blob: 21f4f3d6d3a795827a50c493ae65cbd01749a8f7 [file] [log] [blame] [raw]
/* gri_stddev.c: GRI-909 standard devices
Copyright (c) 2001-2016, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
tti S42-001 terminal input
tto S42-002 terminal output
hsr S42-004 high speed reader
hsp S42-006 high speed punch
rtc real time clock
05-May-16 RMS Fixed calling sequence inconsistencies (Mark Pizzolato)
28-Mar-15 RMS Revised to use sim_printf
31-May-08 RMS Fixed declarations (Peter Schorn)
30-Sep-06 RMS Fixed handling of non-printable characters in KSR mode
22-Nov-05 RMS Revised for new terminal processing routines
29-Dec-03 RMS Added support for console backpressure
25-Apr-03 RMS Revised for extended file support
22-Dec-02 RMS Added break support
01-Nov-02 RMS Added 7b/8B support to terminal
*/
#include "gri_defs.h"
#include "sim_tmxr.h"
#include <ctype.h>
uint32 hsr_stopioe = 1, hsp_stopioe = 1;
extern uint16 M[];
extern uint32 dev_done, ISR;
t_stat tti_svc (UNIT *uhsr);
t_stat tto_svc (UNIT *uhsr);
t_stat tti_reset (DEVICE *dhsr);
t_stat tto_reset (DEVICE *dhsr);
t_stat tty_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat hsr_svc (UNIT *uhsr);
t_stat hsp_svc (UNIT *uhsr);
t_stat hsr_reset (DEVICE *dhsr);
t_stat hsp_reset (DEVICE *dhsr);
t_stat rtc_svc (UNIT *uhsr);
t_stat rtc_reset (DEVICE *dhsr);
int32 rtc_tps = 1000;
/* TTI data structures
tti_dev TTI device descriptor
tti_unit TTI unit descriptor
tti_reg TTI register list
tti_mod TTI modifiers list
*/
UNIT tti_unit = { UDATA (&tti_svc, TT_MODE_KSR, 0), KBD_POLL_WAIT };
REG tti_reg[] = {
{ ORDATA (BUF, tti_unit.buf, 8) },
{ FLDATA (IRDY, dev_done, INT_V_TTI) },
{ FLDATA (IENB, ISR, INT_V_TTI) },
{ DRDATA (POS, tti_unit.pos, T_ADDR_W), PV_LEFT },
{ DRDATA (TIME, tti_unit.wait, 24), REG_NZ + PV_LEFT },
{ NULL }
};
MTAB tti_mod[] = {
{ TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode },
{ TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode },
{ TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode },
{ TT_MODE, TT_MODE_7P, "7b", NULL, NULL },
{ 0 }
};
DEVICE tti_dev = {
"TTI", &tti_unit, tti_reg, tti_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &tti_reset,
NULL, NULL, NULL
};
/* TTO data structures
tto_dev TTO device descriptor
tto_unit TTO unit descriptor
tto_reg TTO register list
*/
UNIT tto_unit = { UDATA (&tto_svc, TT_MODE_KSR, 0), SERIAL_OUT_WAIT };
REG tto_reg[] = {
{ ORDATA (BUF, tto_unit.buf, 8) },
{ FLDATA (ORDY, dev_done, INT_V_TTO) },
{ FLDATA (IENB, ISR, INT_V_TTO) },
{ DRDATA (POS, tto_unit.pos, T_ADDR_W), PV_LEFT },
{ DRDATA (TIME, tto_unit.wait, 24), PV_LEFT },
{ NULL }
};
MTAB tto_mod[] = {
{ TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode },
{ TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode },
{ TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode },
{ TT_MODE, TT_MODE_7P, "7p", "7P", &tty_set_mode },
{ 0 }
};
DEVICE tto_dev = {
"TTO", &tto_unit, tto_reg, tto_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &tto_reset,
NULL, NULL, NULL
};
/* HSR data structures
hsr_dev HSR device descriptor
hsr_unit HSR unit descriptor
hsr_reg HSR register list
hsr_mod HSR modifiers list
*/
UNIT hsr_unit = {
UDATA (&hsr_svc, UNIT_SEQ+UNIT_ATTABLE+UNIT_ROABLE, 0), SERIAL_IN_WAIT
};
REG hsr_reg[] = {
{ ORDATA (BUF, hsr_unit.buf, 8) },
{ FLDATA (IRDY, dev_done, INT_V_HSR) },
{ FLDATA (IENB, ISR, INT_V_HSR) },
{ DRDATA (POS, hsr_unit.pos, T_ADDR_W), PV_LEFT },
{ DRDATA (TIME, hsr_unit.wait, 24), REG_NZ + PV_LEFT },
{ FLDATA (STOP_IOE, hsr_stopioe, 0) },
{ NULL }
};
DEVICE hsr_dev = {
"HSR", &hsr_unit, hsr_reg, NULL,
1, 10, 31, 1, 8, 8,
NULL, NULL, &hsr_reset,
NULL, NULL, NULL
};
/* HSP data structures
hsp_dev HSP device descriptor
hsp_unit HSP unit descriptor
hsp_reg HSP register list
*/
UNIT hsp_unit = {
UDATA (&hsp_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT
};
REG hsp_reg[] = {
{ ORDATA (BUF, hsp_unit.buf, 8) },
{ FLDATA (ORDY, dev_done, INT_V_HSP) },
{ FLDATA (IENB, ISR, INT_V_HSP) },
{ DRDATA (POS, hsp_unit.pos, T_ADDR_W), PV_LEFT },
{ DRDATA (TIME, hsp_unit.wait, 24), PV_LEFT },
{ FLDATA (STOP_IOE, hsp_stopioe, 0) },
{ NULL }
};
DEVICE hsp_dev = {
"HSP", &hsp_unit, hsp_reg, NULL,
1, 10, 31, 1, 8, 8,
NULL, NULL, &hsp_reset,
NULL, NULL, NULL
};
/* RTC data structures
rtc_dev RTC device descriptor
rtc_unit RTC unit descriptor
rtc_reg RTC register list
*/
UNIT rtc_unit = { UDATA (&rtc_svc, 0, 0), 16000 };
REG rtc_reg[] = {
{ FLDATA (RDY, dev_done, INT_V_RTC) },
{ FLDATA (IENB, ISR, INT_V_RTC) },
{ DRDATA (TIME, rtc_unit.wait, 24), REG_NZ + PV_LEFT },
{ DRDATA (TPS, rtc_tps, 8), REG_NZ + PV_LEFT + REG_HIDDEN },
{ NULL }
};
DEVICE rtc_dev = {
"RTC", &rtc_unit, rtc_reg, NULL,
1, 0, 0, 0, 0, 0,
NULL, NULL, &rtc_reset,
NULL, NULL, NULL
};
/* Console terminal function processors */
uint32 tty_rd (uint32 src)
{
return tti_unit.buf; /* return data */
}
t_stat tty_wr (uint32 dst, uint32 val)
{
tto_unit.buf = val & 0377; /* save char */
dev_done = dev_done & ~INT_TTO; /* clear ready */
sim_activate (&tto_unit, tto_unit.wait); /* activate unit */
return SCPE_OK;
}
t_stat tty_fo (uint32 op)
{
if (op & TTY_IRDY)
dev_done = dev_done & ~INT_TTI;
if (op & TTY_ORDY)
dev_done = dev_done & ~INT_TTO;
return SCPE_OK;
}
uint32 tty_sf (uint32 op)
{
if (((op & TTY_IRDY) && (dev_done & INT_TTI)) ||
((op & TTY_ORDY) && (dev_done & INT_TTO)))
return 1;
return 0;
}
/* Service routines */
t_stat tti_svc (UNIT *uptr)
{
int32 c;
sim_activate (uptr, uptr->wait); /* continue poll */
if ((c = sim_poll_kbd ()) < SCPE_KFLAG) /* no char or error? */
return c;
if (c & SCPE_BREAK) /* break? */
uptr->buf = 0;
else uptr->buf = sim_tt_inpcvt (c, TT_GET_MODE (uptr->flags) | TTUF_KSR);
dev_done = dev_done | INT_TTI; /* set ready */
uptr->pos = uptr->pos + 1;
return SCPE_OK;
}
t_stat tto_svc (UNIT *uptr)
{
int32 c;
t_stat r;
c = sim_tt_outcvt (uptr->buf, TT_GET_MODE (uptr->flags) | TTUF_KSR);
if (c >= 0) {
if ((r = sim_putchar_s (c)) != SCPE_OK) { /* output; error? */
sim_activate (uptr, uptr->wait); /* try again */
return ((r == SCPE_STALL)? SCPE_OK: r); /* !stall? report */
}
}
dev_done = dev_done | INT_TTO; /* set ready */
uptr->pos = uptr->pos + 1;
return SCPE_OK;
}
/* Reset routines */
t_stat tti_reset (DEVICE *dptr)
{
tmxr_set_console_units (&tti_unit, &tto_unit);
tti_unit.buf = 0; /* clear buffer */
dev_done = dev_done & ~INT_TTI; /* clear ready */
sim_activate (&tti_unit, tti_unit.wait); /* activate unit */
return SCPE_OK;
}
t_stat tto_reset (DEVICE *dptr)
{
tto_unit.buf = 0; /* clear buffer */
dev_done = dev_done | INT_TTO; /* set ready */
sim_cancel (&tto_unit); /* deactivate unit */
return SCPE_OK;
}
t_stat tty_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
tti_unit.flags = (tti_unit.flags & ~TT_MODE) | val;
tto_unit.flags = (tto_unit.flags & ~TT_MODE) | val;
return SCPE_OK;
}
/* High speed paper tape function processors */
uint32 hsrp_rd (uint32 src)
{
return hsr_unit.buf; /* return data */
}
t_stat hsrp_wr (uint32 dst, uint32 val)
{
hsp_unit.buf = val & 0377; /* save char */
dev_done = dev_done & ~INT_HSP; /* clear ready */
sim_activate (&hsp_unit, hsp_unit.wait); /* activate unit */
return SCPE_OK;
}
t_stat hsrp_fo (uint32 op)
{
if (op & PT_IRDY)
dev_done = dev_done & ~INT_HSR;
if (op & PT_ORDY)
dev_done = dev_done & ~INT_HSP;
if (op & PT_STRT)
sim_activate (&hsr_unit, hsr_unit.wait);
return SCPE_OK;
}
uint32 hsrp_sf (uint32 op)
{
if (((op & PT_IRDY) && (dev_done & INT_HSR)) ||
((op & PT_ORDY) && (dev_done & INT_HSP)))
return 1;
return 0;
}
t_stat hsr_svc (UNIT *uptr)
{
int32 temp;
if ((hsr_unit.flags & UNIT_ATT) == 0) /* attached? */
return IORETURN (hsr_stopioe, SCPE_UNATT);
if ((temp = getc (hsr_unit.fileref)) == EOF) { /* read char */
if (feof (hsr_unit.fileref)) { /* err or eof? */
if (hsr_stopioe)
sim_printf ("HSR end of file\n");
else return SCPE_OK;
}
else sim_perror ("HSR I/O error");
clearerr (hsr_unit.fileref);
return SCPE_IOERR;
}
dev_done = dev_done | INT_HSR; /* set ready */
hsr_unit.buf = temp & 0377; /* save char */
hsr_unit.pos = hsr_unit.pos + 1;
return SCPE_OK;
}
t_stat hsp_svc (UNIT *uptr)
{
dev_done = dev_done | INT_HSP; /* set ready */
if ((hsp_unit.flags & UNIT_ATT) == 0) /* attached? */
return IORETURN (hsp_stopioe, SCPE_UNATT);
if (putc (hsp_unit.buf, hsp_unit.fileref) == EOF) { /* write char */
sim_perror ("HSP I/O error"); /* error? */
clearerr (hsp_unit.fileref);
return SCPE_IOERR;
}
hsp_unit.pos = hsp_unit.pos + 1;
return SCPE_OK;
}
/* Reset routines */
t_stat hsr_reset (DEVICE *dptr)
{
hsr_unit.buf = 0; /* clear buffer */
dev_done = dev_done & ~INT_HSR; /* clear ready */
sim_cancel (&hsr_unit); /* deactivate unit */
return SCPE_OK;
}
t_stat hsp_reset (DEVICE *dptr)
{
hsp_unit.buf = 0; /* clear buffer */
dev_done = dev_done | INT_HSP; /* set ready */
sim_cancel (&hsp_unit); /* deactivate unit */
return SCPE_OK;
}
/* Clock function processors */
t_stat rtc_fo (uint32 op)
{
if (op & RTC_OFF) /* clock off? */
sim_cancel (&rtc_unit);
if ((op & RTC_ON) && !sim_is_active (&rtc_unit)) /* clock on? */
sim_activate (&rtc_unit, sim_rtc_init (rtc_unit.wait));
if (op & RTC_OV) /* clr ovflo? */
dev_done = dev_done & ~INT_RTC;
return SCPE_OK;
}
uint32 rtc_sf (uint32 op)
{
if ((op & RTC_OV) && (dev_done & INT_RTC))
return 1;
return 0;
}
t_stat rtc_svc (UNIT *uptr)
{
M[RTC_CTR] = (M[RTC_CTR] + 1) & DMASK; /* incr counter */
if (M[RTC_CTR] == 0) /* ovflo? set ready */
dev_done = dev_done | INT_RTC;
sim_activate (&rtc_unit, sim_rtc_calb (rtc_tps)); /* reactivate */
return SCPE_OK;
}
t_stat rtc_reset (DEVICE *dptr)
{
sim_register_clock_unit (&rtc_unit); /* declare clock unit */
dev_done = dev_done & ~INT_RTC; /* clear ready */
sim_cancel (&rtc_unit); /* stop clock */
return SCPE_OK;
}