| /* hp2100_cpu5.c: HP 1000 RTE-6/VM VMA and RTE-IV EMA instructions | |
| Copyright (c) 2007-2008, Holger Veit | |
| Copyright (c) 2006-2012, J. David Bryan | |
| Permission is hereby granted, free of charge, to any person obtaining a | |
| copy of this software and associated documentation files (the "Software"), | |
| to deal in the Software without restriction, including without limitation | |
| the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| and/or sell copies of the Software, and to permit persons to whom the | |
| Software is furnished to do so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in | |
| all copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
| THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| Except as contained in this notice, the name of the authors shall not be | |
| used in advertising or otherwise to promote the sale, use or other dealings | |
| in this Software without prior written authorization from the authors. | |
| CPU5 RTE-6/VM and RTE-IV firmware option instructions | |
| 09-May-12 JDB Separated assignments from conditional expressions | |
| 23-Mar-12 JDB Added sign extension for dim count in "cpu_ema_resolve" | |
| 28-Dec-11 JDB Eliminated unused variable in "cpu_ema_vset" | |
| 11-Sep-08 JDB Moved microcode function prototypes to hp2100_cpu1.h | |
| 05-Sep-08 JDB Removed option-present tests (now in UIG dispatchers) | |
| 30-Jul-08 JDB Redefined ABORT to pass address, moved def to hp2100_cpu.h | |
| 26-Jun-08 JDB Rewrote device I/O to model backplane signals | |
| 01-May-08 HV Fixed mapping bug in "cpu_ema_emap" | |
| 21-Apr-08 JDB Added EMA support from Holger | |
| 25-Nov-07 JDB Added TF fix from Holger | |
| 07-Nov-07 HV VMACK diagnostic tests 1...32 passed | |
| 19-Oct-07 JDB Corrected $LOC operand profile to OP_CCCACC | |
| 03-Oct-07 HV Moved RTE-6/VM instrs from hp2100_cpu0.c | |
| 26-Sep-06 JDB Created | |
| Primary references: | |
| - HP 1000 M/E/F-Series Computers Technical Reference Handbook | |
| (5955-0282, Mar-1980) | |
| - HP 1000 M/E/F-Series Computers Engineering and Reference Documentation | |
| (92851-90001, Mar-1981) | |
| - Macro/1000 Reference Manual (92059-90001, Dec-1992) | |
| Additional references are listed with the associated firmware | |
| implementations, as are the HP option model numbers pertaining to the | |
| applicable CPUs. | |
| */ | |
| #include <setjmp.h> | |
| #include "hp2100_defs.h" | |
| #include "hp2100_cpu.h" | |
| #include "hp2100_cpu1.h" | |
| /* RTE-6/VM Virtual Memory Area Instructions | |
| RTE-6/VM (product number 92084A) introduced Virtual Memory Area (VMA) | |
| instructions -- a superset of the RTE-IV EMA instructions. Different | |
| microcode was supplied with the operating system that replaced the microcode | |
| used with RTE-IV. Microcode was limited to the E/F-Series, and the M-Series | |
| used software equivalents. | |
| Option implementation by CPU was as follows: | |
| 2114 2115 2116 2100 1000-M 1000-E 1000-F | |
| ------ ------ ------ ------ ------ ------ ------ | |
| N/A N/A N/A N/A N/A 92084A 92084A | |
| The routines are mapped to instruction codes as follows: | |
| Instr. 1000-E/F Description | |
| ------ -------- ---------------------------------------------- | |
| .PMAP 105240 Map VMA page into map register | |
| $LOC 105241 Load on call | |
| [test] 105242 [self test] | |
| .SWP 105243 [Swap A and B registers] | |
| .STAS 105244 [STA B; LDA SP] | |
| .LDAS 105245 [LDA SP] | |
| .MYAD 105246 [NOP in microcode] | |
| .UMPY 105247 [Unsigned multiply and add] | |
| .IMAP 105250 Integer element resolve address and map | |
| .IMAR 105251 Integer element resolve address | |
| .JMAP 105252 Double integer element resolve address and map | |
| .JMAR 105253 Double integer element resolve address | |
| .LPXR 105254 Map pointer in P+1 plus offset in P+2 | |
| .LPX 105255 Map pointer in A/B plus offset in P+1 | |
| .LBPR 105256 Map pointer in P+1 | |
| .LBP 105257 Map pointer in A/B registers | |
| Implementation notes: | |
| 1. The opcodes 105243-247 are undocumented and do not appear to be used in | |
| any HP software. | |
| 2. The opcode list in the CE Handbook incorrectly shows 105246 as ".MYAD - | |
| multiply 2 signed integers." The microcode listing shows that this | |
| instruction was deleted, and the opcode is now a NOP. | |
| 3. RTE-IV EMA and RTE-6 VMA instructions shared the same address space, so a | |
| given machine could run one or the other, but not both. | |
| Additional references: | |
| - RTE-6/VM VMA/EMA Microcode Source (92084-18828, revision 3). | |
| - RTE-6/VM Technical Specifications (92084-90015, Apr-1983). | |
| - M/E/F-Series Computer Systems CE Handbook (5950-3767, Jul-1984). | |
| */ | |
| static const OP_PAT op_vma[16] = { | |
| OP_N, OP_CCCACC, OP_N, OP_N, /* .PMAP $LOC [test] .SWAP */ | |
| OP_N, OP_N, OP_N, OP_K, /* .STAS .LDAS .MYAD .UMPY */ | |
| OP_A, OP_A, OP_A, OP_A, /* .IMAP .IMAR .JMAP .JMAR */ | |
| OP_AA, OP_A, OP_A, OP_N /* .LPXR .LPX .LBPR .LBP */ | |
| }; | |
| /* some addresses in page0 of RTE-6/VM */ | |
| static const uint32 idx = 0001645; | |
| static const uint32 xmata = 0001646; | |
| static const uint32 xi = 0001647; | |
| static const uint32 xeqt = 0001717; | |
| static const uint32 vswp = 0001776; | |
| static const uint32 umaps = 0003740; | |
| static const uint32 page30 = 0074000; | |
| static const uint32 page31 = 0076000; | |
| static const uint32 ptemiss = 0176000; | |
| /* frequent constants in paging */ | |
| #define SUITMASK 0176000 | |
| #define NILPAGE 0176000 | |
| #define PAGEIDX 0001777 | |
| #define MSEGMASK 0076000 | |
| #define RWPROT 0141777 | |
| /* microcode version of resolve(): allows a much higher # of indirection levels. Used for | |
| instance for LBP microcode diagnostics which will check > 100 levels. | |
| */ | |
| #define VMA_INDMAX 200 | |
| static t_stat vma_resolve (uint32 MA, uint32 *addr, t_bool debug) | |
| { | |
| uint32 i; | |
| uint32 faultma = MA; | |
| for (i = 0; (i < VMA_INDMAX) && (MA & I_IA); i++) { /* resolve multilevel */ | |
| MA = ReadW (MA & VAMASK); /* follow address chain */ | |
| } | |
| if (MA & I_IA) { | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: vma_resolve indirect loop addr=%06o\n",faultma); | |
| return STOP_IND; /* indirect loop */ | |
| } | |
| *addr = MA; | |
| return SCPE_OK; | |
| } | |
| /* $LOC | |
| ASSEMBLER CALLING SEQUENCE: | |
| $MTHK NOP RETURN ADDRESS OF CALL (REDONE AFTER THIS ROUTINE) | |
| JSB $LOC | |
| .DTAB OCT LGPG# LOGICAL PAGE # AT WHICH THE NODE TO | |
| * BE MAPPED IN BELONGS (0-31) | |
| OCT RELPG RELATIVE PAGE OFFSET FROM BEGINING | |
| * OF PARTITION OF WHERE THAT NODE RESIDES. | |
| * (0 - 1023) | |
| OCT RELBP RELATIVE PAGE OFFSET FROM BEGINING OF | |
| * PARTITION OF WHERE BASE PAGE RESIDES | |
| * (0 - 1023) | |
| CNODE DEF .CNOD THIS IS THE ADDRESS OF CURRENT PATH # WORD | |
| .ORD OCT XXXXX THIS NODE'S LEAF # (IE PATH #) | |
| .NOD# OCT XXXXX THIS NODE'S ORDINAL # | |
| */ | |
| static t_stat cpu_vma_loc(OPS op,uint32 intrq,t_bool debug) | |
| { | |
| uint32 eqt,mls,pnod,lstpg,fstpg,rotsz,lgpg,relpg,relbp,matloc,ptnpg,physpg,cnt,pgs,umapr; | |
| eqt = ReadIO(xeqt,UMAP); /* get ID segment */ | |
| mls = ReadIO(eqt+33,SMAP); /* get word33 of alternate map */ | |
| if ((mls & 0x8000) == 0) { /* this is not an MLS prog! */ | |
| PC = err_PC; | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: cpu_vma_loc at P=%06o: not an MLS program\n", PC); | |
| if (mp_control) MP_ABORT (eqt+33); /* allow an MP abort */ | |
| return STOP_HALT; /* FATAL error! */ | |
| } | |
| pnod = mls & 01777; /* get #pages of mem res nodes */ | |
| if (pnod == 0) { /* no pages? FATAL! */ | |
| PC = err_PC; | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: cpu_vma_loc at P=%06o: no mem resident pages\n", PC); | |
| if (mp_control) MP_ABORT (eqt+33); /* allow an MP abort */ | |
| return STOP_HALT; | |
| } | |
| lstpg = (ReadIO(eqt+29,SMAP) >> 10) - 1; /* last page# of code */ | |
| fstpg = ReadIO(eqt+23,SMAP) >> 10; /* index to 1st addr + mem nodes */ | |
| rotsz = fstpg - (ReadIO(eqt+22,SMAP) >> 10); /* #pages in root */ | |
| lgpg = op[0].word; | |
| /* lets do some consistency checks, CPU halt if they fail */ | |
| if (lstpg < lgpg || lgpg < fstpg) { /* assert LSTPG >= LGPG# >= FSTPG */ | |
| PC = err_PC; | |
| if (debug) | |
| fprintf(sim_deb, | |
| ">>CPU VMA: $LOC at P=%06o: failed check LSTPG >= LGPG# >= FSTPG\n",PC); | |
| if (mp_control) MP_ABORT (eqt+22); /* allow an MP abort */ | |
| return STOP_HALT; | |
| } | |
| relpg = op[1].word; | |
| if (pnod < relpg || relpg < (rotsz+1)) { /* assert #PNOD >= RELPG >= ROTSZ+1 */ | |
| PC = err_PC; | |
| if (debug) | |
| fprintf(sim_deb, | |
| ">>CPU VMA: $LOC at %06o: failed check #PNOD >= RELPG >= ROTSZ+1\n",PC); | |
| if (mp_control) MP_ABORT (eqt+22); /* allow an MP abort */ | |
| return STOP_HALT; | |
| } | |
| relbp = op[2].word; | |
| if (relbp != 0) /* assert RELBP == 0 OR */ | |
| if (pnod < relbp || relbp < (rotsz+1)) { /* #PNOD >= RELBP >= ROTSZ+1 */ | |
| PC = err_PC; | |
| if (debug) | |
| fprintf(sim_deb, | |
| ">>CPU VMA: $LOC at P=%06o: failed check: #PNOD >= RELBP >= ROTSZ+1\n",PC); | |
| if (mp_control) MP_ABORT (eqt+22); /* allow an MP abort */ | |
| return STOP_HALT; | |
| } | |
| cnt = lstpg - lgpg + 1; /* #pages to map */ | |
| pgs = pnod - relpg + 1; /* #pages from start node to end of code */ | |
| if (pgs < cnt) cnt = pgs; /* ensure minimum, so not to map into EMA */ | |
| matloc = ReadIO(xmata,UMAP); /* get MAT $LOC address */ | |
| ptnpg = ReadIO(matloc+3,SMAP) & 01777; /* index to start phys pg */ | |
| physpg = ptnpg + relpg; /* phys pg # of node */ | |
| umapr = 32 + lgpg; /* map register to start */ | |
| /* do an XMS with AR=umapr,BR=physpg,XR=cnt */ | |
| if (debug) | |
| fprintf(sim_deb, | |
| ">>CPU VMA: $LOC map %d pgs from phys=%06o to mapr=%d\n", | |
| cnt,physpg,umapr); | |
| while (cnt != 0) { | |
| dms_wmap (umapr, physpg); /* map pages of new overlay segment */ | |
| cnt = (cnt - 1) & DMASK; | |
| umapr = (umapr + 1) & DMASK; | |
| physpg = (physpg + 1) & DMASK; | |
| } | |
| dms_wmap(32,relbp+ptnpg); /* map base page again */ | |
| WriteW(op[3].word,op[4].word); /* path# we are going to */ | |
| PC = (PC - 8) & DMASK; /* adjust PC to return address */ | |
| /* word before the $LOC microinstr. */ | |
| PC = (ReadW(PC) - 1) & DMASK; /* but the call has to be rerun, */ | |
| /* so must skip back to the original call */ | |
| /* which will now lead to the real routine */ | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: $LOC done: path#=%06o, P=%06o\n",op[4].word,PC); | |
| return SCPE_OK; | |
| } | |
| /* map pte into last page | |
| return FALSE if page fault, nil flag in PTE or suit mismatch | |
| return TRUE if suit match, physpg = physical page | |
| or page=0 -> last+1 page | |
| */ | |
| static t_bool cpu_vma_ptevl(uint32 pagid,uint32* physpg) | |
| { | |
| uint32 suit; | |
| uint32 pteidx = pagid & 0001777; /* build index */ | |
| uint32 reqst = pagid & SUITMASK; /* required suit */ | |
| uint32 pteval = ReadW(page31 | pteidx); /* get PTE entry */ | |
| *physpg = pteval & 0001777; /* store physical page number */ | |
| suit = pteval & SUITMASK; /* suit number seen */ | |
| if (pteval == NILPAGE) return FALSE; /* NIL value in PTE */ | |
| return suit == reqst || !*physpg; /* good page or last+1 */ | |
| } | |
| /* handle page fault */ | |
| static t_stat cpu_vma_fault(uint32 x,uint32 y,int32 mapr, | |
| uint32 ptepg,uint32 ptr,uint32 faultpc, t_bool debug) | |
| { | |
| uint32 pre = ReadIO(xi,UMAP); /* get program preamble */ | |
| uint32 ema = ReadIO(pre+2,UMAP); /* get address of $EMA$/$VMA$ */ | |
| WriteIO(ema,faultpc,UMAP); /* write addr of fault instr */ | |
| XR = x; /* X = faulting page */ | |
| YR = y; /* Y = faulting address for page */ | |
| if (mapr>0) | |
| dms_wmap(mapr+UMAP,ptepg); /* map PTE into specified user dmsmap */ | |
| /* do a safety check: first instr of $EMA$/$VMA$ must be a DST instr */ | |
| if (ReadIO(ema+1,UMAP) != 0104400) { | |
| if (debug) | |
| fprintf(sim_deb, ">>CPU VMA: pg fault: no EMA/VMA user code present\n"); | |
| if (mp_control) MP_ABORT (ema+1); /* allow an MP abort */ | |
| return STOP_HALT; /* FATAL: no EMA/VMA! */ | |
| } | |
| PC = (ema+1) & VAMASK; /* restart $EMA$ user code, */ | |
| /* will return to fault instruction */ | |
| AR = (ptr >> 16) & DMASK; /* restore A, B */ | |
| BR = ptr & DMASK; | |
| E = 0; /* enforce E = 0 */ | |
| if (debug) | |
| fprintf(sim_deb, | |
| ">>CPU VMA: Call pg fault OS exit, AR=%06o BR=%06o P=%06o\n", | |
| AR, BR, PC); | |
| return SCPE_OK; | |
| } | |
| /* map in PTE into last page, return false, if page fault */ | |
| static t_bool cpu_vma_mapte(uint32* ptepg) | |
| { | |
| uint32 idext,idext2; | |
| uint32 dispatch = ReadIO(vswp,UMAP) & 01777; /* get fresh dispatch flag */ | |
| t_bool swapflag = TRUE; | |
| if (dispatch == 0) { /* not yet set */ | |
| idext = ReadIO(idx,UMAP); /* go into IDsegment extent */ | |
| if (idext != 0) { /* is ema/vma program? */ | |
| dispatch = ReadWA(idext+1) & 01777; /* get 1st ema page: new vswp */ | |
| WriteIO(vswp,dispatch,UMAP); /* move into $VSWP */ | |
| idext2 = ReadWA(idext+2); /* get swap bit */ | |
| swapflag = (idext2 & 020000) != 0; /* bit 13 = swap bit */ | |
| } | |
| } | |
| if (dispatch) { /* some page is defined */ | |
| dms_wmap(31 + UMAP,dispatch); /* map $VSWP to register 31 */ | |
| *ptepg = dispatch; /* return PTEPG# for later */ | |
| } | |
| return swapflag; /* true for swap bit set */ | |
| } | |
| /* .LBP | |
| ASSEMBLER CALLING SEQUENCE: | |
| DLD PONTR TRANSLATE 32 BIT POINTER TO 15 | |
| JSB .LBP BIT POINTER. | |
| <RETURN - B = LOGICAL ADDRESS, A = PAGID> | |
| 32 bit pointer: | |
| ----------AR------------ -----BR----- | |
| 15 14....10 9....4 3...0 15.10 9....0 | |
| L<----------------------------------- L=1 local reference bit | |
| XXXXXXXX<------------------------- 5 bit unused | |
| PPPPPP PPPPP PPPPP<------ 16 bit PAGEID | |
| SSSSSS<------------------ SUIT# within PAGEID | |
| PPPPP PPPPP<------ 10 bit PAGEID index into PTE | |
| OOOOOO 10 bit OFFSET | |
| */ | |
| static t_stat cpu_vma_lbp(uint32 ptr,uint32 aoffset,uint32 faultpc,uint32 intrq,t_bool debug) | |
| { | |
| uint32 pagid,offset,ptrl,pgidx,ptepg; | |
| uint16 p30,p31,suit; | |
| t_stat reason = SCPE_OK; | |
| uint32 faultab = ptr; /* remember A,B for page fault */ | |
| ptr += aoffset; /* add the offset e.g. for .LPX */ | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: cpu_vma_lbp: ptr=%o/%o\n", | |
| (ptr>>16) & DMASK,ptr & DMASK); | |
| O = 0; /* clear overflow */ | |
| if (ptr & 0x80000000) { /* is it a local reference? */ | |
| ptrl = ptr & VAMASK; | |
| if ((ptr&I_IA) && (reason = vma_resolve (ReadW (ptrl), &ptrl, debug))) | |
| return reason; /* yes, resolve indirect ref */ | |
| BR = ptrl & VAMASK; /* address is local */ | |
| AR = (ptr >> 16) & DMASK; | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: cpu_vma_lbp: local ref AR=%06o BR=%06o\n",AR,BR); | |
| return SCPE_OK; | |
| } | |
| pagid = (ptr >> 10) & DMASK; /* extract page id (16 bit idx, incl suit*/ | |
| offset = ptr & 01777; /* and offset */ | |
| suit = pagid & SUITMASK; /* suit of page */ | |
| pgidx = pagid & PAGEIDX; /* index into PTE */ | |
| if (!cpu_vma_mapte(&ptepg)) /* map in PTE */ | |
| return cpu_vma_fault(65535,ptemiss,-1,ptepg,faultab,faultpc, debug); /* oops, must init PTE */ | |
| /* ok, we have the PTE mapped to page31 */ | |
| /* the microcode tries to reads two consecutive data pages into page30 and page31 */ | |
| /* read the 1st page value from PTE */ | |
| p30 = ReadW(page31 | pgidx) ^ suit; | |
| if (!p30) /* matched suit for 1st page */ | |
| return cpu_vma_fault(pagid,page30,30,ptepg,faultab,faultpc,debug); | |
| /* suit switch situation: 1st page is in last idx of PTE, then following page | |
| * must be in idx 0 of PTE */ | |
| if (pgidx==01777) { /* suit switch situation */ | |
| pgidx = 0; /* select correct idx 0 */ | |
| suit = pagid+1; /* suit needs increment */ | |
| if (suit==0) { /* is it page 65536? */ | |
| offset += 02000; /* adjust to 2nd page */ | |
| suit = NILPAGE; | |
| pgidx = 01777; | |
| } | |
| } else | |
| pgidx++; /* select next page */ | |
| p31 = ReadW(page31 | pgidx) ^ suit; | |
| if (!p31) { /* matched suit for 2nd page */ | |
| dms_wmap(31+UMAP,p30); | |
| if (p30 & SUITMASK) | |
| return cpu_vma_fault(pagid,page30,30,ptepg,faultab,faultpc,debug); | |
| if (!(p31 ^ NILPAGE)) /* suit is 63: fault */ | |
| return cpu_vma_fault(pagid+1,page31,31,ptepg,faultab,faultpc,debug); | |
| offset += 02000; /* adjust offset to last user map because */ | |
| /* the address requested page 76xxx */ | |
| } | |
| else { | |
| dms_wmap(30+UMAP,p30); | |
| if (p30 & SUITMASK) | |
| return cpu_vma_fault(pagid,page30,30,ptepg,faultab,faultpc,debug); | |
| dms_wmap(31+UMAP,p31); | |
| if (p31 & SUITMASK) | |
| return cpu_vma_fault(pagid+1,page31,31,ptepg,faultab,faultpc,debug); | |
| } | |
| AR = pagid; /* return pagid in A */ | |
| BR = page30+offset; /* mapped address in B */ | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: cpu_vma_lbp: map done AR=%06o BR=%o6o\n",AR,BR); | |
| return SCPE_OK; | |
| } | |
| /* .PMAP | |
| ASSEMBLER CALLING SEQUENCE: | |
| LDA UMAPR (MSEG - 31) | |
| LDB PAGID (0-65535) | |
| JSB .PMAP GO MAP IT IN | |
| <ERROR RETURN> A-REG = REASON, NOTE 1 | |
| <RETURN A=A+1, B=B+1,E=0 >> SEE NOTE 2> | |
| NOTE 1 : IF BIT 15 OF A-REG SET, THEN ALL NORMAL BRANCHES TO THE | |
| $EMA$/$VMA$ CODE WILL BE CHANGED TO P+1 EXIT. THE A-REG | |
| WILL BE THE REASON THE MAPPING WAS NOT SUCCESSFUL IF BIT 15 | |
| OF THE A-REG WAS NOT SET. | |
| THIS WAS DONE SO THAT A ROUTINE ($VMA$) CAN DO A MAPPING | |
| WITHOUT THE POSSIBILITY OF BEING RE-CURRED. IT IS USED | |
| BY $VMA$ AND PSTVM IN THE PRIVLEDGED MODE. | |
| NOTE 2: E-REG WILL = 1 IF THE LAST+1 PAGE IS REQUESTED AND | |
| MAPPED READ/WRITE PROTECTED ON A GOOD P+2 RETURN. | |
| */ | |
| static t_stat cpu_vma_pmap(uint32 umapr,uint32 pagid, t_bool debug) | |
| { | |
| uint32 physpg, ptr, pgpte; | |
| uint32 mapnm = umapr & 0x7fff; /* strip off bit 15 */ | |
| if (debug) | |
| fprintf(sim_deb, ">>CPU VMA: .PMAP AR=%06o(umapr) BR=%06o(pagid)\n",umapr,pagid); | |
| if (mapnm > 31) { /* check for invalid map register */ | |
| AR = 80; /* error: corrupt EMA/VMA system */ | |
| if (debug) | |
| fprintf(sim_deb, ">>CPU VMA: .PMAP invalid mapr: AR=80, exit P+1\n"); | |
| return SCPE_OK; /* return exit PC+1 */ | |
| } | |
| ptr = (umapr << 16) | (pagid & DMASK); /* build the ptr argument for vma_fault */ | |
| if (!cpu_vma_mapte(&pgpte)) { /* map the PTE */ | |
| if (umapr & 0x8000) { | |
| XR = 65535; | |
| YR = ptemiss; | |
| if (debug) | |
| fprintf(sim_deb, | |
| ">>CPU VMA: .PMAP pg fault&bit15: XR=%06o YR=%06o, exit P+1\n", | |
| XR, YR); | |
| return SCPE_OK; /* use PC+1 error exit */ | |
| } | |
| return cpu_vma_fault(65535,ptemiss,-1,pgpte,ptr,PC-1,debug); /* oops: fix PTE */ | |
| } | |
| /* PTE is successfully mapped to page31 and dmsmap[63] */ | |
| if (!cpu_vma_ptevl(pagid,&physpg)) { | |
| if (umapr & 0x8000) { | |
| XR = pagid; | |
| YR = page31; | |
| if (debug) | |
| fprintf(sim_deb, | |
| ">>CPU VMA: .PMAP pg map&bit15: XR=%06o YR=%06o, exit P+1\n", | |
| XR, YR); | |
| return SCPE_OK; /* use PC+1 error exit*/ | |
| } | |
| return cpu_vma_fault(pagid,page31,31,pgpte,ptr,PC-1,debug); /* page not present */ | |
| } | |
| E = 1; | |
| if (physpg == 0) /* last+1 page ? */ | |
| physpg = RWPROT; /* yes, use page 1023 RW/Protected */ | |
| else E = 0; /* normal page to map */ | |
| dms_wmap(mapnm+UMAP,physpg); /* map page to user page reg */ | |
| if (mapnm != 31) /* unless already unmapped, */ | |
| dms_wmap(31+UMAP,RWPROT); /* unmap PTE */ | |
| AR = (umapr + 1) & DMASK; /* increment mapr for next call */ | |
| BR = (pagid + 1) & DMASK; /* increment pagid for next call */ | |
| O = 0; /* clear overflow */ | |
| PC = (PC + 1) & VAMASK; /* normal PC+2 return */ | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: .PMAP map done: AR=%06o BR=%o6o exit P+2\n",AR,BR); | |
| return SCPE_OK; | |
| } | |
| /* array calc helper for .imar, .jmar, .imap, .jmap | |
| ij=in_s: 16 bit descriptors | |
| ij=in_d: 32 bit descriptors | |
| This helper expects mainly the following arguments: | |
| dtbl: pointer to an array descriptor table | |
| atbl: pointer to the table of actual subscripts | |
| where subscript table is the following: | |
| atbl-> DEF last_subscript,I (point to single or double integer) | |
| ... | |
| DEF first subscript,I (point to single or double integer) | |
| where Descriptor_table is the following table: | |
| dtbl-> DEC #dimensions | |
| DEC/DIN next-to-last dimension (single or double integer) | |
| ... | |
| DEC/DIN first dimension (single or double integer) | |
| DEC elementsize in words | |
| DEC high,low offset from start of EMA to element(0,0...0) | |
| Note that subscripts are counting from 0 | |
| */ | |
| static t_stat cpu_vma_ijmar(OPSIZE ij,uint32 dtbl,uint32 atbl,uint32* dimret, | |
| uint32 intrq,t_bool debug) | |
| { | |
| t_stat reason = SCPE_OK; | |
| uint32 ndim,MA,i,ws; | |
| int32 accu,ax,dx; | |
| OP din; | |
| int opsz = ij==in_d ? 2 : 1; | |
| ndim = ReadW(dtbl++); /* get #dimensions itself */ | |
| if (debug) { | |
| fprintf(sim_deb, ">>CPU VMA array calc #dim=%d, size=%d\n",ndim,opsz); | |
| fprintf(sim_deb, ">>CPU VMA: array actual subscripts ("); | |
| for (i=0; i<ndim; i++) { | |
| MA = ReadW(atbl+i); | |
| if (resolve (MA, &MA, intrq)) break; | |
| din = ReadOp(MA,ij); | |
| if (i>0) fputc(',',sim_deb); | |
| fprintf(sim_deb,"%d",ij==in_d?INT32(din.dword) : INT16(din.word)); | |
| } | |
| fprintf(sim_deb,")\n>>CPU VMA: array descriptor table ("); | |
| if (ndim) { | |
| for (i=0; i<ndim-1; i++) { | |
| din = ReadOp(dtbl+i*opsz,ij); | |
| if (i>0) fputc(',',sim_deb); | |
| fprintf(sim_deb,"%d",ij==in_d?INT32(din.dword) : INT16(din.word)); | |
| } | |
| i = dtbl+1+(ndim-1)*opsz; | |
| ws = ReadW(i-1); | |
| } | |
| else { | |
| i = dtbl; | |
| ws = 1; | |
| } | |
| fprintf(sim_deb,")\n>>CPU VMA: array elemsz=%d base=%o/%o\n", | |
| ws,ReadW(i),ReadW(i+1)); | |
| } | |
| if (dimret) *dimret = ndim; /* return dimensions */ | |
| if (ndim == 0) { /* no dimensions: */ | |
| AR = ReadW(dtbl++); /* return the array base itself */ | |
| BR = ReadW(dtbl); | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: #dim=0, AR=%06o, BR=%06o\n",AR,BR); | |
| return SCPE_OK; | |
| } | |
| /* calculate | |
| * (...(An*Dn-1)+An-1)*Dn-2)+An-2....)+A2)*D1)+A1)*#words + Array base | |
| * Depending on ij, Ax and Dx can be 16 or 32 bit | |
| */ | |
| accu = 0; | |
| while (ndim-- > 0) { | |
| MA = ReadW(atbl++); /* get addr of subscript */ | |
| if ((reason = resolve (MA, &MA, intrq))) /* and resolve it */ | |
| return reason; | |
| din = ReadOp(MA,ij); /* get actual subscript value */ | |
| ax = ij==in_d ? INT32(din.dword) : INT16(din.word); | |
| accu += ax; /* add to accu */ | |
| if (ndim==0) ij = in_s; /* #words is single */ | |
| din = ReadOp(dtbl,ij); /* get dimension from descriptor table */ | |
| if (ij==in_d) { | |
| dx = INT32(din.dword); /* either get double or single dimension */ | |
| dtbl += 2; | |
| } else { | |
| dx = INT16(din.word); | |
| dtbl++; | |
| } | |
| accu *= dx; /* multiply */ | |
| } | |
| din = ReadOp(dtbl,in_d); /* add base address */ | |
| accu += din.dword; | |
| AR = (accu >> 16) & DMASK; /* transfer to AB */ | |
| BR = accu & DMASK; | |
| if (debug) | |
| fprintf(sim_deb,">>CPU VMA: resulting virt addr=%o (AR=%06o, BR=%06o)\n",accu,AR,BR); | |
| return reason; | |
| } | |
| /* | |
| * This is the main handler for the RTE6/VMA microcodes */ | |
| t_stat cpu_rte_vma (uint32 IR, uint32 intrq) | |
| { | |
| t_stat reason = SCPE_OK; | |
| OPS op; | |
| OP_PAT pattern; | |
| uint32 entry,t32,ndim; | |
| uint32 dtbl,atbl; /* descriptor table ptr, actual args ptr */ | |
| OP dop0,dop1; | |
| uint32 pcsave = (PC+1) & VAMASK; /* save PC to check for redo in imap/jmap */ | |
| t_bool debug = DEBUG_PRI (cpu_dev, DEB_VMA); | |
| entry = IR & 017; /* mask to entry point */ | |
| pattern = op_vma[entry]; /* get operand pattern */ | |
| if (pattern != OP_N) { | |
| reason = cpu_ops (pattern, op, intrq); /* get instruction operands */ | |
| if (reason != SCPE_OK) /* evaluation failed? */ | |
| return reason; /* return reason for failure */ | |
| } | |
| if (debug) { /* debugging? */ | |
| fprintf (sim_deb, ">>CPU VMA: IR = %06o (", IR); /* print preamble and IR */ | |
| fprint_sym (sim_deb, err_PC, (t_value *) &IR, /* print instruction mnemonic */ | |
| NULL, SWMASK('M')); | |
| fprintf (sim_deb, "), P = %06o, XEQT = %06o", /* print location and program ID */ | |
| err_PC, ReadW (xeqt)); | |
| fprint_ops (pattern, op); /* print operands */ | |
| fputc ('\n', sim_deb); /* terminate line */ | |
| } | |
| switch (entry) { /* decode IR<3:0> */ | |
| case 000: /* .PMAP 105240 (OP_N) */ | |
| reason = cpu_vma_pmap(AR,BR,debug); /* map pages */ | |
| break; | |
| case 001: /* $LOC 105241 (OP_CCCACC) */ | |
| reason = cpu_vma_loc(op,intrq,debug); /* handle the coroutine switch */ | |
| break; | |
| case 002: /* [test] 105242 (OP_N) */ | |
| XR = 3; /* refer to src code 92084-18828 rev 3 */ | |
| SR = 0102077; /* HLT 77 instruction */ | |
| YR = 1; /* ROMs correctly installed */ | |
| PC = (PC+1) & VAMASK; /* skip instr if VMA/EMA ROM installed */ | |
| break; | |
| case 003: /* [swap] 105243 (OP_N) */ | |
| t32 = AR; /* swap A and B registers */ | |
| AR = BR; | |
| BR = t32; | |
| break; | |
| case 004: /* [---] 105244 (OP_N) */ | |
| reason = stop_inst; /* fragment of dead code */ | |
| break; /* in microrom */ | |
| case 005: /* [---] 105245 (OP_N) */ | |
| reason = stop_inst; /* fragment of dead code */ | |
| break; /* in microrom */ | |
| case 006: /* [nop] 105246 (OP_N) */ | |
| break; /* do nothing */ | |
| case 007: /* [umpy] 105247 (OP_K) */ | |
| t32 = AR * op[0].word; /* get multiplier */ | |
| t32 += BR; /* add B */ | |
| AR = (t32 >> 16) & DMASK; /* move result back to AB */ | |
| BR = t32 & DMASK; | |
| O = 0; /* instr clears OV */ | |
| break; | |
| case 010: /* .IMAP 105250 (OP_A) */ | |
| dtbl = op[0].word; | |
| atbl = PC; | |
| if ((reason = cpu_vma_ijmar(in_s,dtbl,atbl,&ndim,intrq,debug))) /* calc the virt address to AB */ | |
| return reason; | |
| t32 = (AR << 16) | (BR & DMASK); | |
| if ((reason = cpu_vma_lbp(t32,0,PC-2,intrq,debug))) | |
| return reason; | |
| if (PC==pcsave) | |
| PC = (PC+ndim) & VAMASK; /* adjust PC: skip ndim subscript words */ | |
| break; | |
| case 011: /* .IMAR 105251 (OP_A) */ | |
| dtbl = ReadW(op[0].word); | |
| atbl = (op[0].word+1) & VAMASK; | |
| reason = cpu_vma_ijmar(in_s,dtbl,atbl,0,intrq,debug); /* calc the virt address to AB */ | |
| break; | |
| case 012: /* .JMAP 105252 (OP_A) */ | |
| dtbl = op[0].word; | |
| atbl = PC; | |
| if ((reason = cpu_vma_ijmar(in_d,dtbl,atbl,&ndim,intrq,debug))) /* calc the virtual address to AB */ | |
| return reason; | |
| t32 = (AR << 16) | (BR & DMASK); | |
| if ((reason = cpu_vma_lbp(t32,0,PC-2,intrq,debug))) | |
| return reason; | |
| if (PC==pcsave) | |
| PC = (PC + ndim) & VAMASK; /* adjust PC: skip ndim subscript dword ptr */ | |
| break; | |
| case 013: /* .JMAR 105253 (OP_A) */ | |
| dtbl = ReadW(op[0].word); | |
| atbl = (op[0].word+1) & VAMASK; | |
| reason = cpu_vma_ijmar(in_d,dtbl,atbl,0,intrq,debug); /* calc the virt address to AB */ | |
| break; | |
| case 014: /* .LPXR 105254 (OP_AA) */ | |
| dop0 = ReadOp(op[0].word,in_d); /* get pointer from arg */ | |
| dop1 = ReadOp(op[1].word,in_d); | |
| t32 = dop0.dword + dop1.dword; /* add offset to it */ | |
| reason = cpu_vma_lbp(t32,0,PC-3,intrq,debug); | |
| break; | |
| case 015: /* .LPX 105255 (OP_A) */ | |
| t32 = (AR << 16) | (BR & DMASK); /* pointer in AB */ | |
| dop0 = ReadOp(op[0].word,in_d); | |
| reason = cpu_vma_lbp(t32,dop0.dword,PC-2,intrq,debug); | |
| break; | |
| case 016: /* .LBPR 105256 (OP_A) */ | |
| dop0 = ReadOp(op[0].word,in_d); /* get the pointer */ | |
| reason = cpu_vma_lbp(dop0.dword,0,PC-2,intrq,debug); | |
| break; | |
| case 017: /* .LBP 105257 (OP_N) */ | |
| t32 = (AR << 16) | (BR & DMASK); | |
| reason = cpu_vma_lbp(t32,0,PC-1,intrq,debug); | |
| break; | |
| } | |
| return reason; | |
| } | |
| /* RTE-IV Extended Memory Area Instructions | |
| The RTE-IV operating system (HP product number 92067A) introduced the | |
| Extended Memory Area (EMA) instructions. EMA provided a mappable data area | |
| up to one megaword in size. These three instructions accelerated data | |
| accesses to variables stored in EMA partitions. Support was limited to | |
| E/F-Series machines; M-Series machines used software equivalents. | |
| Option implementation by CPU was as follows: | |
| 2114 2115 2116 2100 1000-M 1000-E 1000-F | |
| ------ ------ ------ ------ ------ ------ ------ | |
| N/A N/A N/A N/A N/A 92067A 92067A | |
| The routines are mapped to instruction codes as follows: | |
| Instr. 1000-E/F Description | |
| ------ -------- ---------------------------------------------- | |
| .EMIO 105240 EMA I/O | |
| MMAP 105241 Map physical to logical memory | |
| [test] 105242 [self test] | |
| .EMAP 105257 Resolve array element address | |
| Notes: | |
| 1. RTE-IV EMA and RTE-6 VMA instructions share the same address space, so a | |
| given machine can run one or the other, but not both. | |
| 2. The EMA diagnostic (92067-16013) reports bogus MMAP failures if it is | |
| not loaded at the start of its partition (e.g., because of a LOADR "LO" | |
| command). The "ICMPS" map comparison check in the diagnostic assumes | |
| that the starting page of the program's partition contains the first | |
| instruction of the program and prints "MMAP ERROR" if it does not. | |
| Additional references: | |
| - RTE-IVB Programmer's Reference Manual (92068-90004, Dec-1983). | |
| - RTE-IVB Technical Specifications (92068-90013, Jan-1980). | |
| */ | |
| static const OP_PAT op_ema[16] = { | |
| OP_AKA, OP_AKK, OP_N, OP_N, /* .EMIO MMAP [test] --- */ | |
| OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
| OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
| OP_N, OP_N, OP_N, OP_AAA /* --- --- --- .EMAP */ | |
| }; | |
| /* calculate the 32 bit EMA subscript for an array */ | |
| static t_bool cpu_ema_resolve(uint32 dtbl,uint32 atbl,uint32* sum) | |
| { | |
| int32 sub, act, low, sz, ndim; | |
| uint32 MA, base; | |
| ndim = ReadW(dtbl++); /* # dimensions */ | |
| ndim = SEXT(ndim); /* sign extend */ | |
| if (ndim < 0) return FALSE; /* invalid? */ | |
| *sum = 0; /* accu for index calc */ | |
| while (ndim > 0) { | |
| MA = ReadW(atbl++); /* get address of A(N) */ | |
| resolve (MA, &MA, 0); | |
| act = ReadW(MA); /* A(N) */ | |
| low = ReadW(dtbl++); /* -L(N) */ | |
| sub = SEXT(act) + SEXT(low); /* subscript */ | |
| if (sub & 0xffff8000) return FALSE; /* overflow? */ | |
| *sum += sub; /* accumulate */ | |
| sz = ReadW(dtbl++); | |
| sz = SEXT(sz); | |
| if (sz < 0) return FALSE; | |
| *sum *= sz; | |
| if (*sum > (512*1024)) return FALSE; /* overflow? */ | |
| ndim--; | |
| } | |
| base = (ReadW(dtbl+1)<<16) | (ReadW(dtbl) & 0xffff); /* base of array in EMA */ | |
| if (base & 0x8000000) return FALSE; | |
| *sum += base; /* calculate address into EMA */ | |
| if (*sum & 0xf8000000) return FALSE; /* overflow? */ | |
| return TRUE; | |
| } | |
| /* implementation of VIS RTE-IVB EMA support | |
| * .ERES microcode routine, resolves only EMA addresses | |
| * Call: | |
| * .OCT 101474B | |
| * DEF RTN error return (rtn), good return is rtn+1 | |
| * DEF DUMMY dummy argument for compatibility with .EMAP | |
| * DEF TABLE[,I] array declaration (dtbl) | |
| * DEF A(N)[,I] actual subscripts (atbl) | |
| * DEF A(N-1)[,I] | |
| * ... | |
| * DEF A(2)[,I] | |
| * DEF A(1)[,I] | |
| * RTN EQU * error return A="20", B="EM" | |
| * RTN+1 EQU *+1 good return B=logical address | |
| * | |
| * TABLE DEC # # dimensions | |
| * DEC -L(N) | |
| * DEC D(N-1) | |
| * DEC -L(N-1) lower bound (n-1)st dim | |
| * DEC D(N-2) (n-2)st dim | |
| * ... | |
| * DEC D(1) 1st dim | |
| * DEC -L(1) lower bound 1st dim | |
| * DEC # # words/element | |
| * OFFSET 1 EMA Low | |
| * OFFSET 2 EMA High | |
| */ | |
| t_stat cpu_ema_eres(uint32 *rtn,uint32 dtbl,uint32 atbl,t_bool debug) | |
| { | |
| uint32 sum; | |
| if (cpu_ema_resolve(dtbl,atbl,&sum)) { /* calculate subscript */ | |
| AR = sum & 0xffff; | |
| BR = sum >> 16; | |
| if (!(BR & SIGN)) { /* no overflow? */ | |
| (*rtn)++; /* return via good exit */ | |
| return SCPE_OK; | |
| } | |
| } | |
| AR = 0x3230; /* error condition: */ | |
| BR = 0x454d; /* AR = '20', BR = 'EM' */ | |
| return SCPE_OK; /* return via unmodified rtn */ | |
| } | |
| /* implementation of VIS RTE-IVB EMA support | |
| * .ESEG microcode routine | |
| * Call: | |
| * LDA FIRST first map to set | |
| * LDB N # of maps to set | |
| * .OCT 101475B/105475B | |
| * DEF RTN ptr to return | |
| * DEF TABLE map table | |
| * RTN EQU * error return A="21", B="EM" | |
| * RTN+1 EQU *+1 good return B=logical address | |
| * | |
| * load maps FIRST to FIRST+N from TABLE, with FIRST = FIRST + LOG_START MSEG | |
| * update map table in base page. Set LOG_START MSEG=0 if opcode==105475 | |
| */ | |
| t_stat cpu_ema_eseg(uint32* rtn, uint32 IR, uint32 tbl, t_bool debug) | |
| { | |
| uint32 xidex,eqt,idext0,idext1; | |
| uint32 msegsz,phys,msegn,last,emasz,pg0,pg1,pg,i,lp; | |
| if ((BR & SIGN) || BR==0) goto em21; /* #maps not positive? */ | |
| xidex = ReadIO(idx,UMAP); /* read ID extension */ | |
| if (xidex==0) goto em21; | |
| idext0 = ReadWA(xidex+0); /* get 1st word idext */ | |
| msegsz = idext0 & 037; /* S7 MSEG size */ | |
| WriteIO(xidex+0, idext0 | 0100000, SMAP); /* enforce nonstd MSEG */ | |
| idext1 = ReadWA(xidex+1); /* get 2nd word idext */ | |
| phys = idext1 & 01777; /* S5 phys start of EMA */ | |
| msegn = (idext1 >> 11) & 037; /* S9 get logical start MSEG# */ | |
| if (IR & 04000) { /* opcode == 105475? (.VPRG) */ | |
| msegn = 0; /* log start = 0 */ | |
| msegsz = 32; /* size = full range */ | |
| } | |
| last = AR-1 + BR; /* last page */ | |
| if (last > msegsz) goto em21; /* too many? error */ | |
| eqt = ReadIO(xeqt,UMAP); | |
| emasz = (ReadWA(eqt+28) & 01777) - 1; /* S6 EMA size in pages */ | |
| /* locations 1740...1777 of user base page contain the map entries we need. | |
| * They are normally hidden by BP fence, therefore they have to be accessed by | |
| * another fence-less map register. uCode uses #1 temporarily */ | |
| pg0 = dms_rmap(UMAP+0); /* read map #0 */ | |
| pg1 = dms_rmap(UMAP+1); /* save map #1 */ | |
| dms_wmap(UMAP+1,pg0); /* copy #0 into reg #1 */ | |
| lp = AR + msegn; /* first */ | |
| for (i=0; i<BR; i++) { /* loop over N entries */ | |
| pg = ReadW(tbl++); /* get value from table */ | |
| if ((pg & SIGN) || pg > emasz) pg |= 0140000; /* write protect if outside */ | |
| pg += phys; /* adjust into EMA page range */ | |
| WriteIO(umaps+lp+i, pg, UMAP); /* copy pg to user map */ | |
| /* printf("MAP val %oB to reg %d (addr=%oB)\n",pg,lp+i,umaps+lp+i); */ | |
| dms_wmap(UMAP+lp+i, pg); /* set DMS reg */ | |
| } | |
| dms_wmap(UMAP+1,pg1); /* restore map #1 */ | |
| O = 0; /* clear overflow */ | |
| (*rtn)++; /* return via good exit */ | |
| return SCPE_OK; | |
| em21: | |
| AR = 0x3231; /* error condition: */ | |
| BR = 0x454d; /* AR = '21', BR = 'EM' */ | |
| return SCPE_OK; /* return via unmodified rtn */ | |
| } | |
| /* implementation of VIS RTE-IVB EMA support | |
| * .VSET microcode routine | |
| * Call: | |
| * .OCT 101476B | |
| * DEF RTN return address | |
| * DEF VIN input vector | |
| * DEF VOUT output vector | |
| * DEF MAPS | |
| * OCT #SCALARS | |
| * OCT #VECTORS | |
| * OCT K 1024/(#words/element) | |
| * RTN EQU * error return (B,A) = "VI22" | |
| * RTN+1 EQU *+1 hard return, A = K/IMAX | |
| * RTN+2 EQU *+2 easy return, A = 0, B = 2* #VCTRS | |
| */ | |
| t_stat cpu_ema_vset(uint32* rtn, OPS op, t_bool debug) | |
| { | |
| uint32 vin = op[0].word; /* S1 */ | |
| uint32 vout = op[1].word; /* S2 */ | |
| uint32 maps = op[2].word; /* S3 */ | |
| uint32 scalars = op[3].word; /* S4 */ | |
| uint32 vectors = op[4].word; /* S5 */ | |
| uint32 k = op[5].word; /* S6 */ | |
| uint32 imax = 0; /* imax S11*/ | |
| uint32 xidex, idext1, mseg, addr, i, MA; | |
| t_bool negflag = FALSE; | |
| for (i=0; i<scalars; i++) { /* copy scalars */ | |
| XR = ReadW(vin++); | |
| WriteW(vout++, XR); | |
| } | |
| xidex = ReadIO(idx,UMAP); /* get ID extension */ | |
| if (xidex==0) goto vi22; /* NO EMA? error */ | |
| idext1 = ReadWA(xidex+1); | |
| mseg = (idext1 >> 1) & MSEGMASK; /* S9 get logical start MSEG */ | |
| for (i=0; i<vectors; i++) { /* copy vector addresses */ | |
| MA = ReadW(vin++); | |
| resolve (MA, &MA, 0); | |
| addr = ReadW(MA) & 0177777; /* LSB */ | |
| addr |= (ReadW(MA+1)<<16); /* MSB, build address */ | |
| WriteW(vout++, mseg + (addr & 01777)); /* build and write log addr of vector */ | |
| addr = (addr >> 10) & 0xffff; /* get page */ | |
| WriteW(maps++, addr); /* save page# */ | |
| WriteW(maps++, addr+1); /* save next page# as well */ | |
| MA = ReadW(vin++); /* get index into Y */ | |
| resolve(MA, &MA, 0); | |
| YR = ReadW(MA); /* get index value */ | |
| WriteW(vout++, MA); /* copy address of index */ | |
| if (YR & SIGN) { /* index is negative */ | |
| negflag = TRUE; /* mark a negative index (HARD) */ | |
| YR = (~YR + 1) & DMASK; /* make index positive */ | |
| } | |
| if (imax < YR) imax = YR; /* set maximum index */ | |
| mseg += 04000; /* incr mseg address by 2 more pages */ | |
| } | |
| MA = ReadW(vin); /* get N index into Y */ | |
| resolve(MA, &MA, 0); | |
| YR = ReadW(MA); | |
| WriteW(vout++, MA); vin++; /* copy address of N */ | |
| if (imax==0) goto easy; /* easy case */ | |
| AR = k / imax; AR++; /* calculate K/IMAX */ | |
| if (negflag) goto hard; /* had a negative index? */ | |
| if (YR > AR) goto hard; | |
| easy: | |
| (*rtn)++; /* return via exit 2 */ | |
| AR = 0; | |
| hard: | |
| (*rtn)++; /* return via exit 1 */ | |
| BR = 2 * op[4].word; /* B = 2* vectors */ | |
| return SCPE_OK; | |
| vi22: /* error condition */ | |
| AR=0x3232; /* AR = '22' */ | |
| BR=0x5649; /* BR = 'VI' */ | |
| return SCPE_OK; /* return via unmodified e->rtn */ | |
| } | |
| typedef struct ema4 { | |
| uint32 mseg; /* logical start of MSEG */ | |
| uint32 msegsz; /* size of std mseg in pgs */ | |
| uint32 pgoff; /* pg # in EMA containing element */ | |
| uint32 offs; /* offset into page of element */ | |
| uint32 msoff; /* total offset to element in MSEG */ | |
| uint32 emasz; /* size of ema in pgs */ | |
| uint32 msegno; /* # of std mseg */ | |
| uint32 ipgs; /* # of pgs to start of MSEG */ | |
| uint32 npgs; /* # of pgs needed */ | |
| uint32 spmseg; /* first phys pg of MSEG */ | |
| } EMA4; | |
| static t_bool cpu_ema_emas(uint32 dtbl,uint32 atbl,EMA4* e) | |
| { | |
| uint32 xidex, eqt; | |
| uint32 sum, msegsz,pgoff,offs,emasz,msegno,msoff,ipgs; | |
| if (!cpu_ema_resolve(dtbl,atbl,&sum)) return FALSE; /* calculate 32 bit index */ | |
| xidex = ReadIO(idx,UMAP); /* read ID extension */ | |
| msegsz = ReadWA(xidex+0) & 037; /* S5 # pgs for std MSEG */ | |
| pgoff = sum >> 10; /* S2 page containing element */ | |
| offs = sum & 01777; /* S6 offset in page to element */ | |
| if (pgoff > 1023) return FALSE; /* overflow? */ | |
| eqt = ReadIO(xeqt,UMAP); | |
| emasz = ReadWA(eqt+28) & 01777; /* S EMA size in pages */ | |
| if (pgoff > emasz) return FALSE; /* outside EMA? */ | |
| msegno = pgoff / msegsz; /* S4 # of MSEG */ | |
| msoff = pgoff % msegsz; /* offset within MSEG in pgs */ | |
| ipgs = pgoff - msoff; /* S7 # pgs to start of MSEG */ | |
| msoff = msoff << 10; /* offset within MSEG in words */ | |
| msoff += offs; /* S1 offset to element in words */ | |
| e->msegsz = msegsz; /* return calculated data */ | |
| e->pgoff = pgoff; | |
| e->offs = offs; | |
| e->emasz = emasz; | |
| e->msegno = msegno; | |
| e->ipgs = ipgs; | |
| e->msoff = msoff; | |
| return TRUE; | |
| } | |
| static t_bool cpu_ema_mmap01(EMA4* e) | |
| { | |
| uint32 xidex,idext0, pg, pg0, pg1, i; | |
| uint32 base = e->mseg >> 10; /* get the # of first MSEG DMS reg */ | |
| xidex = ReadIO(idx,UMAP); /* get ID extension */ | |
| idext0 = ReadWA(xidex+1); | |
| if (e->npgs==0) return FALSE; /* no pages to map? */ | |
| if ((e->npgs+1+e->ipgs) <= e->emasz) e->npgs++; /* actually map npgs+1 pgs */ | |
| /* locations 1740...1777 of user base page contain the map entries we need. | |
| * They are normally hidden by BP fence, therefore they have to be accessed by | |
| * another fence-less map register. uCode uses #1, macro code uses $DVCT (==2) | |
| */ | |
| pg0 = dms_rmap(UMAP+0); /* read base page map# */ | |
| pg1 = dms_rmap(UMAP+1); /* save map# 1 */ | |
| dms_wmap(UMAP+1,pg0); /* map #0 into reg #1 */ | |
| for (i=0; (base+i)<32; i++) { | |
| pg = i<e->npgs ? e->spmseg : 0140000; /* write protect if outside */ | |
| WriteIO(umaps+base+i, pg, UMAP); /* copy pg to user map */ | |
| /* printf("MAP val %d to reg %d (addr=%o)\n",pg,base+i,umaps+base+i); */ | |
| dms_wmap(UMAP+base+i, pg); /* set DMS reg */ | |
| e->spmseg++; | |
| } | |
| dms_wmap(UMAP+1,pg1); /* restore map #1 */ | |
| xidex = ReadIO(idx,UMAP); /* get ID extension */ | |
| idext0 = ReadWA(xidex+0); | |
| if (e->msegno == 0xffff) /* non std mseg */ | |
| idext0 |= 0x8000; /* set nonstd marker */ | |
| else | |
| idext0 = (idext0 & 037) | (e->msegno<<5); /* set new current mseg# */ | |
| WriteIO(xidex, idext0, SMAP); /* save back value */ | |
| AR = 0; /* was successful */ | |
| return TRUE; | |
| } | |
| static t_bool cpu_ema_mmap02(EMA4* e) | |
| { | |
| uint32 xidex, eqt, idext1; | |
| uint32 mseg,phys,spmseg,emasz,msegsz,msegno; | |
| xidex = ReadIO(idx,UMAP); /* get ID extension */ | |
| msegsz = ReadWA(xidex+0) & 037; /* P size of std MSEG */ | |
| idext1 = ReadWA(xidex+1); | |
| mseg = (idext1 >> 1) & MSEGMASK; /* S9 get logical start MSEG */ | |
| phys = idext1 & 01777; /* S phys start of EMA */ | |
| spmseg = phys + e->ipgs; /* S7 phys pg# of MSEG */ | |
| msegno = e->ipgs / msegsz; | |
| if ((e->ipgs % msegsz) != 0) /* non std MSEG? */ | |
| msegno = 0xffff; /* S4 yes, set marker */ | |
| if (e->npgs > msegsz) return FALSE; /* map more pages than MSEG sz? */ | |
| eqt = ReadIO(xeqt,UMAP); | |
| emasz = ReadWA(eqt+28) & 01777; /* B EMA size in pages */ | |
| if ((e->ipgs+e->npgs) > emasz) return FALSE; /* outside EMA? */ | |
| if ((e->ipgs+msegsz) > emasz) /* if MSEG overlaps end of EMA */ | |
| e->npgs = emasz - e->ipgs; /* only map until end of EMA */ | |
| e->emasz = emasz; /* copy arguments */ | |
| e->msegsz = msegsz; | |
| e->msegno = msegno; | |
| e->spmseg = spmseg; | |
| e->mseg = mseg; | |
| return cpu_ema_mmap01(e); | |
| } | |
| static t_stat cpu_ema_mmap(uint32 ipage,uint32 npgs, t_bool debug) | |
| { | |
| uint32 xidex; | |
| EMA4 ema4, *e = &ema4; | |
| e->ipgs = ipage; /* S6 set the arguments */ | |
| e->npgs = npgs; /* S5 */ | |
| AR = 0; | |
| xidex = ReadIO(idx,UMAP); | |
| if ((ipage & SIGN) || /* negative page displacement? */ | |
| (npgs & SIGN) || /* negative # of pages? */ | |
| xidex == 0 || /* no EMA? */ | |
| !cpu_ema_mmap02(e)) /* mapping failed? */ | |
| AR = 0177777; /* return with error */ | |
| return SCPE_OK; /* leave */ | |
| } | |
| static t_bool cpu_ema_emat(EMA4* e) | |
| { | |
| uint32 xidex,idext0; | |
| uint32 curmseg,phys,msnum,lastpgs; | |
| xidex = ReadIO(idx,UMAP); /* read ID extension */ | |
| idext0 = ReadWA(xidex+0); /* get current segment */ | |
| curmseg = idext0 >> 5; | |
| if ((idext0 & 0100000) || /* was nonstd MSEG? */ | |
| curmseg != e->msegno) { /* or different MSEG last time? */ | |
| phys = ReadWA(xidex+1) & 01777; /* physical start pg of EMA */ | |
| e->spmseg = phys + e->ipgs; /* physical start pg of MSEG */ | |
| msnum = e->emasz / e->msegsz; /* find last MSEG# */ | |
| lastpgs = e->emasz % e->msegsz; /* #pgs in last MSEG */ | |
| if (lastpgs==0) msnum--; /* adjust # of last MSEG */ | |
| e->npgs = msnum==e->msegno ? lastpgs : e->msegsz; /* for last MSEG, only map available pgs */ | |
| if (!cpu_ema_mmap01(e)) return FALSE; /* map npgs pages at ipgs */ | |
| } | |
| BR = e->mseg + e->msoff; /* return address of element */ | |
| return TRUE; /* and everything done */ | |
| } | |
| /* .EMIO microcode routine, resolves element addr for EMA array | |
| * and maps the appropriate map segment | |
| * | |
| * Call: | |
| * OCT 105250B | |
| * DEF RTN error return (rtn), good return is rtn+1 | |
| * DEF BUFLEN length of buffer in words (bufl) | |
| * DEF TABLE[,I] array declaration (dtbl) | |
| * DEF A(N)[,I] actual subscripts (atbl) | |
| * DEF A(N-1)[,I] | |
| * ... | |
| * DEF A(2)[,I] | |
| * DEF A(1)[,I] | |
| * RTN EQU * error return A="15", B="EM" | |
| * RTN+1 EQU *+1 good return B=logical address | |
| * | |
| * TABLE DEC # # dimensions | |
| * DEC -L(N) | |
| * DEC D(N-1) | |
| * DEC -L(N-1) lower bound (n-1)st dim | |
| * DEC D(N-2) (n-2)st dim | |
| * ... | |
| * DEC D(1) 1st dim | |
| * DEC -L(1) lower bound 1st dim | |
| * DEC # # words/element | |
| * OFFSET 1 EMA Low | |
| * OFFSET 2 EMA High | |
| */ | |
| static t_stat cpu_ema_emio(uint32* rtn,uint32 bufl,uint32 dtbl,uint32 atbl,t_bool debug) | |
| { | |
| uint32 xidex, idext1; | |
| uint32 mseg, bufpgs, npgs; | |
| EMA4 ema4, *e = &ema4; | |
| xidex = ReadIO(idx,UMAP); /* read ID extension */ | |
| if (bufl & SIGN || /* buffer length negative? */ | |
| xidex==0) goto em16; /* no EMA declared? */ | |
| idext1 = ReadWA(xidex+1); /* |logstrt mseg|d|physstrt ema| */ | |
| mseg = (idext1 >> 1) & MSEGMASK; /* get logical start MSEG */ | |
| if (!cpu_ema_emas(dtbl,atbl,e)) goto em16; /* resolve address */ | |
| bufpgs = (bufl + e->offs) >> 10; /* # of pgs reqd for buffer */ | |
| if ((bufl + e->offs) & 01777) bufpgs++; /* S11 add 1 if not at pg boundary */ | |
| if ((bufpgs + e->pgoff) > e->emasz) goto em16; /* exceeds EMA limit? */ | |
| npgs = (e->msoff + bufl) >> 10; /* # of pgs reqd for MSEG */ | |
| if ((e->msoff + bufl) & 01777) npgs++; /* add 1 if not at pg boundary */ | |
| if (npgs < e->msegsz) { | |
| e->mseg = mseg; /* logical stat of MSEG */ | |
| if (!cpu_ema_emat(e)) goto em16; /* do a std mapping */ | |
| } else { | |
| BR = mseg + e->offs; /* logical start of buffer */ | |
| e->npgs = bufpgs; /* S5 # pgs required */ | |
| e->ipgs = e->pgoff; /* S6 page offset to reqd pg */ | |
| if (!cpu_ema_mmap02(e)) goto em16; /* do nonstd mapping */ | |
| } | |
| (*rtn)++; /* return via good exit */ | |
| return SCPE_OK; | |
| em16: /* error condition */ | |
| AR=0x3136; /* AR = '16' */ | |
| BR=0x454d; /* BR = 'EM' */ | |
| return SCPE_OK; /* return via unmodified rtn */ | |
| } | |
| /* .EMAP microcode routine, resolves both EMA/non-EMA calls | |
| * Call: | |
| * OCT 105257B | |
| * DEF RTN error return (rtn), good return is rtn+1 | |
| * DEF ARRAY[,I] array base (abase) | |
| * DEF TABLE[,I] array declaration (dtbl) | |
| * DEF A(N)[,I] actual subscripts (atbl) | |
| * DEF A(N-1)[,I] | |
| * ... | |
| * DEF A(2)[,I] | |
| * DEF A(1)[,I] | |
| * RTN EQU * error return A="15", B="EM" | |
| * RTN+1 EQU *+1 good return B=logical address | |
| * | |
| * TABLE DEC # # dimensions | |
| * DEC -L(N) | |
| * DEC D(N-1) | |
| * DEC -L(N-1) lower bound (n-1)st dim | |
| * DEC D(N-2) (n-2)st dim | |
| * ... | |
| * DEC D(1) 1st dim | |
| * DEC -L(1) lower bound 1st dim | |
| * DEC # # words/element | |
| * OFFSET 1 EMA Low | |
| * OFFSET 2 EMA High | |
| */ | |
| static t_stat cpu_ema_emap(uint32* rtn,uint32 abase,uint32 dtbl,uint32 atbl,t_bool debug) | |
| { | |
| uint32 xidex, eqt, idext0, idext1; | |
| int32 sub, act, low, ndim, sz; | |
| uint32 offs, pgoff, emasz, phys, msgn, mseg, sum, MA, pg0, pg1; | |
| xidex = ReadIO(idx,UMAP); /* read ID Extension */ | |
| if (xidex) { /* is EMA declared? */ | |
| idext1 = ReadWA(xidex+1); /* get word 1 of idext */ | |
| mseg = (idext1 >> 1) & MSEGMASK; /* get logical start MSEG */ | |
| if (abase >= mseg) { /* EMA reference? */ | |
| if (!cpu_ema_resolve(dtbl,atbl,&sum)) /* calculate subscript */ | |
| goto em15; | |
| offs = sum & 01777; /* address offset within page */ | |
| pgoff = sum >> 10; /* ema offset in pages */ | |
| if (pgoff > 1023) goto em15; /* overflow? */ | |
| eqt = ReadIO(xeqt,UMAP); | |
| emasz = ReadWA(eqt+28) & 01777; /* EMA size in pages */ | |
| phys = idext1 & 01777; /* physical start pg of EMA */ | |
| if (pgoff > emasz) goto em15; /* outside EMA range? */ | |
| msgn = mseg >> 10; /* get # of 1st MSEG reg */ | |
| phys += pgoff; | |
| pg0 = dms_rmap(UMAP+0); /* read base page map# */ | |
| pg1 = dms_rmap(UMAP+1); /* save map# 1 */ | |
| dms_wmap(UMAP+1,pg0); /* map #0 into reg #1 */ | |
| WriteIO(umaps+msgn, phys, UMAP); /* store 1st mapped pg in user map */ | |
| dms_wmap(UMAP+msgn, phys); /* and set the map register */ | |
| phys = (pgoff+1)==emasz ? 0140000 : phys+1; /* protect 2nd map if end of EMA */ | |
| WriteIO(umaps+msgn+1, phys, UMAP); /* store 2nd mapped pg in user map */ | |
| dms_wmap(UMAP+msgn+1, phys); /* and set the map register */ | |
| dms_wmap(UMAP+1,pg1); /* restore map #1 */ | |
| idext0 = ReadWA(xidex+0) | 0100000; /* set NS flag in id extension */ | |
| WriteIO(xidex+0, idext0, SMAP); /* save back value */ | |
| AR = 0; /* was successful */ | |
| BR = mseg + offs; /* calculate log address */ | |
| (*rtn)++; /* return via good exit */ | |
| return SCPE_OK; | |
| } | |
| } /* not EMA reference */ | |
| ndim = ReadW(dtbl++); | |
| if (ndim<0) goto em15; /* negative ´dimensions */ | |
| sum = 0; /* accu for index calc */ | |
| while (ndim > 0) { | |
| MA = ReadW(atbl++); /* get address of A(N) */ | |
| resolve (MA, &MA, 0); | |
| act = ReadW(MA); /* A(N) */ | |
| low = ReadW(dtbl++); /* -L(N) */ | |
| sub = SEXT(act) + SEXT(low); /* subscript */ | |
| if (sub & 0xffff8000) goto em15; /* overflow? */ | |
| sum += sub; /* accumulate */ | |
| sz = ReadW(dtbl++); | |
| sz = SEXT(sz); | |
| if (sz < 0) goto em15; | |
| sum *= sz; /* and multiply with sz of dimension */ | |
| if (sum & 0xffff8000) goto em15; /* overflow? */ | |
| ndim--; | |
| } | |
| BR = abase + sum; /* add displacement */ | |
| (*rtn)++; /* return via good exit */ | |
| return SCPE_OK; | |
| em15: /* error condition */ | |
| AR=0x3135; /* AR = '15' */ | |
| BR=0x454d; /* BR = 'EM' */ | |
| return SCPE_OK; /* return via unmodified e->rtn */ | |
| } | |
| t_stat cpu_rte_ema (uint32 IR, uint32 intrq) | |
| { | |
| t_stat reason = SCPE_OK; | |
| OPS op; | |
| OP_PAT pattern; | |
| uint32 entry, rtn; | |
| t_bool debug = DEBUG_PRI (cpu_dev, DEB_EMA); | |
| entry = IR & 017; /* mask to entry point */ | |
| pattern = op_ema[entry]; /* get operand pattern */ | |
| if (pattern != OP_N) { | |
| reason = cpu_ops (pattern, op, intrq); /* get instruction operands */ | |
| if (reason != SCPE_OK) /* evaluation failed? */ | |
| return reason; /* return reason for failure */ | |
| } | |
| if (debug) { /* debugging? */ | |
| fprintf (sim_deb, ">>CPU EMA: PC = %06o, IR = %06o (", err_PC,IR); /* print preamble and IR */ | |
| fprint_sym (sim_deb, err_PC, (t_value *) &IR, /* print instruction mnemonic */ | |
| NULL, SWMASK('M')); | |
| fputc (')', sim_deb); | |
| fprint_ops (pattern, op); /* print operands */ | |
| fputc ('\n', sim_deb); /* terminate line */ | |
| } | |
| switch (entry) { /* decode IR<3:0> */ | |
| case 000: /* .EMIO 105240 (OP_A) */ | |
| rtn = op[0].word; | |
| reason = cpu_ema_emio(&rtn, op[1].word, | |
| op[2].word, PC, debug); /* handle the EMIO instruction */ | |
| PC = rtn; | |
| if (debug) | |
| fprintf (sim_deb, ">>CPU EMA: return .EMIO: AR = %06o, BR = %06o, rtn=%s\n", | |
| AR, BR, PC==op[0].word?"error":"good"); | |
| break; | |
| case 001: /* .MMAP 105241 (OP_AKK) */ | |
| reason = cpu_ema_mmap(op[1].word, | |
| op[2].word, debug); /* handle the MMAP instruction */ | |
| if (debug) | |
| fprintf (sim_deb, ">>CPU EMA: return .MMAP: AR = %06o\n",AR); | |
| break; | |
| case 002: /* [test] 105242 (OP_N) */ | |
| /* effectively, this code just returns without error: | |
| * real microcode will set S register to 102077B when in single step mode */ | |
| if (sim_step==1) { | |
| if (debug) | |
| fprintf(sim_deb, ">>CPU EMA: EMA option 92067 correctly installed: S=102077\n"); | |
| SR = 0102077; | |
| } | |
| break; | |
| case 017: /* .EMAP 105247 (OP_A) */ | |
| rtn = op[0].word; /* error return */ | |
| reason = cpu_ema_emap(&rtn, op[1].word, | |
| op[2].word, PC, debug); /* handle the EMAP instruction */ | |
| PC = rtn; | |
| if (debug) { | |
| fprintf (sim_deb, ">>CPU EMA: return .EMAP: AR = %06o, BR = %06o, rtn=%s\n", | |
| AR, BR, PC==op[0].word?"error":"good"); | |
| } | |
| break; | |
| default: /* others undefined */ | |
| reason = stop_inst; | |
| } | |
| return reason; | |
| } |