blob: 261eccd88a28724d26919d2726f6b8d626977920 [file] [log] [blame] [raw]
/* i650_cdr.c: IBM 650 Card reader.
Copyright (c) 2018, Roberto Sancho
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERTO SANCHO BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
This is the standard card reader.
These units each buffer one record in local memory and signal
ready when the buffer is full or empty. The channel must be
ready to recieve/transmit data when they are activated since
they will transfer their block during chan_cmd. All data is
transmitted as BCD characters.
*/
#include "i650_defs.h"
#include "sim_card.h"
#define UNIT_CDR UNIT_ATTABLE | UNIT_RO | MODE_026 | MODE_LOWER
/* std devices. data structures
cdr_dev Card Reader device descriptor
cdr_unit Card Reader unit descriptor
cdr_reg Card Reader register list
cdr_mod Card Reader modifiers list
*/
uint32 cdr_cmd(UNIT *, uint16, uint16);
t_stat cdr_srv(UNIT *);
t_stat cdr_reset(DEVICE *);
t_stat cdr_attach(UNIT *, CONST char *);
t_stat cdr_detach(UNIT *);
t_stat cdr_help(FILE *, DEVICE *, UNIT *, int32, const char *);
const char *cdr_description(DEVICE *dptr);
t_stat cdr_set_wiring (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cdr_show_wiring (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
UNIT cdr_unit[4] = {
{UDATA(cdr_srv, UNIT_CDR, 0), 300}, // Unit 0 used internally for carddeck operations simulator specific command
{UDATA(cdr_srv, UNIT_CDR, 0), 300}, // unit 1 is default for initial model (1954)
{UDATA(cdr_srv, UNIT_CDR, 0), 300}, // storage unit (1955) allows two extra card/readers for a total of 3
{UDATA(cdr_srv, UNIT_CDR, 0), 300},
};
MTAB cdr_mod[] = {
{MTAB_XTD | MTAB_VUN, 0, "FORMAT", "FORMAT", &sim_card_set_fmt, &sim_card_show_fmt, NULL, "Set card format"},
{MTAB_XTD | MTAB_VUN, 0, "WIRING", "WIRING", &cdr_set_wiring, &cdr_show_wiring, NULL, "Set card read control panel Wiring"},
{0}
};
DEVICE cdr_dev = {
"CDR", cdr_unit, NULL, cdr_mod,
4, 8, 15, 1, 8, 8,
NULL, NULL, NULL, NULL, &cdr_attach, &sim_card_detach,
&cdr_dib, DEV_DISABLE | DEV_DEBUG, 0, crd_debug,
NULL, NULL, &cdr_help, NULL, NULL, &cdr_description
};
// get 10 digits word with sign from card buf (the data struct). return 1 if HiPunch set on any digit
int decode_8word_wiring(struct _card_data * data, int addr)
{
// decode up to 8 numerical words per card
// input card
// NNNNNNNNNN ... 8 times
// If last digit of word has X(11) punch whole word is set as negative value
// If N is non numeric, a 0 is assumed
// put the decoded data in drum at addr (if addr < 0 -> do not store in drum)
// return 1 if any colum has Y(12) hi-punch set
uint16 c1,c2;
int wn,iCol,iDigit;
int HiPunch, NegPunch, NegZero;
t_int64 d;
NegZero = 0; // flag set if negative zero is read
HiPunch = 0; // set to 1 if Y(12) high punch found
iCol = 0; // current read colum in card
for (wn=0;wn<8;wn++) { // one card generates 8 words in drum mem
d = NegPunch = 0;
// read word digits
for (iDigit=0;iDigit<10;iDigit++) {
c1 = data->image[iCol++];
c2 = data->hol_to_ascii[c1]; // convert to ascii
if ((c1 == 0xA00) || (c2 == '?')) {
c1 = 0xA00; c2 = '?'; // the punched value +0 should be represented by ascii ?
}
if ((c2 == '+') && (iCol == 1)) { // on IT control card, first char is a Y(12) punch to make control card a load card.
c1 = 0xA00; c2 = '?'; // Digit interpreted as +0
}
if (strchr(digits_ascii, c2) == NULL) { // scan digits ascii to check if this is a valid numeric digit with Y or X punch
c1 = 0; // nondigits chars interpreted as blank
}
if (c1 & 0x800) HiPunch = 1; // if column has Hi Punch Y(12) set, signal it
NegPunch = (c1 & 0x400) ? 1:0; // if column has minus X(11) set, signal it
c1 = c1 & 0x3FF; // remove X and Y punches
c2 = data->hol_to_ascii[c1]; // convert to ascii again
c2 = c2 - '0'; // convert ascii to binary digit
if (c2 > 9) c2 = 0; // nondigits chars interpreted as zero
d = d * 10 + c2;
}
// end of word. set sign
if (NegPunch) { // has last digit a minus X(11) punch set?
d = -d; // yes, change sign of word read
if (d == 0) NegZero=1; // word read is minus zero
}
if (addr >= 0) WriteDrum(addr++, d, NegZero); // store word read from card into drum
}
return HiPunch;
}
// load soap symbolic info, This is a facility to help debugging of soap programs into SimH
// does not exist in real hw
void decode_soap_symb_info(struct _card_data * data, int addr)
{
t_int64 d;
int op,da,ia,i,i2,p;
char buf[81];
uint16 c1,c2;
// check soap 1-word load card initial word
d = DRUM[addr + 0];
if (d != 6919541953LL) return; // not a 1-word load card
// get the address where the 1-word card will be loaded (into da)
d = DRUM[addr+2];
op = Shift_Digits(&d, 2); // current inst opcode
da = Shift_Digits(&d, 4); // addr of data
ia = Shift_Digits(&d, 4); // addr of next instr
if ((op != 24) && (ia != 8000)) return; // not a 1-word load card
if (da >= (int)MEMSIZE) return; // destination address out of range
// convert card image punches to ascii buf for processing, starting at col 40
// keep 026 fortran charset
for (i=40;i<80;i++) {
c1 = data->image[i];
c2 = data->hol_to_ascii[c1];
c2 = (strchr(mem_to_ascii, toupper(c2))) ? c2:' ';
if (c2 == '~') c2 = ' ';
buf[i] = (char) c2;
}
buf[80] = 0; // terminate string
// copy soap symbolic info
i2 = 80;
while (1) { // calc i2 = last non space char to copy
if (--i2 < 41) return; // noting to copy
if (buf[i2] > 32) break;
}
p = da * 80;
for (i=0;i<80;i++)
DRUM_Symbolic_Buffer[p+i] = 0; // clear drum[da] symbolic info
for (i=41;i<=i2;i++) {
if ((i==47) || (i==50) || (i==55)) DRUM_Symbolic_Buffer[p++] = 32; // add space separation between op, da, ia fields
DRUM_Symbolic_Buffer[p++] = buf[i];
}
}
t_int64 decode_num_word(char * buf, int nDigits, int bSpaceIsZero)
{
t_int64 d;
int i,c;
d = 0;
for (i=0;i<nDigits;i++) {
c = *buf++;
if ((c == 32) && (bSpaceIsZero)) c = '0';
if ((c < '0') || (c > '9')) {
d = -1; // not a number
break;
}
d = d * 10 + c - '0';
}
if (d < 0) {
// not a number -> return all 9's
d = 0;
for (i=0;i<nDigits;i++) d = d * 10 + 9;
}
return d;
}
t_int64 decode_alpha_word(char * buf, int n)
{
t_int64 d;
int i;
d = 0;
for (i=0;i<n;i++) {
d = d * 100 + ascii_to_NN(*buf++);
}
return d;
}
void decode_soap_wiring(struct _card_data * data, int addr)
{
// decode soap card simulating soap control panel wiring for 533
// from SOAP II manual at http://www.bitsavers.org/pdf/ibm/650/24-4000-0_SOAPII.pdf
// input card
// Column: 41 | 42 | 43 44 45 46 47 | 48 49 50 | 51 52 53 54 55 | 56 | 57 58 59 60 61 | 62 | 63 64 65 66 67 68 69 70 71 72
// Ty | Sg | Location | OpCode | Data Addr | Tg | Instr Addr | Tg | Remarks
//
// Ty = Type = blank, 1 or 2
// Sg = sign = blank or -
// Tg = Tag =
// storage in input block
// +-------------------+
// Word 1951: | <- Location -> | Alphabetic
// 1952: | <- Data Addr -> | Alphabetic
// 1953: | <- Inst Addr -> | Alphabetic
// +-+-+-|-+-+-|-+-|-+-|
// 1954: | Op Code |DTg|ITg| Alphabetic
// +-+-+-|-+-+-|-+-|-+-|
// 1955: | <- Remarks -> | Alphabetic
// 1956: | <- Remarks -> | Alphabetic
// +-+-+-+-+-+-|-+-+-+-|
// 1957: | |N N N N| L Absolute Part
// 1958: | |N N N N| D Absolute Part
// 1959: | |N N N N| I Absolute Part
// 1960: | |T b n| T=Type (0 if Blank), b=0/8 (for non blank type), n=0/8 (for negative)
// +-------------------+
//
int ty,neg;
char buf[81];
int i;
uint16 c1,c2;
// convert card image punches to ascii buf for processing
// keep 026 fortran charset
for (i=0;i<80;i++) {
c1 = data->image[i];
c2 = data->hol_to_ascii[c1];
c2 = (strchr(mem_to_ascii, toupper(c2))) ? c2:' ';
if (c2 == '~') c2 = ' ';
buf[i] = (char) c2;
}
buf[80] = 0; // terminate string
DRUM[addr + 0] = decode_alpha_word(&buf[42], 5); // Location (5 chars)
DRUM[addr + 1] = decode_alpha_word(&buf[50], 5); // Data Addr (5 chars)
DRUM[addr + 2] = decode_alpha_word(&buf[56], 5); // Inst Addr (5 chars)
DRUM[addr + 3] = decode_alpha_word(&buf[47], 3) * D4 + // OpCode (3 chars only)
decode_alpha_word(&buf[55], 1) * 100 + // Data Addr Tag (1 char only)
decode_alpha_word(&buf[61], 1); // Instr Addr Tag (1 char only)
DRUM[addr + 4] = decode_alpha_word(&buf[62], 5); // Remarks
DRUM[addr + 5] = decode_alpha_word(&buf[67], 5); // Remarks
DRUM[addr + 6] = decode_num_word(&buf[43], 4, 0); // Absolute Part of location
DRUM[addr + 7] = decode_num_word(&buf[51], 4, 0); // Absolute Part of Data Addr
DRUM[addr + 8] = decode_num_word(&buf[57], 4, 0); // Absolute Part of Instr Addr
ty = buf[40] - '0';
if ((ty < 0) || (ty > 9)) ty = 0;
neg = (buf[41] == '-') ? 8:0;
DRUM[addr + 9] = ty * 100 +
(ty ? 80:0) +
neg; // |T b n| T=Type (0 if Blank), b=0/8 (for non blank type), n=0/8 (for negative)
}
int sformat(char * buf, const char * match)
{
char m,c;
while(1) {
m = *match++;
if (m == 0) break;
c = *buf++;
if (c == 0) return 0; // end of buf str before end of match string -> return 0 -> buf does not match
if ((m == ' ') && (c == ' ')) continue;
if ((m == 'N') && (c >= '0') && (c <= '9')) continue;
if ((m == '+') && ((c == '+') || (c == '-'))) continue;
return 0; // buf does not match -> return 0 -> buf does not match
}
return 1; // end of match string -> return 1 -> buf matches
}
void decode_is_wiring(struct _card_data * data, int addr)
{
// decode Floationg Decimal Interpretive System (IS) card simulating control panel wiring for 533 as described
// in manual at http://www.bitsavers.org/pdf/ibm/650/28-4024_FltDecIntrpSys.pdf
// input card
// Column: 1 2 3 4 | 5 6 | 7 8 9 | 10 | 11 | 12 - 21 | 22 | 23 - 32 | 33 | 34 - 43 | 44 | 45 - 54 | 55 | 56 - 65 | 66 | 67 - 76 | 77 78 79 | 80
// Card | | Location | wc | s1 | Word1 | s2 | Word2 | s3 | Word3 | s4 | Word4 | s5 | Word5 | s6 | Word6 | Problem |
// Num | Num
//
// wc = Word Count (range 0 to 6, space for 1)
// s1 = sign of word 1 (-, + or <space> (same as +))
// Tr = Tracing identification
// Word = word in format NNNNNNNNNN
// N is 0..9, <space> (same as 0)
//
// Alternate input format to allow system deck loading
// Column: 1 2 | 3 | 4 5 6 | 7 | 8 9 10 11 | 12 | 13 - 24
// Deck | sp | Card | | NNNN | | NN NNNN NNNN
// Num | | Num |
//
// Alternate input format to allow IT source program loading
// Column: 1 2 3 4 | 5 6 | 7 8 9 | 10 | 11 | 12 - 24
// Card | Blank | Location | | sg | N NNN NNN NNN <- This is an IS instruction (format O1 A B C)
// Num |
// Column: 1 2 3 4 | 5 6 | 7 8 9 | 10 | 11 | 12 - 23
// Card | Blank | Location | | sg | N NNNNNNN NN <- This is an IS float numeric constant (mantissa and exponent)
// Num |
// Column: 1 2 3 4 | 5 6 | 7 8 9 | 10 - 23
// Card | Blank | Location | blanks <- This is an IS transfer card (location is start of IT program)
// Num |
//
// storage in input block
// +-+-+-+-+-+-|-+-+-+-|
// Word 1951: | |N N N N| | Location
// 1952: | |N N N N| | Word Count
// +-------------------+
// 1953: | word1 |
// 1954: | word2 |
// 1955: | word3 |
// 1956: | word4 |
// 1957: | word5 |
// 1958: | word6 |
// +-------------------+
// 1959: | Problem Number |
// +-------------------+
//
// put the decoded data in drum at addr (if addr < 0 -> do not store in drum)
// card number is ignored on reading
int wc,neg,i;
int NegZero;
t_int64 d;
char buf[81];
uint16 c1,c2;
// convert card image punches to ascii buf for processing
// keep 0..9,+,-,<space>, replace anything else by <space>
for (i=0;i<80;i++) {
c1 = data->image[i];
c2 = data->hol_to_ascii[c1];
buf[i] = (strchr("+-0123456789", c2)) ? ((char) (c2)):' ';
}
buf[80] = 0; // terminate string
if ( sformat(&buf[6], " ")) {
// card with firsts 26 cols blank = blank card: read as all zero, one word count
// this allows to have blank cards/comments card as long as the comment starts on column 27 of more
DRUM[addr + 1] = 1 * D4; // word count
} else if ( sformat(&buf[5], " NNN ")) {
// alternate format for loading IT program (IT transfer card)
DRUM[addr + 0] = decode_num_word(&buf[6], 3, 0) * D4; // start location (3 digits)
DRUM[addr + 1] = 0; // word count = 0
} else if ( sformat(&buf[5], " NNN +N NNN NNN NNN ")) {
// alternate format for loading IT program (IT instruction)
DRUM[addr + 0] = decode_num_word(&buf[6], 3, 0) * D4; // location (3 digits)
DRUM[addr + 1] = 1 * D4; // word count
NegZero = 0;
neg = (buf[10] == '-') ? 1:0;
d = decode_num_word(&buf[11], 1, 0) * 10 * D8 + // O1
decode_num_word(&buf[13], 3, 0) * 100 * D4 + // O2 or A
decode_num_word(&buf[17], 3, 0) * 1000 + // B
decode_num_word(&buf[21], 3, 0); // C
if (neg) {
d=-d;
if (d==0) NegZero = 1;
}
WriteDrum(addr + 2, d, NegZero);
} else if ( sformat(&buf[5], " NNN +N NNNNNNN NN ")) {
// alternate format for loading IT program (numeric constant in float format)
DRUM[addr + 0] = decode_num_word(&buf[6], 3, 0) * D4; // location (3 digits)
DRUM[addr + 1] = 1 * D4; // word count
NegZero = 0;
neg = (buf[10] == '-') ? 1:0;
d = decode_num_word(&buf[11], 1, 0) * 10 * D8 + // integer part of mantissa
decode_num_word(&buf[13], 7, 0) * 100 + // factional part of mantissa
decode_num_word(&buf[21], 2, 0); // exponent
if (neg) {
d=-d;
if (d==0) NegZero = 1;
}
WriteDrum(addr + 2, d, NegZero);
} else if ( (sformat(&buf[6], " NNNN NN NNNN NNNN ")) ||
(sformat(&buf[6], " NNNN NN NNNN ")) ||
(sformat(&buf[6], " NNNN NN NNNN ")) ||
(sformat(&buf[6], " NNNN NN "))
) {
// alternate format for loading main IT system deck
DRUM[addr + 0] = decode_num_word(&buf[7], 4, 0) * D4; // location (4 digits)
DRUM[addr + 1] = 1 * D4; // word count = 1
DRUM[addr + 2] = decode_num_word(&buf[12], 2, 1) * D8 + // op
decode_num_word(&buf[15], 4, 1) * D4 + // data address
decode_num_word(&buf[20], 4, 1); // instr addr, no negative zero allowed
} else {
// regular IT read/punch format
DRUM[addr + 0] = decode_num_word(&buf[6], 3, 0) * D4; // location (3 digits)
wc = (int) decode_num_word(&buf[9], 1, 1);
if (wc > 6) wc = 6;
DRUM[addr + 1] = wc * D4; // word count
for (i=0;i<wc;i++) {
NegZero = 0;
neg = (buf[10 + 11*i] == '-') ? 1:0;
d = decode_num_word(&buf[11 + 11*i], 10, 1);
if (neg) {
d=-d;
if (d==0) NegZero = 1;
}
WriteDrum(addr + 2 + i, d, NegZero);
}
DRUM[addr + 9] = decode_num_word(&buf[76], 3, 1); // problem number
}
}
void decode_it_wiring(struct _card_data * data, int addr)
{
// decode IT compiler card simulating control panel wiring for 533
// from IT manual at http://www.bitsavers.org/pdf/ibm/650/CarnegieInternalTranslator.pdf
// source program input card
// Column: 1 2 3 4 | 5 | 6 - 42 | 43 - 70 | 71 72 | 73 - 80 |
// N N N N | + | | Statement | | Comments |
// Statement | Y(12) | | max 28 | | max 8 |
// Number | Punch | | chars | | chars |
//
// storage in input block
// +-------------------+
// Word 0051: | <- Statement -> | Alphabetic
// 0052: | <- Statement -> | Alphabetic
// 0053: | <- Statement -> | Alphabetic
// 0054: | <- Statement -> | Alphabetic
// 0055: | <- Statement -> | Alphabetic
// 0056: | <- Statement -> | Alphabetic
// +-+-+-+-+-+-|-+-+-+-|
// 0057: | |N N N N| Statement Number
// +-+-+-+-+-+-|-+-+-+-|
// 0058: | | Not used
// 0059: | | Not used
// 0060: | | Not used
// +-------------------+
//
// type 1 data input card
// Column: 1 2 | 3 | 4 5 6 | 7 8 9 10 | 11 - 20 |
// VV | + | N N N | D D D D | Word
// | Y(12) |
// | Punch |
// VV = IT variable being loaded: 01 -> I type, 02 -> Y type, 03 -> C type
// N N N = variable number (I5 -> 01 + 005)
// D D D D = variable arbitrary non-zero identification number
// Word = word to be loaded into IT variable. If type I, is an integer. If type C or Y
// type is word is float (M MMMMMMM EE -> M=mantisa, EE=exponent)
// if word is negative, last digit get X(11) overpunch
// up to 4 pairs var-word per card
// last card signaed with a X(11) overpunch in col 10
// space is considered as zero
// type 2 data input card is a load card. No spaces are allowed
char buf[81];
int i;
uint16 c1,c2;
// convert card image punches to ascii buf for processing
// keep 026 fortran charset
for (i=0;i<80;i++) {
c1 = data->image[i];
c2 = data->hol_to_ascii[c1];
c2 = (strchr(mem_to_ascii, toupper(c2))) ? c2:' ';
if (c2 == '~') c2 = ' ';
buf[i] = (char) c2;
}
buf[80] = 0; // terminate string
if (buf[2] == '+') {
// type 1 data card
// re-read as 8 word per card
decode_8word_wiring(data, addr);
return;
}
DRUM[addr + 0] = decode_alpha_word(&buf[42], 5); // Statement (5 chars)
DRUM[addr + 1] = decode_alpha_word(&buf[47], 5); // Statement (5 chars)
DRUM[addr + 2] = decode_alpha_word(&buf[52], 5); // Statement (5 chars)
DRUM[addr + 3] = decode_alpha_word(&buf[57], 5); // Statement (5 chars)
DRUM[addr + 4] = decode_alpha_word(&buf[62], 5); // Statement (5 chars)
DRUM[addr + 5] = decode_alpha_word(&buf[67], 3); // Statement (3 chars)
DRUM[addr + 6] = decode_num_word(&buf[0], 4, 1); // Statement Number (space is read as digit zero)
}
/*
* Device entry points for card reader.
*/
uint32 cdr_cmd(UNIT * uptr, uint16 cmd, uint16 addr)
{
struct _card_data *data;
uint32 wiring;
int i;
char cbuf[81];
/* Are we currently tranfering? */
if (uptr->u5 & URCSTA_BUSY)
return SCPE_BUSY;
// clear read buffer in drum (where words read from cards will be stored)
for (i=0;i<10;i++) WriteDrum(addr + i, 0, 0);
/* Test ready */
if ((uptr->flags & UNIT_ATT) == 0) {
sim_debug(DEBUG_CMD, &cdr_dev, "No cards (no file attached)\n");
return SCPE_NOCARDS;
}
/* read the cards */
sim_debug(DEBUG_CMD, &cdr_dev, "READ\n");
uptr->u5 |= URCSTA_BUSY;
switch(sim_read_card(uptr)) {
case SCPE_EOF:
sim_debug(DEBUG_DETAIL, &cdr_dev, "EOF\n");
uptr->u5 = 0;
return SCPE_NOCARDS;
case SCPE_UNATT:
sim_debug(DEBUG_DETAIL, &cdr_dev, "Not Attached\n");
uptr->u5 = 0;
return SCPE_NOCARDS;
case SCPE_IOERR:
sim_debug(DEBUG_DETAIL, &cdr_dev, "ERR\n");
uptr->u5 = 0;
return SCPE_NOCARDS;
case SCPE_OK:
break;
}
data = (struct _card_data *)uptr->up7;
// make local copy of card for debug output
for (i=0; i<80; i++)
cbuf[i] = data->hol_to_ascii[data->image[i]];
cbuf[80] = 0; // terminate string
sim_debug(DEBUG_DETAIL, &cpu_dev, "Read Card: %s\n", sim_trim_endspc(cbuf));
// uint16 data->image[] array that holds the actual punched rows on card
// using this codification:
//
// Row Name value in image[] comments
//
// Y 0x800 Hi Punch Y(12)
// X 0x400 Minus Punch X(11)
// 0 0x200 also called T (Ten, 10)
// 1 0x100
// 2 0x080
// 3 0x040
// 4 0x020
// 5 0x010
// 6 0x008
// 7 0x004
// 8 0x002
// 9 0x001
//
// If several columns are punched, the values are ORed: eg char A is represented as a punch
// on row Y and row 1, so it value in image array will be 0x800 | 0x100 -> 0x900
// check if it is a load card (Y(12) = HiPunch set on any column of card) signales it
if (decode_8word_wiring(data, -1)) {
uptr->u5 |= URCSTA_LOAD;
} else {
uptr->u5 &= ~URCSTA_LOAD;
}
wiring = (uptr->flags & UNIT_CARD_WIRING);
// translate chars read from card and copy to drum memory words
// using the control panel wiring.
if (uptr->u5 & URCSTA_LOAD) {
// load card -> use 8 words per card encoding
decode_8word_wiring(data, addr);
if (uptr->u5 & URCSTA_SOAPSYMB) {
// requested to load soap symb info
decode_soap_symb_info(data, addr);
}
} else if (wiring == WIRING_SOAP) {
// decode soap card simulating soap control panel wiring for 533 (gasp!)
decode_soap_wiring(data, addr);
} else if (wiring == WIRING_IS) {
// decode floating point interpretive system (bell interpreter) card
decode_is_wiring(data, addr);
} else if (wiring == WIRING_IT) {
// decode Carnegie Internal Translator compiler card
decode_it_wiring(data, addr);
} else {
// default wiring: decode up to 8 numerical words per card. Can be a load card
decode_8word_wiring(data, addr);
}
uptr->u5 &= ~URCSTA_BUSY;
return SCPE_OK;
}
/* Handle transfer of data for card reader */
t_stat
cdr_srv(UNIT *uptr) {
// I/O is synchronous. No need to set up svr
return SCPE_OK;
}
/* Set card read/punch control panel wiring */
t_stat cdr_set_wiring (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int f;
if (uptr == NULL) return SCPE_IERR;
if (cptr == NULL) return SCPE_ARG;
for (f = 0; wirings[f].name != 0; f++) {
if (strcmp (cptr, wirings[f].name) == 0) {
uptr->flags = (uptr->flags & ~UNIT_CARD_WIRING) | wirings[f].mode;
return SCPE_OK;
}
}
return SCPE_ARG;
}
/* Show card read/punch control panel wiring */
t_stat cdr_show_wiring (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
int f;
for (f = 0; wirings[f].name != 0; f++) {
if ((uptr->flags & UNIT_CARD_WIRING) == wirings[f].mode) {
fprintf (st, "%s wiring", wirings[f].name);
return SCPE_OK;
}
}
fprintf (st, "invalid control panel wiring (%d)", uptr->flags & UNIT_CARD_WIRING);
return SCPE_OK;
}
t_stat
cdr_attach(UNIT * uptr, CONST char *file)
{
t_stat r;
if (uptr->flags & UNIT_ATT) // remove current deck in read hopper before attaching
sim_card_detach(uptr); // the new one
r = sim_card_attach(uptr, file);
if (SCPE_BARE_STATUS(r) != SCPE_OK)
return r;
uptr->u5 = 0;
uptr->u4 = 0;
uptr->u6 = 0;
if (sim_switches & SWMASK ('L')) { /* Load Symbolic SOAP info? */
uptr->u5 |= URCSTA_SOAPSYMB;
}
return SCPE_OK;
}
t_stat
cdr_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
fprintf (st, "%s\r\n\r\n", cdr_description(dptr));
fprintf (st, "The 533 Card Read-punch supported a load mode, and\r\n");
fprintf (st, "several predefined control panel wiring. Default\r\n");
fprintf (st, "wiring is up to 8 numeric words per card.\r\n\r\n");
sim_card_attach_help(st, dptr, uptr, flag, cptr);
fprint_set_help(st, dptr);
fprint_show_help(st, dptr);
return SCPE_OK;
}
const char *
cdr_description(DEVICE *dptr)
{
return "533 Card Read-Ounch unit";
}