377 */ | |
0060077, /* OP1: 060077 ;start device (NIOS 0) */ | |
0101102, /* MOVL 0,0,SZC ;test switch 0, low speed? */ | |
0000377, /* C377: JMP 377 ;no - jmp 377 & wait */ | |
0004030, /* LOOP2: JSR GET+1 ;get a frame */ | |
0101065, /* MOVC 0,0,SNR ;is it non-zero? */ | |
0000017, /* JMP LOOP2 ;no, ignore */ | |
0004027, /* LOOP4: JSR GET ;yes, get full word */ | |
0046026, /* STA 1,@C77 ;store starting at 100 */ | |
/* ;2's complement of word ct */ | |
0010100, /* ISZ 100 ;done? */ | |
0000022, /* JMP LOOP4 ;no, get another */ | |
0000077, /* C77: JMP 77 ;yes location ctr and */ | |
/* ;jmp to last word */ | |
0126420, /* GET: SUBZ 1,1 ; clr AC1, set carry */ | |
/* OP2: */ | |
0063577, /* LOOP3: 063577 ;done? (SKPDN 0) - 1 */ | |
0000030, /* JMP LOOP3 ;no -- wait */ | |
0060477, /* OP3: 060477 ;y -- read in ac0 (DIAS 0,0) */ | |
0107363, /* ADDCS 0,1,SNC ;add 2 frames swapped - got 2nd? */ | |
0000030, /* JMP LOOP3 ;no go back after it */ | |
0125300, /* MOVS 1,1 ;yes swap them */ | |
0001400, /* JMP 0,3 ;rtn with full word */ | |
0000000 /* 0 ;padding */ | |
}; | |
t_stat cpu_boot (int32 unitno, DEVICE *dptr) | |
{ | |
size_t i; | |
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i]; | |
saved_PC = BOOT_START; | |
return SCPE_OK; | |
} | |
/* 1-to-1 map for I/O devices */ | |
int32 MapAddr (int32 map, int32 addr) | |
{ | |
return addr; | |
} | |
/* History subsystem | |
global routines | |
t_stat hist_set( UNIT * uptr, int32 val, char * cptr, void * desc, void ** HistCookie, sizeof(usrHistInfo) ) ; | |
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, void * desc, void * HistCookie ) ; | |
int hist_save( int32 next_pc, int32 our_ir, void * usrHistInfo ) | |
local user struct: | |
usrHistInfo | |
local user routines: | |
int uHist_save( int32 next_pc, int32 our_ir, void * usrHistInfo ) ; | |
int uHist_fprintf( FILE * fp, int itemNum, void * usrHistInfo ) ; | |
typedef struct | |
{ | |
int hMax ; // total # entries in queue (0 = inactive) | |
int hCount ; // current entry | |
void * hPtr ; // pointer to save area | |
int hSize ; // size of each user save area (not used by global routines?) | |
} Hist_info ; | |
*/ | |
/* generalized CPU execution trace */ | |
#define HIST_IR_INVALID -1 | |
#define HIST_MIN 0 /* 0 == deactivate history feature, else size of queue */ | |
#define HIST_MAX 1000000 /* completely arbitrary max size value */ | |
/* save history entry (proposed local routine) */ | |
static int hist_save( int32 pc, int32 our_ir ) | |
{ | |
Hist_entry * hist_ptr ; | |
if ( hist ) | |
if ( hist_cnt ) | |
{ | |
hist_p = (hist_p + 1) ; /* next entry */ | |
if ( hist_p >= hist_cnt ) | |
{ | |
hist_p = 0 ; | |
} | |
hist_ptr = &hist[ hist_p ] ; | |
/* (machine-specific stuff) */ | |
hist_ptr->pc = pc ; | |
hist_ptr->ir = our_ir ; | |
hist_ptr->ac0 = AC[ 0 ] ; | |
hist_ptr->ac1 = AC[ 1 ] ; | |
hist_ptr->ac2 = AC[ 2 ] ; | |
hist_ptr->ac3 = AC[ 3 ] ; | |
hist_ptr->carry = C ; | |
hist_ptr->fp = FP ; | |
hist_ptr->sp = SP ; | |
hist_ptr->devBusy = dev_busy ; | |
hist_ptr->devDone = dev_done ; | |
hist_ptr->devDisable = dev_disable ; | |
hist_ptr->devIntr = int_req ; | |
/* how 'bout state and AMASK? */ | |
return ( hist_p ) ; | |
} | |
return ( -1 ) ; | |
} /* end of 'hist_save' */ | |
/* setup history save area (proposed global routine) */ | |
t_stat hist_set( UNIT * uptr, int32 val, CONST char * cptr, void * desc ) | |
{ | |
int32 i, lnt ; | |
t_stat r ; | |
if ( cptr == NULL ) | |
{ | |
for (i = 0 ; i < hist_cnt ; ++i ) | |
{ | |
hist[i].pc = 0 ; | |
hist[i].ir = HIST_IR_INVALID ; | |
} | |
hist_p = 0 ; | |
return ( SCPE_OK ) ; | |
} | |
lnt = (int32) get_uint(cptr, 10, HIST_MAX, &r) ; | |
if ( (r != SCPE_OK) || (lnt && (lnt < HIST_MIN)) ) | |
{ | |
return ( SCPE_ARG ) ; | |
} | |
hist_p = 0; | |
if ( hist_cnt ) | |
{ | |
free( hist ) ; | |
hist_cnt = 0 ; | |
hist = NULL ; | |
} | |
if ( lnt ) | |
{ | |
hist = (Hist_entry *) calloc( lnt, sizeof(Hist_entry) ) ; | |
if ( hist == NULL ) | |
{ | |
return ( SCPE_MEM ) ; | |
} | |
hist_cnt = lnt ; | |
} | |
return ( SCPE_OK ) ; | |
} /* end of 'hist_set' */ | |
int hist_fprintf( FILE * fp, int itemNum, Hist_entry * hptr ) | |
{ | |
if ( hptr ) | |
{ | |
if ( itemNum == 0 ) | |
{ | |
fprintf( fp, "\n\n" ) ; | |
} | |
fprintf( fp, "%05o / %06o %06o %06o %06o %06o %o ", | |
(hptr->pc & 0x7FFF), | |
(hptr->ir & 0xFFFF), | |
(hptr->ac0 & 0xFFFF), | |
(hptr->ac1 & 0xFFFF), | |
(hptr->ac2 & 0xFFFF), | |
(hptr->ac3 & 0xFFFF), | |
((hptr->carry) ? 1 : 0) | |
) ; | |
if ( cpu_unit.flags & UNIT_STK /* Nova 3 or Nova 4 */ ) | |
{ | |
fprintf( fp, "%06o %06o ", SP, FP ) ; | |
} | |
sim_eval[0] = (hptr->ir & 0xFFFF) ; | |
if ( (fprint_sym(fp, (hptr->pc & AMASK), sim_eval, &cpu_unit, SWMASK ('M'))) > 0 ) | |
{ | |
fprintf( fp, "(undefined) %04o", (hptr->ir & 0xFFFF) ) ; | |
} | |
/* | |
display ION flag value, pend value? | |
display devBusy, devDone, devIntr info? | |
*/ | |
if ( 0 ) /* display INTRP codes? */ | |
{ | |
char tmp[ 500 ] ; | |
devBitNames( hptr->devIntr, tmp, NULL ) ; | |
fprintf( fp, " %s", tmp ) ; | |
} | |
fprintf( fp, "\n" ) ; | |
} | |
return ( 0 ) ; | |
} /* end of 'hist_fprintf' */ | |
/* show execution history (proposed global routine) */ | |
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, CONST void * desc ) | |
{ | |
int32 k, di, lnt ; | |
CONST char * cptr = (CONST char *) desc ; | |
t_stat r ; | |
Hist_entry * hptr ; | |
if (hist_cnt == 0) | |
{ | |
return ( SCPE_NOFNC ) ; /* enabled? */ | |
} | |
if ( cptr ) | |
{ /* number of entries specified */ | |
lnt = (int32) get_uint( cptr, 10, hist_cnt, &r ) ; | |
if ( (r != SCPE_OK) || (lnt == 0) ) | |
{ | |
return ( SCPE_ARG ) ; | |
} | |
} | |
else | |
{ | |
lnt = hist_cnt ; /* display all entries */ | |
} | |
di = hist_p - lnt; /* work forward */ | |
if ( di < 0 ) | |
{ | |
di = di + hist_cnt ; | |
} | |
for ( k = 0 ; k < lnt ; ++k ) | |
{ /* print specified */ | |
hptr = &hist[ (++di) % hist_cnt] ; /* entry pointer */ | |
if ( hptr->ir != HIST_IR_INVALID ) /* valid entry? */ | |
{ | |
hist_fprintf( st, k, hptr ) ; | |
} /* end else instruction */ | |
} /* end for */ | |
return SCPE_OK; | |
} /* end of 'hist_show' */ | |
struct Dbits | |
{ | |
int32 dBit ; | |
int32 dInvertMask ; | |
const char *dName ; | |
} devBits [] = | |
{ | |
{ INT_TRAP, 0, "TRAP" }, /* (in order of approximate DG interrupt mask priority) */ | |
{ INT_ION, 0, "ION" }, | |
{ INT_NO_ION_PENDING, 1, "IONPND" }, /* (invert this logic to provide cleaner display) */ | |
{ INT_STK, 0, "STK" }, | |
{ INT_PIT, 0, "PIT" }, | |
{ INT_DKP, 0, "DKP" }, | |
{ INT_DSK, 0, "DSK" }, | |
{ INT_MTA, 0, "MTA" }, | |
{ INT_LPT, 0, "LPT" }, | |
{ INT_PTR, 0, "PTR" }, | |
{ INT_PTP, 0, "PTP" }, | |
{ INT_PLT, 0, "PLT" }, | |
{ INT_CLK, 0, "CLK" }, | |
{ INT_ALM, 0, "ALM" }, | |
{ INT_QTY, 0, "QTY" }, | |
{ INT_TTO1, 0, "TTO1" }, | |
{ INT_TTI1, 0, "TTI1" }, | |
{ INT_TTO, 0, "TTO" }, | |
{ INT_TTI, 0, "TTI" }, | |
{ 0, 0, NULL } | |
} ; | |
char * devBitNames( int32 flags, char * ptr, char * sepStr ) | |
{ | |
int a ; | |
if ( ptr ) | |
{ | |
*ptr = 0 ; | |
for ( a = 0 ; (devBits[a].dBit) ; ++a ) | |
if ( devBits[a].dBit & ((devBits[a].dInvertMask)? ~flags : flags) ) | |
{ | |
if ( *ptr ) | |
{ | |
strcat( ptr, (sepStr) ? sepStr : " " ) ; | |
strcat( ptr, devBits[a].dName ) ; | |
} | |
else | |
{ | |
strcpy( ptr, devBits[a].dName ) ; | |
} | |
} | |
} | |
return ( ptr ) ; | |
} /* end of 'devBitNames' */ |