/* hp2100_cpu4.c: HP 1000 FPP/SIS | |
Copyright (c) 2006-2016, J. David Bryan | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of the author shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from the author. | |
CPU4 Floating Point Processor and Scientific Instruction Set | |
05-Aug-16 JDB Renamed the P register from "PC" to "PR" | |
24-Dec-14 JDB Added casts for explicit downward conversions | |
09-May-12 JDB Separated assignments from conditional expressions | |
06-Feb-12 JDB Added OPSIZE casts to fp_accum calls in .FPWR/.TPWR | |
11-Sep-08 JDB Moved microcode function prototypes to hp2100_cpu1.h | |
05-Sep-08 JDB Removed option-present tests (now in UIG dispatchers) | |
18-Mar-08 JDB Fixed B register return bug in /CMRT | |
01-Dec-06 JDB Substitutes FPP for firmware FP if HAVE_INT64 | |
Primary references: | |
- HP 1000 M/E/F-Series Computers Technical Reference Handbook | |
(5955-0282, Mar-1980) | |
- HP 1000 M/E/F-Series Computers Engineering and Reference Documentation | |
(92851-90001, Mar-1981) | |
- Macro/1000 Reference Manual (92059-90001, Dec-1992) | |
Additional references are listed with the associated firmware | |
implementations, as are the HP option model numbers pertaining to the | |
applicable CPUs. | |
*/ | |
#include "hp2100_defs.h" | |
#include "hp2100_cpu.h" | |
#include "hp2100_cpu1.h" | |
#if defined (HAVE_INT64) /* int64 support available */ | |
#include "hp2100_fp1.h" | |
/* Floating-Point Processor. | |
The 1000 F-Series replaces the six 2100/1000-M/E single-precision firmware | |
floating-point instructions with a hardware floating-point processor (FPP). | |
The FPP executes single-, extended-, and double-precision floating-point | |
instructions, as well as double-integer instructions. All of the | |
floating-point instructions, as well as the single- and double-integer fix | |
and float instructions, are handled here. Pure double-integer instructions | |
are dispatched to the double-integer handler for simulation. | |
Option implementation by CPU was as follows: | |
2114 2115 2116 2100 1000-M 1000-E 1000-F | |
------ ------ ------ ------ ------ ------ ------ | |
N/A N/A N/A N/A N/A N/A std | |
For the F-Series, the instruction codes are mapped to routines as follows: | |
Instr. 1000-F Description | |
------ ------ ------------------------------------- | |
105000 FAD Single real add | |
105001 .XADD Extended real add | |
105002 .TADD Double real add | |
105003 [EAD] [5-word add] | |
105004 [tst] [Floating Point Processor self test] | |
105005 [xpd] [Expand exponent] | |
105006 [rst] [Floating Point Processor reset] | |
105007 [stk] [Process stack of operands] | |
105010 [chk] [FPP addressing check] | |
105014 .DAD Double integer add | |
105020 FSB Single real subtract | |
105021 .XSUB Extended real subtract | |
105022 .TSUB Double real subtract | |
105023 [ESB] [5-word subtract] | |
105034 .DSB Double integer subtract | |
105040 FMP Single real multiply | |
105041 .XMPY Extended real multiply | |
105042 .TMPY Double real multiply | |
105043 [EMP] [5-word multiply] | |
105054 .DMP Double integer multiply | |
105060 FDV Single real divide | |
105061 .XDIV Extended real divide | |
105062 .TDIV Double real divide | |
105063 [EDV] [5-word divide] | |
105074 .DDI Double integer divide | |
105100 FIX Single real to integer fix | |
105101 .XFXS Extended real to integer fix (.DINT) | |
105102 .TXFS Double real to integer fix (.TINT) | |
105103 [EFS] [5-word FIXS] | |
105104 .FIXD Real to double integer fix | |
105105 .XFXD Extended real to double integer fix | |
105106 .TFXD Double real to double integer fix | |
105107 [EFD] [5-word FIXD] | |
105114 .DSBR Double integer subtraction (reversed) | |
105120 FLT Integer to single real float | |
105121 .XFTS Integer to extended real float (.IDBL) | |
105122 .TFTS Integer to double real float (.ITBL) | |
105123 [ELS] [5-word FLTS] | |
105124 .FLTD Double integer to real float | |
105125 .XFTD Double integer to extended real float | |
105126 .TFTD Double integer to double real float | |
105127 [ELD] [5-word FLTD] | |
105134 .DDIR Double integer divide (reversed) | |
Implementation note: rather than have two simulators that each executes the | |
single-precision FP instruction set, we compile conditionally, based on the | |
availability of 64-bit integer support in the host compiler. 64-bit integers | |
are required for the FPP, so if they are available, then we handle the | |
single-precision instructions for the 2100 and M/E-Series here, and the | |
firmware simulation is omitted. If support is unavailable, then the firmware | |
function is used instead. | |
Notes: | |
1. Single-precision arithmetic instructions (.FAD, etc.) and extended- and | |
double-precision F-Series FPP arithmetic instructions (.XADD, .TADD, | |
etc.) return positive infinity on both positive and negative overflow. | |
The equivalent extended-precision M/E-Series FFP instructions return | |
negative infinity on negative overflow and positive infinity on positive | |
overflow. | |
2. The items in brackets above are undocumented instructions that are used | |
by the 12740 FPP-SIS-FFP diagnostic only. | |
3. The five-word arithmetic instructions (e.g., 105003) use an expanded | |
operand format that dedicates a separate word to the exponent. See the | |
implementation notes in the hardware floating-point processor simulation | |
for details. | |
4. The "self test" instruction (105004) returned to P+1 for early F-Series | |
units without double-integer support. Units incorporating such support | |
returned to P+2. | |
5. The "expand exponent" instruction (105005) is used as a "prefix" | |
instruction to enable a 10-bit exponent range. It is placed immediately | |
before a 5-word arithmetic instruction sequence, e.g., immediately | |
preceding an EAD instruction sequence. The arithmetic instruction | |
executes normally, except that under/overflow is not indicated unless | |
the exponent exceeds the 10-bit range, instead of the normal 8-bit | |
range. If overflow is indicated, the exponent is still set to +128. | |
Note that as 2-, 3-, and 4-word packed numbers only have room for 8-bit | |
exponents, the Expand Exponent instruction serves no useful purpose in | |
conjunction with instructions associated with these precisions. If | |
used, the resulting values may be in error, as overflow from the 8-bit | |
exponents will not be indicated. | |
6. The "FPP reset" instruction (105006) is provided to reset a hung box, | |
e.g., in cases where an improper number of parameters is supplied. The | |
hardware resets its internal state machine in response to this | |
instruction. Under simulation, the instruction has no effect, as the | |
simulated FPP cannot hang. | |
7. The "process stack" instruction (105007) executes a series of FPP | |
instruction sets in sequence. Each set consists of a single FPP | |
instruction and associated operands that specifies the operation, | |
followed by a "result" instruction and operand. The result instruction | |
is optional and is only used to specify the result precision; the | |
instruction itself is not executed. If the result instruction is NOP, | |
then the result precision is that of the executed FPP instruction. If | |
the result operand is null, then the result is kept in the internal FPP | |
accumulator for later use. | |
The calling sequence is as follows: | |
STK Process stack instruction | |
DEF ERRTN Address of error return | |
DEF SET1 Address of first instruction set | |
DEF SET2 Address of second instruction set | |
. | |
. | |
. | |
ERRTN EQU * Return here if execution in error | |
OKRTN EQU * Return here if execution OK | |
Instruction sets are specified as follows (e.g.): | |
SET1 .TADD Operation instruction (NOP to terminate series) | |
DEC 4 Number of words in first operand (or 0 if accum) | |
DEF OP1 Address of first operand | |
DEC 4 Number of words in second operand (or 0 if accum) | |
DEF OP2 Address of second operand | |
.XADD Result precision conversion instruction (or NOP) | |
DEC 3 Number of words to store (or 0 if no store) | |
DEF RSLT Address of buffer to hold value | |
The primary use of the "process stack" instruction is to enable chained | |
operations employing the FPP accumulator for intermediate results and to | |
enable expanded exponent usage across multiple instructions. | |
8. The "addressing check" instruction sets bit 0 of the L register to 1, | |
copies the X register value to the FPP, and then reads the FPP and | |
stores the result in the Y register. Setting the L register bit 0 to 1 | |
normally deselects the FPP, so that the value in Y is 177777. However, | |
the FPP box has a strap that inverts the selection logic, even though | |
the box will not work with the base-set firmware if this is done. The | |
"addressing check" instruction is provided to test whether the strap is | |
in the alternate location. Under simulation, the return value is always | |
177777, indicating that the strap is correctly set. | |
Additional references: | |
- DOS/RTE Relocatable Library Reference Manual (24998-90001, Oct-1981) | |
- FPP-SIS-FFP Diagnostic Source (12740-18001, Rev. 1926) | |
*/ | |
static const OP_PAT op_fpp[96] = { | |
OP_RF, OP_AXX, OP_ATT, OP_AEE, /* FAD .XADD .TADD .EADD */ | |
OP_N, OP_C, OP_N, OP_A, /* [tst] [xpd] [rst] [stk] */ | |
OP_N, OP_N, OP_N, OP_N, /* [chk] --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* .DAD --- --- --- */ | |
OP_RF, OP_AXX, OP_ATT, OP_AEE, /* FSB .XSUB .TSUB .ESUB */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* .DSB --- --- --- */ | |
OP_RF, OP_AXX, OP_ATT, OP_AEE, /* FMP .XMPY .TMPY .EMPY */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* .DMP --- --- --- */ | |
OP_RF, OP_AXX, OP_ATT, OP_AEE, /* FDV .XDIV .TDIV .EDIV */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* .DDI --- --- --- */ | |
OP_R, OP_X, OP_T, OP_E, /* FIX .XFXS .TFXS .EFXS */ | |
OP_R, OP_X, OP_T, OP_E, /* .FIXD .XFXD .TFXD .EFXD */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N, /* .DSBR --- --- --- */ | |
OP_I, OP_IA, OP_IA, OP_IA, /* FLT .XFTS .TFTS .EFTS */ | |
OP_J, OP_JA, OP_JA, OP_JA, /* .FLTD .XFTD .TFTD .EFTD */ | |
OP_N, OP_N, OP_N, OP_N, /* --- --- --- --- */ | |
OP_N, OP_N, OP_N, OP_N /* .DDIR --- --- --- */ | |
}; | |
t_stat cpu_fpp (uint32 IR, uint32 intrq) | |
{ | |
OP fpop; | |
OPS op; | |
OPSIZE op1_prec, op2_prec, rslt_prec, cvt_prec; | |
uint16 opcode, rtn_addr, stk_ptr; | |
uint32 entry; | |
t_stat reason = SCPE_OK; | |
if (UNIT_CPU_MODEL == UNIT_1000_F) /* F-Series? */ | |
opcode = (uint16) (IR & 0377); /* yes, use full opcode */ | |
else | |
opcode = (uint16) (IR & 0160); /* no, use 6 SP FP opcodes */ | |
entry = opcode & 0177; /* map to <6:0> */ | |
if (op_fpp [entry] != OP_N) { | |
reason = cpu_ops (op_fpp [entry], op, intrq); /* get instruction operands */ | |
if (reason != SCPE_OK) /* evaluation failed? */ | |
return reason; /* return reason for failure */ | |
} | |
switch (entry) { /* decode IR<6:0> */ | |
case 0000: /* FAD 105000 (OP_RF) */ | |
case 0020: /* FSB 105020 (OP_RF) */ | |
case 0040: /* FMP 105040 (OP_RF) */ | |
case 0060: /* FDV 105060 (OP_RF) */ | |
O = fp_exec (opcode, &fpop, op[0], op[1]); /* execute operation */ | |
AR = fpop.fpk[0]; /* return result to A/B */ | |
BR = fpop.fpk[1]; | |
break; | |
case 0001: /* .XADD 105001 (OP_AXX) */ | |
case 0002: /* .TADD 105002 (OP_ATT) */ | |
case 0003: /* .EADD 105003 (OP_AEE) */ | |
case 0021: /* .XSUB 105021 (OP_AXX) */ | |
case 0022: /* .TSUB 105022 (OP_ATT) */ | |
case 0023: /* .ESUB 105023 (OP_AEE) */ | |
case 0041: /* .XMPY 105041 (OP_AXX) */ | |
case 0042: /* .TMPY 105042 (OP_ATT) */ | |
case 0043: /* .EMPY 105043 (OP_AEE) */ | |
case 0061: /* .XDIV 105061 (OP_AXX) */ | |
case 0062: /* .TDIV 105062 (OP_ATT) */ | |
case 0063: /* .EDIV 105063 (OP_AEE) */ | |
O = fp_exec (opcode, &fpop, op[1], op[2]); /* execute operation */ | |
fp_prec (opcode, NULL, NULL, &rslt_prec); /* determine result precision */ | |
WriteOp (op[0].word, fpop, rslt_prec); /* write result */ | |
break; | |
case 0004: /* [tst] 105004 (OP_N) */ | |
XR = 3; /* firmware revision */ | |
SR = 0102077; /* test passed code */ | |
PR = (PR + 1) & VAMASK; /* P+2 return for firmware w/DBI */ | |
break; | |
case 0005: /* [xpd] 105005 (OP_C) */ | |
return cpu_fpp (op[0].word | 0200, intrq); /* set bit 7, execute instr */ | |
case 0006: /* [rst] 105006 (OP_N) */ | |
break; /* do nothing for FPP reset */ | |
case 0007: /* [stk] 105007 (OP_A) */ | |
O = 0; /* clear overflow */ | |
stk_ptr = (uint16) PR; /* save ptr to next buf */ | |
rtn_addr = op[0].word; /* save return address */ | |
while (TRUE) { | |
PR = ReadW (stk_ptr) & VAMASK; /* point at next instruction set */ | |
stk_ptr = (stk_ptr + 1) & VAMASK; | |
reason = cpu_ops (OP_CCACACCA, op, intrq); /* get instruction set */ | |
if (reason) { | |
PR = err_PC; /* irq restarts */ | |
break; | |
} | |
if (op[0].word == 0) { /* opcode = NOP? */ | |
PR = (rtn_addr + 1) & VAMASK; /* bump to good return */ | |
break; /* done */ | |
} | |
fp_prec ((uint16) (op[0].word & 0377), /* determine operand precisions */ | |
&op1_prec, &op2_prec, &rslt_prec); | |
if (TO_COUNT(op1_prec) != op[1].word) { /* first operand precisions agree? */ | |
PR = rtn_addr; /* no, so take error return */ | |
break; | |
} | |
else if (op1_prec != fp_a) /* operand in accumulator? */ | |
op[1] = ReadOp (op[2].word, op1_prec); /* no, so get operand 1 */ | |
if (TO_COUNT(op2_prec) != op[3].word) { /* second operand precisions agree? */ | |
PR = rtn_addr; /* no, so take error return */ | |
break; | |
} | |
else if (op2_prec != fp_a) /* operand in accumulator? */ | |
op[2] = ReadOp (op[4].word, op2_prec); /* no, so get operand 2 */ | |
O = O | /* execute instruction */ | |
fp_exec ((uint16) (op[0].word & 0377), /* and accumulate overflow */ | |
&fpop, op[1], op[2]); | |
if (op[5].word) { /* precision conversion? */ | |
fp_prec ((uint16) (op[5].word & 0377), /* determine conversion precision */ | |
NULL, NULL, &cvt_prec); | |
fpop = fp_accum (NULL, cvt_prec); /* convert result */ | |
} | |
else /* no conversion specified */ | |
cvt_prec = rslt_prec; /* so use original precision */ | |
if (op[6].word) /* store result? */ | |
WriteOp (op[7].word, fpop, cvt_prec); /* yes, so write it */ | |
} | |
break; | |
case 0010: /* [chk] 105010 (OP_N) */ | |
YR = 0177777; /* -1 if selection strap OK */ | |
break; | |
case 0014: /* .DAD 105014 (OP_N) */ | |
return cpu_dbi (0105321, intrq); /* remap to double int handler */ | |
case 0034: /* .DSB 105034 (OP_N) */ | |
return cpu_dbi (0105327, intrq); /* remap to double int handler */ | |
case 0054: /* .DMP 105054 (OP_N) */ | |
return cpu_dbi (0105322, intrq); /* remap to double int handler */ | |
case 0074: /* .DDI 105074 (OP_N) */ | |
return cpu_dbi (0105325, intrq); /* remap to double int handler */ | |
case 0100: /* FIX 105100 (OP_R) */ | |
case 0101: /* .XFXS 105101 (OP_X) */ | |
case 0102: /* .TFXS 105102 (OP_T) */ | |
case 0103: /* .EFXS 105103 (OP_E) */ | |
O = fp_exec (opcode, &fpop, op[0], NOP); /* fix to integer */ | |
AR = fpop.fpk[0]; /* save result */ | |
break; | |
case 0104: /* .FIXD 105104 (OP_R) */ | |
case 0105: /* .XFXD 105105 (OP_X) */ | |
case 0106: /* .TFXD 105106 (OP_T) */ | |
case 0107: /* .EFXD 105107 (OP_E) */ | |
O = fp_exec (opcode, &fpop, op[0], NOP); /* fix to integer */ | |
AR = (fpop.dword >> 16) & DMASK; /* save result */ | |
BR = fpop.dword & DMASK; /* in A and B */ | |
break; | |
case 0114: /* .DSBR 105114 (OP_N) */ | |
return cpu_dbi (0105334, intrq); /* remap to double int handler */ | |
case 0120: /* FLT 105120 (OP_I) */ | |
case 0124: /* .FLTD 105124 (OP_J) */ | |
O = fp_exec (opcode, &fpop, op[0], NOP); /* float to single */ | |
AR = fpop.fpk[0]; /* save result */ | |
BR = fpop.fpk[1]; /* into A/B */ | |
break; | |
case 0121: /* .XFTS 105121 (OP_IA) */ | |
case 0122: /* .TFTS 105122 (OP_IA) */ | |
case 0123: /* .EFTS 105123 (OP_IA) */ | |
case 0125: /* .XFTD 105125 (OP_JA) */ | |
case 0126: /* .TFTD 105126 (OP_JA) */ | |
case 0127: /* .EFTD 105127 (OP_JA) */ | |
O = fp_exec (opcode, &fpop, op[0], NOP); /* float integer */ | |
fp_prec (opcode, NULL, NULL, &rslt_prec); /* determine result precision */ | |
WriteOp (op[1].word, fpop, rslt_prec); /* write result */ | |
break; | |
case 0134: /* .DDIR 105134 (OP_N) */ | |
return cpu_dbi (0105326, intrq); /* remap to double int handler */ | |
default: /* others undefined */ | |
reason = stop_inst; | |
} | |
return reason; | |
} | |
/* Scientific Instruction Set. | |
The SIS adds single-precision trigonometric and logarithmic, and | |
double-precision polynomial evaluation instructions to the 1000-F instruction | |
set. The SIS is standard on the 1000-F. | |
Option implementation by CPU was as follows: | |
2114 2115 2116 2100 1000-M 1000-E 1000-F | |
------ ------ ------ ------ ------ ------ ------ | |
N/A N/A N/A N/A N/A N/A std | |
The routines are mapped to instruction codes as follows: | |
Instr. 1000-F Description | |
------ ------ ---------------------------------------------- | |
TAN 105320 Tangent | |
SQRT 105321 Square root | |
ALOG 105322 Natural logarithm | |
ATAN 105323 Arc tangent | |
COS 105324 Cosine | |
SIN 105325 Sine | |
EXP 105326 E to the power X | |
ALOGT 105327 Common logarithm | |
TANH 105330 Hyperbolic tangent | |
DPOLY 105331 Double-precision polynomial evaluation | |
/CMRT 105332 Double-precision common range reduction | |
/ATLG 105333 Compute (1-x)/(1+x) for .ATAN and .LOG | |
.FPWR 105334 Single-precision exponentiation | |
.TPWR 105335 Double-precision exponentiation | |
[tst] 105337 [self test] | |
The SIS simulation follows the F-Series SIS microcode, which, in turn, | |
follows the algebraic approximations given in the Relocatable Library manual | |
descriptions of the equivalent software routines. | |
Notes: | |
1. The word following the DPOLY instruction contains up to three flag bits | |
to indicate one of several polynomial forms to evaluate. The comments | |
in the DPOLY software library routine source interchange the actions of | |
the bit 14 and bit 0 flags. The DPOLY description in the Technical | |
Reference Handbook is correct. | |
2. Several instructions (e.g., DPOLY) are documented as leaving undefined | |
values in the A, B, X, Y, E, or O registers. Simulation does not | |
attempt to reproduce the same values as would be obtained with the | |
hardware. | |
3. The SIS uses the hardware FPP of the F-Series. FPP malfunctions are | |
detected by the SIS firmware and are indicated by a memory-protect | |
violation and setting the overflow flag. Under simulation, | |
malfunctions cannot occur. | |
4. We use OP_IIT for the .FPWR operand pattern. The "II" is redundant, but | |
it aligns the operands with the OP_IAT of .TPWR, so the code may be | |
shared. | |
Additional references: | |
- DOS/RTE Relocatable Library Reference Manual (24998-90001, Oct-1981) | |
- HP 1000 E-Series and F-Series Computer Microprogramming Reference Manual | |
(02109-90004, Apr-1980). | |
*/ | |
/* Common single-precision range reduction for SIN, COS, TAN, and EXP. | |
This routine is called by the SIN, COS, TAN, and EXP handlers to reduce the | |
range of the argument. Reduction is performed in extended-precision. We | |
calculate: | |
multiple = (nearest even integer to argument * multiplier) | |
argument = argument * multiplier - multiple | |
*/ | |
static uint32 reduce (OP *argument, int32 *multiple, OP multiplier) | |
{ | |
OP product, count; | |
uint32 overflow; | |
fp_cvt (argument, fp_f, fp_x); /* convert to extended precision */ | |
fp_exec (0041, &product, *argument, multiplier); /* product = argument * multiplier */ | |
overflow = fp_exec (0111, &count, NOP, NOP); /* count = FIX (acc) */ | |
if ((int16) count.word >= 0) /* nearest even integer */ | |
count.word = count.word + 1; | |
count.word = count.word & ~1; | |
*multiple = (int16) count.word; | |
if (overflow == 0) { /* in range? */ | |
fp_exec (0121, ACCUM, count, NOP); /* acc = FLT (count) */ | |
overflow = fp_exec (0025, ACCUM, product, NOP); /* acc = product - acc */ | |
*argument = fp_accum (NULL, fp_f); /* trim to single-precision */ | |
} | |
return overflow; | |
} | |
/* SIS dispatcher. */ | |
static const OP_PAT op_sis[16] = { | |
OP_R, OP_R, OP_R, OP_R, /* TAN SQRT ALOG ATAN */ | |
OP_R, OP_R, OP_R, OP_R, /* COS SIN EXP ALOGT */ | |
OP_R, OP_CATAKK, OP_AAT, OP_A, /* TANH DPOLY /CMRT /ATLG */ | |
OP_IIF, OP_IAT, OP_N, OP_N /* .FPWR .TPWR --- [tst] */ | |
}; | |
t_stat cpu_sis (uint32 IR, uint32 intrq) | |
{ | |
OPS op; | |
OP arg, coeff, pwr, product, count, result; | |
int16 f, p; | |
int32 multiple, power, exponent, rsltexp; | |
uint32 entry, i; | |
t_bool flag, sign; | |
t_stat reason = SCPE_OK; | |
static const OP tan_c4 = { { 0137763, 0051006 } }; /* DEC -4.0030956 */ | |
static const OP tan_c3 = { { 0130007, 0051026 } }; /* DEC -1279.5424 */ | |
static const OP tan_c2 = { { 0040564, 0012761 } }; /* DEC 0.0019974806 */ | |
static const OP tan_c1 = { { 0045472, 0001375 } }; /* DEC 0.14692695 */ | |
static const OP alog_c3 = { { 0065010, 0063002 } }; /* DEC 1.6567626301 */ | |
static const OP alog_c2 = { { 0125606, 0044404 } }; /* DEC -2.6398577035 */ | |
static const OP alog_c1 = { { 0051260, 0037402 } }; /* DEC 1.2920070987 */ | |
static const OP atan_c4 = { { 0040257, 0154404 } }; /* DEC 2.0214656 */ | |
static const OP atan_c3 = { { 0132062, 0133406 } }; /* DEC -4.7376165 */ | |
static const OP atan_c2 = { { 0047407, 0173775 } }; /* DEC 0.154357652 */ | |
static const OP atan_c1 = { { 0053447, 0014002 } }; /* DEC 1.3617611 */ | |
static const OP sin_c4 = { { 0132233, 0040745 } }; /* DEC -0.000035950439 */ | |
static const OP sin_c3 = { { 0050627, 0122361 } }; /* DEC 0.002490001 */ | |
static const OP sin_c2 = { { 0126521, 0011373 } }; /* DEC -0.0807454325 */ | |
static const OP sin_c1 = { { 0062207, 0166400 } }; /* DEC 0.78539816 */ | |
static const OP cos_c4 = { { 0126072, 0002753 } }; /* DEC -0.00031957 */ | |
static const OP cos_c3 = { { 0040355, 0007767 } }; /* DEC 0.015851077 */ | |
static const OP cos_c2 = { { 0130413, 0011377 } }; /* DEC -0.30842483 */ | |
static const OP cos_c1 = { { 0040000, 0000002 } }; /* DEC 1.0 */ | |
static const OP sqrt_a2 = { { 0045612, 0067400 } }; /* DEC 0.5901621 */ | |
static const OP sqrt_b2 = { { 0065324, 0126377 } }; /* DEC 0.4173076 */ | |
static const OP sqrt_a1 = { { 0065324, 0126400 } }; /* DEC 0.8346152 */ | |
static const OP sqrt_b1 = { { 0045612, 0067400 } }; /* DEC 0.5901621 */ | |
static const OP exp_c2 = { { 0073000, 0070771 } }; /* DEC 0.05761803 */ | |
static const OP exp_c1 = { { 0056125, 0041406 } }; /* DEC 5.7708162 */ | |
static const OP tanh_c3 = { { 0050045, 0022004 } }; /* DEC 2.5045337 */ | |
static const OP tanh_c2 = { { 0041347, 0101404 } }; /* DEC 2.0907609 */ | |
static const OP tanh_c1 = { { 0052226, 0047375 } }; /* DEC 0.16520923 */ | |
static const OP minus_1 = { { 0100000, 0000000 } }; /* DEC -1.0 */ | |
static const OP plus_1 = { { 0040000, 0000002 } }; /* DEC +1.0 */ | |
static const OP plus_half = { { 0040000, 0000000 } }; /* DEC +0.5 */ | |
static const OP ln_2 = { { 0054271, 0006000 } }; /* DEC 0.6931471806 (ln 2.0) */ | |
static const OP log_e = { { 0067455, 0166377 } }; /* DEC 0.43429228 (log e) */ | |
static const OP pi_over_4 = { { 0062207, 0166400 } }; /* Pi / 4.0 */ | |
static const OP pi_over_2 = { { 0062207, 0166402 } }; /* Pi / 2.0 */ | |
static const OP four_over_pi = { { 0050574, 0140667, 0023402 } }; /* 4.0 / Pi */ | |
static const OP two_over_ln2 = { { 0056125, 0016624, 0127404 } }; /* 2.0 / ln(2.0) */ | |
static const OP t_one = { { 0040000, 0000000, 0000000, 0000002 } }; /* DEY 1.0 */ | |
entry = IR & 017; /* mask to entry point */ | |
if (op_sis [entry] != OP_N) { | |
reason = cpu_ops (op_sis [entry], op, intrq); /* get instruction operands */ | |
if (reason != SCPE_OK) /* evaluation failed? */ | |
return reason; /* return reason for failure */ | |
} | |
switch (entry) { /* decode IR<3:0> */ | |
case 000: /* TAN 105320 (OP_R) */ | |
O = reduce (&op[0], &multiple, four_over_pi); /* reduce range */ | |
if (O) { /* out of range? */ | |
op[0].fpk[0] = '0' << 8 | '9'; /* return '09' */ | |
op[0].fpk[1] = 'O' << 8 | 'R'; /* return 'OR' */ | |
break; /* error return is P+1 */ | |
} | |
fp_exec (0040, &op[1], op[0], op[0]); /* op1 = arg ^ 2 */ | |
fp_exec (0010, ACCUM, NOP, tan_c4); /* acc = acc + C4 */ | |
fp_exec (0064, ACCUM, tan_c3, NOP); /* acc = C3 / acc */ | |
fp_exec (0010, ACCUM, NOP, op[1]); /* acc = acc + op1 */ | |
fp_exec (0050, ACCUM, NOP, tan_c2); /* acc = acc * C2 */ | |
fp_exec (0010, ACCUM, NOP, tan_c1); /* acc = acc + C1 */ | |
fp_exec (0050, &op[0], NOP, op[0]); /* res = acc * arg */ | |
if (multiple & 0002) /* multiple * 2 odd? */ | |
fp_exec (0064, &op[0], minus_1, NOP); /* res = -1.0 / acc */ | |
PR = (PR + 1) & VAMASK; /* normal return is P+2 */ | |
break; | |
case 001: /* SQRT 105321 (OP_R) */ | |
O = 0; /* clear overflow */ | |
if (op[0].fpk[0] == 0) { /* arg = 0? */ | |
PR = (PR + 1) & VAMASK; /* normal return is P+2 */ | |
break; | |
} | |
else if ((int16) op[0].fpk[0] < 0) { /* sqrt of neg? */ | |
op[0].fpk[0] = '0' << 8 | '3'; /* return '03' */ | |
op[0].fpk[1] = 'U' << 8 | 'N'; /* return 'UN' */ | |
O = 1; /* set overflow */ | |
break; /* error return is P+1 */ | |
} | |
fp_unpack (&op[1], &exponent, op[0], fp_f); /* unpack argument */ | |
if (exponent & 1) { /* exponent odd? */ | |
fp_exec (0040, ACCUM, op[1], sqrt_a1); /* acc = op1 * A1 */ | |
fp_exec (0010, &op[2], NOP, sqrt_b1); /* op2 = acc + B1 */ | |
op[1].fpk[1] = op[1].fpk[1] + 2; /* op1 = op1 * 2.0 */ | |
} | |
else { /* exponent even */ | |
fp_exec (0040, ACCUM, op[1], sqrt_a2); /* acc = op1 * A2 */ | |
fp_exec (0010, &op[2], NOP, sqrt_b2); /* op2 = acc + B2 */ | |
} | |
fp_exec (0064, ACCUM, op[1], NOP); /* acc = op1 / acc */ | |
fp_exec (0010, &op[2], NOP, op[2]); /* op2 = acc + op2 */ | |
op[1].fpk[1] = op[1].fpk[1] + 4; /* op1 = op1 * 4.0 */ | |
fp_exec (0064, ACCUM, op[1], NOP); /* acc = op1 / acc */ | |
fp_exec (0010, &op[0], NOP, op[2]); /* res = acc + op2 */ | |
power = (exponent >> 1) - 2; | |
if (op[0].fpk[0]) { /* calc x * 2**n */ | |
fp_unpack (&op[1], &exponent, op[0], fp_f); /* unpack argument */ | |
exponent = exponent + power; /* multiply by 2**n */ | |
if ((exponent > 0177) || /* exponent overflow? */ | |
(exponent < -0200)) { /* or underflow? */ | |
O = 1; /* rtn unscaled val, set ovf */ | |
break; /* error return is P+1 */ | |
} | |
else | |
fp_pack (&op[0], op[1], exponent, fp_f);/* repack result */ | |
} | |
PR = (PR + 1) & VAMASK; /* normal return is P+2 */ | |
break; | |
case 002: /* ALOG 105322 (OP_R) */ | |
case 007: /* ALOGT 105327 (OP_R) */ | |
O = 0; /* clear overflow */ | |
if ((int16) op[0].fpk[0] <= 0) { /* log of neg or zero? */ | |
op[0].fpk[0] = '0' << 8 | '2'; /* return '02' */ | |
op[0].fpk[1] = 'U' << 8 | 'N'; /* return 'UN' */ | |
O = 1; /* set overflow */ | |
break; /* error return is P+1 */ | |
} | |
fp_unpack (&op[1], &exponent, op[0], fp_f); /* unpack argument */ | |
if (op[0].fpk[0] < 0055000) { /* out of range? */ | |
exponent = exponent - 1; /* drop exponent */ | |
op[1].fpk[1] = op[1].fpk[1] | 2; /* set "exponent" to 1 */ | |
} | |
op[2].fpk[0] = (uint16) exponent; | |
fp_exec (0120, &op[3], op[2], NOP); /* op3 = FLT(exponent) */ | |
fp_exec (0020, &op[4], op[1], plus_1); /* op4 = op1 - 1.0 */ | |
fp_exec (0000, ACCUM, op[1], plus_1); /* acc = op1 + 1.0 */ | |
fp_exec (0064, &op[5], op[4], NOP); /* op5 = op4 / acc */ | |
fp_exec (0054, ACCUM, NOP, NOP); /* acc = acc * acc */ | |
fp_exec (0030, ACCUM, NOP, alog_c3); /* acc = acc - c3 */ | |
fp_exec (0064, ACCUM, alog_c2, NOP); /* acc = c2 / acc */ | |
fp_exec (0010, ACCUM, NOP, alog_c1); /* acc = acc + c1 */ | |
fp_exec (0050, ACCUM, NOP, op[5]); /* acc = acc * op5 */ | |
fp_exec (0010, ACCUM, NOP, op[3]); /* acc = acc + op3 */ | |
fp_exec (0050, &op[0], NOP, ln_2); /* res = acc * ln2 */ | |
if (entry == 007) /* ALOGT? */ | |
fp_exec (0050, &op[0], NOP, log_e); /* res = acc * log(e) */ | |
PR = (PR + 1) & VAMASK; /* normal return is P+2 */ | |
break; | |
case 003: /* ATAN 105323 (OP_R) */ | |
O = 0; /* clear overflow */ | |
if (op[0].fpk[0] == 0) /* argument zero? */ | |
break; /* result zero */ | |
flag = (op[0].fpk[1] & 1); /* get exponent sign */ | |
sign = ((int16) op[0].fpk[0] < 0); /* get argument sign */ | |
if (flag == 0) { /* exp pos? (abs >= 0.5)? */ | |
if (sign) /* argument negative? */ | |
fp_pcom (&op[0], fp_f); /* make positive */ | |
if (op[0].fpk[1] & 0374) { /* arg >= 2? */ | |
fp_exec(0060, &op[0], plus_1, op[0]); /* arg = 1.0 / arg */ | |
op[2] = pi_over_2; /* constant = pi / 2.0 */ | |
} | |
else { | |
fp_exec (0020, &op[1], plus_1, op[0]); /* op1 = 1.0 - arg */ | |
fp_exec (0000, ACCUM, plus_1, op[0]); /* acc = 1.0 + arg */ | |
fp_exec (0064, &op[0], op[1], NOP); /* arg = op1 / acc */ | |
op[2] = pi_over_4; /* constant = pi / 4.0 */ | |
} | |
} | |
fp_exec (0040, &op[1], op[0], op[0]); /* op1 = arg * arg */ | |
fp_exec (0010, ACCUM, NOP, atan_c4); /* acc = acc + C4 */ | |
fp_exec (0064, ACCUM, atan_c3, NOP); /* acc = C3 / acc */ | |
fp_exec (0010, ACCUM, NOP, op[1]); /* acc = acc + op1 */ | |
fp_exec (0050, ACCUM, NOP, atan_c2); /* acc = acc * C2 */ | |
fp_exec (0010, ACCUM, NOP, atan_c1); /* acc = acc + C1 */ | |
fp_exec (0064, &op[0], op[0], NOP); /* res = arg / acc */ | |
if (flag == 0) { /* exp pos? (abs >= 0.5)? */ | |
fp_exec (0030, &op[0], NOP, op[2]); /* res = acc - pi / n */ | |
if (sign == 0) /* argument positive? */ | |
fp_pcom (&op[0], fp_f); /* make negative */ | |
} | |
break; | |
case 004: /* COS 105324 (OP_R) */ | |
case 005: /* SIN 105325 (OP_R) */ | |
O = reduce (&op[0], &multiple, four_over_pi); /* reduce range */ | |
if (O) { /* out of range? */ | |
op[0].fpk[0] = '0' << 8 | '5'; /* return '05' */ | |
op[0].fpk[1] = 'O' << 8 | 'R'; /* return 'OR' */ | |
break; /* error return is P+1 */ | |
} | |
multiple = multiple / 2 + (entry == 004); /* add one for cosine */ | |
flag = (multiple & 1); /* decide on series */ | |
fp_exec (0040, &op[1], op[0], op[0]); /* op1 = arg ^ 2 */ | |
if (flag) { | |
fp_exec (0050, ACCUM, NOP, cos_c4); /* acc = acc * c4 */ | |
fp_exec (0010, ACCUM, NOP, cos_c3); /* acc = acc + c3 */ | |
fp_exec (0050, ACCUM, NOP, op[1]); /* acc = acc * op1 */ | |
fp_exec (0010, ACCUM, NOP, cos_c2); /* acc = acc + c2 */ | |
fp_exec (0050, ACCUM, NOP, op[1]); /* acc = acc * op1 */ | |
fp_exec (0010, &op[0], NOP, cos_c1); /* res = acc + c1 */ | |
} | |
else { | |
fp_exec (0050, ACCUM, NOP, sin_c4); /* acc = acc * c4 */ | |
fp_exec (0010, ACCUM, NOP, sin_c3); /* acc = acc + c3 */ | |
fp_exec (0050, ACCUM, NOP, op[1]); /* acc = acc * op1 */ | |
fp_exec (0010, ACCUM, NOP, sin_c2); /* acc = acc + c2 */ | |
fp_exec (0050, ACCUM, NOP, op[1]); /* acc = acc * op1 */ | |
fp_exec (0010, ACCUM, NOP, sin_c1); /* acc = acc + c1 */ | |
fp_exec (0050, &op[0], NOP, op[0]); /* res = acc * arg */ | |
} | |
if (multiple & 0002) /* multiple * 2 odd? */ | |
fp_pcom (&op[0], fp_f); /* make negative */ | |
PR = (PR + 1) & VAMASK; /* normal return is P+2 */ | |
break; | |
case 006: /* EXP 105326 (OP_R) */ | |
sign = ((int16) op[0].fpk[0] < 0); /* get argument sign */ | |
O = reduce (&op[0], &multiple, two_over_ln2); /* reduce range */ | |
multiple = multiple / 2; /* get true multiple */ | |
if ((sign == 0) && (O | (multiple > 128))) { /* pos and ovf or out of range? */ | |
op[0].fpk[0] = '0' << 8 | '7'; /* return '07' */ | |
op[0].fpk[1] = 'O' << 8 | 'F'; /* return 'OF' */ | |
O = 1; /* set overflow */ | |
break; /* error return is P+1 */ | |
} | |
else if (sign && (multiple < -128)) { /* neg and out of range? */ | |
op[0].fpk[0] = 0; /* result is zero */ | |
op[0].fpk[1] = 0; | |
O = 0; /* clear for underflow */ | |
PR = (PR + 1) & VAMASK; /* normal return is P+2 */ | |
break; | |
} | |
fp_exec (0040, ACCUM, op[0], op[0]); /* acc = arg ^ 2 */ | |
fp_exec (0050, ACCUM, NOP, exp_c2); /* acc = acc * c2 */ | |
fp_exec (0030, ACCUM, NOP, op[0]); /* acc = acc - op0 */ | |
fp_exec (0010, ACCUM, NOP, exp_c1); /* acc = acc + c1 */ | |
fp_exec (0064, ACCUM, op[0], NOP); /* acc = op0 / acc */ | |
fp_exec (0010, &op[0], NOP, plus_half); /* res = acc + 0.5 */ | |
power = multiple + 1; | |
if (op[0].fpk[0]) { /* calc x * 2**n */ | |
fp_unpack (&op[1], &exponent, op[0], fp_f); /* unpack argument */ | |
exponent = exponent + power; /* multiply by 2**n */ | |
if ((exponent > 0177) || /* exponent overflow? */ | |
(exponent < -0200)) { /* or underflow? */ | |
if (sign == 0) { /* arg positive? */ | |
op[0].fpk[0] = '0' << 8 | '7'; /* return '07' */ | |
op[0].fpk[1] = 'O' << 8 | 'F'; /* return 'OF' */ | |
O = 1; /* set overflow */ | |
} | |
else { | |
op[0].fpk[0] = 0; /* result is zero */ | |
op[0].fpk[1] = 0; | |
O = 0; /* clear for underflow */ | |
} | |
break; /* error return is P+1 */ | |
} | |
else { | |
fp_pack (&op[0], op[1], exponent, fp_f);/* repack value */ | |
O = 0; | |
} | |
} | |
PR = (PR + 1) & VAMASK; /* normal return is P+2 */ | |
break; | |
case 010: /* TANH 105330 (OP_R) */ | |
O = 0; | |
sign = ((int16) op[0].fpk[0] < 0); /* get argument sign */ | |
if (op[0].fpk[1] & 1) { /* abs (arg) < 0.5? */ | |
fp_exec (0040, ACCUM, op[0], op[0]); /* acc = arg ^ 2 */ | |
fp_exec (0010, ACCUM, NOP, tanh_c3); /* acc = acc + c3 */ | |
fp_exec (0064, ACCUM, tanh_c2, NOP); /* acc = c2 / acc */ | |
fp_exec (0010, ACCUM, NOP, tanh_c1); /* acc = acc + c1 */ | |
fp_exec (0050, &op[0], NOP, op[0]); /* res = acc * arg */ | |
} | |
else if (op[0].fpk[1] & 0370) /* abs (arg) >= 8.0? */ | |
if (sign) /* arg negative? */ | |
op[0] = minus_1; /* result = -1.0 */ | |
else /* arg positive */ | |
op[0] = plus_1; /* result = +1.0 */ | |
else { /* 0.5 <= abs (arg) < 8.0 */ | |
BR = BR + 2; /* arg = arg * 2.0 */ | |
cpu_sis (0105326, intrq); /* calc exp (arg) */ | |
PR = (PR - 1) & VAMASK; /* correct P (always good rtn) */ | |
op[0].fpk[0] = AR; /* save value */ | |
op[0].fpk[1] = BR; | |
fp_exec (0020, &op[1], op[0], plus_1); /* op1 = op0 - 1.0 */ | |
fp_exec (0000, ACCUM, op[0], plus_1); /* acc = op0 + 1.0 */ | |
fp_exec (0064, &op[0], op[1], NOP); /* res = op1 / acc */ | |
} | |
break; | |
case 011: /* DPOLY 105331 (OP_CATAKK) */ | |
O = 0; /* clear overflow */ | |
AR = op[0].word; /* get flag word */ | |
if ((int16) AR >= 0) { /* flags present? */ | |
AR = 1; /* no, so set default */ | |
arg = op[2]; /* arg = X */ | |
} | |
else /* bit 15 set */ | |
fp_exec (0042, &arg, op[2], op[2]); /* arg = X ^ 2 */ | |
coeff = ReadOp (op[3].word, fp_t); /* get first coefficient */ | |
op[3].word = (op[3].word + 4) & VAMASK; /* point at next */ | |
fp_accum (&coeff, fp_t); /* acc = coeff */ | |
for (i = 0; i < op[4].word; i++) { /* compute numerator */ | |
fp_exec (0052, ACCUM, NOP, arg); /* acc = P[m] * arg */ | |
coeff = ReadOp (op[3].word, fp_t); /* get next coefficient */ | |
op[3].word = (op[3].word + 4) & VAMASK; /* point at next */ | |
fp_exec (0012, ACCUM, NOP, coeff); /* acc = acc + P[m-1] */ | |
} | |
if (AR & 1) /* bit 0 set? */ | |
op[6] = fp_accum (NULL, fp_t); /* save numerator */ | |
else | |
fp_exec (0046, &op[6], op[2], NOP); /* acc = X * acc */ | |
if (op[5].word) { /* n > 0 ? */ | |
fp_accum (&t_one, fp_t); /* acc = 1.0 */ | |
for (i = 0; i < op[5].word; i++) { /* compute denominator */ | |
fp_exec (0052, ACCUM, NOP, arg); /* acc = P[m] * arg */ | |
coeff = ReadOp (op[3].word, fp_t); /* get next coefficient */ | |
op[3].word = (op[3].word + 4) & VAMASK; /* point at next */ | |
fp_exec (0012, ACCUM, NOP, coeff); /* acc = acc + P[m-1] */ | |
} | |
if (AR & 0040000) /* bit 14 set? */ | |
fp_exec (0032, ACCUM, NOP, op[6]); /* acc = den - num */ | |
fp_exec (0066, &op[6], op[6], NOP); /* op6 = num / den */ | |
} | |
WriteOp (op[1].word, op[6], fp_t); /* write result */ | |
if (O) /* overflow? */ | |
op[0].fpk[0] = 0; /* microcode rtns with A = 0 */ | |
break; | |
case 012: /* /CMRT 105332 (OP_AAT) */ | |
O = 0; | |
f = (int16) AR; /* save flags */ | |
coeff = ReadOp (op[1].word, fp_t); /* get coefficient (C) */ | |
fp_unpack (NULL, &exponent, op[2], fp_t); /* unpack exponent */ | |
if ((f == -1) || (exponent < 4)) { /* TANH or abs (arg) < 16.0? */ | |
/* result = x * c - n */ | |
fp_exec (0042, &product, op[2], coeff); /* product = arg * C */ | |
O = fp_exec (0112, &count, NOP, NOP); /* count = FIX (acc) */ | |
if ((int16) count.word >= 0) /* nearest even integer */ | |
count.word = count.word + 1; | |
BR = count.word = count.word & ~1; /* save LSBs of N */ | |
O = O | fp_exec (0122, ACCUM, count, NOP); /* acc = FLT (count) */ | |
if (O) { /* out of range? */ | |
op[0].fpk[0] = 0; /* microcode rtns with A = 0 */ | |
break; /* error return is P+1 */ | |
} | |
fp_exec (0026, &result, product, NOP); /* acc = product - acc */ | |
fp_unpack (NULL, &rsltexp, result, fp_t); /* unpack exponent */ | |
/* determine if cancellation matters */ | |
if ((f < 0) || (f == 2) || (f == 6) || /* EXP, TANH, or COS? */ | |
(exponent - rsltexp < 5)) { /* bits lost < 5? */ | |
WriteOp (op[0].word, result, fp_t); /* write result */ | |
PR = (PR + 1) & VAMASK; /* P+2 return for good result */ | |
op[0].fpk[1] = BR; /* return LSBs of N in B */ | |
break; /* all done! */ | |
} | |
} | |
/* result = (xu * cu - n) + (x - xu) * c + xu * cl */ | |
if (exponent >= (8 + 16 * (f >= 0))) { /* exp >= 8 (EXP,TANH)? */ | |
op[0].fpk[0] = 0; /* or 24 (SIN/COS/TAN)? */ | |
break; /* range error return is P+1 */ | |
} | |
op[3].fpk[0] = coeff.fpk[0]; /* form upper bits of C (CU) */ | |
op[3].fpk[1] = coeff.fpk[1] & 0177770; | |
op[3].fpk[2] = 0; | |
op[3].fpk[3] = coeff.fpk[3] & 0000377; | |
op[4].fpk[0] = op[2].fpk[0]; /* form upper bits of X (XU) */ | |
op[4].fpk[1] = op[2].fpk[1] & 0177770; | |
op[4].fpk[2] = 0; | |
op[4].fpk[3] = op[2].fpk[3] & 0000377; | |
fp_exec (0042, &op[5], op[3], op[4]); /* op5 = cu * xu */ | |
fp_exec (0116, &op[6], NOP, NOP); /* op6 = fix (acc) (2wd) */ | |
if ((int32) op[6].dword >= 0) /* nearest even integer */ | |
op[6].dword = op[6].dword + 1; | |
op[6].dword = op[6].dword & ~1; | |
BR = op[6].dword & DMASK; /* save LSBs of N */ | |
O = fp_exec (0126, ACCUM, op[6], NOP); /* acc = flt (op6) */ | |
if (O) { /* overflow? */ | |
op[0].fpk[0] = 0; /* microcode rtns with A = 0 */ | |
break; /* range error return is P+1 */ | |
} | |
fp_exec (0026, &op[7], op[5], NOP); /* op7 = cu * xu - n */ | |
fp_exec (0022, ACCUM, op[2], op[4]); /* acc = x - xu */ | |
fp_exec (0052, ACCUM, NOP, coeff); /* acc = (x - xu) * c */ | |
fp_exec (0012, &op[5], NOP, op[7]); /* op5 = acc + (cu * xu - n) */ | |
op[1].word = (op[1].word + 4) & VAMASK; /* point at second coefficient */ | |
coeff = ReadOp (op[1].word, fp_t); /* get coefficient (CL) */ | |
fp_exec (0042, ACCUM, op[4], coeff); /* acc = xu * cl */ | |
fp_exec (0012, &result, NOP, op[5]); /* result = acc + (x - xu) * c + (cu * xu - n) */ | |
WriteOp (op[0].word, result, fp_t); /* write result */ | |
PR = (PR + 1) & VAMASK; /* P+2 return for good result */ | |
op[0].fpk[1] = BR; /* return LSBs of N in B */ | |
break; | |
case 013: /* /ATLG 105333 (OP_A) */ | |
arg = ReadOp (op[0].word, fp_t); /* get argument */ | |
fp_exec (0022, &op[1], t_one, arg); /* op1 = 1.0 - arg */ | |
fp_exec (0002, ACCUM, t_one, arg); /* acc = 1.0 + arg */ | |
fp_exec (0066, &op[1], op[1], NOP); /* res = op1 / acc */ | |
WriteOp (op[0].word, op[1], fp_t); /* write result */ | |
break; | |
case 014: /* .FPWR 105334 (OP_IIF) */ | |
p = 0; /* set to single-precision */ | |
goto NPWR; | |
case 015: /* .TPWR 105335 (OP_IAT) */ | |
p = 2; /* set to double-precision */ | |
NPWR: | |
if (op[2].fpk[0]) { /* non-zero base? */ | |
fp_exec (0120, &pwr, op[0], NOP); /* float power */ | |
sign = ((int16) pwr.fpk[0] < 0); /* save sign of power */ | |
i = (pwr.fpk[0] << 2) & DMASK; /* clear it */ | |
fp_unpack (NULL, &exponent, pwr, fp_f); /* unpack exponent */ | |
if (sign == 0) | |
exponent = exponent - 1; | |
O = 0; /* clear overflow */ | |
fp_accum (&op[2], (OPSIZE) (fp_f + p)); /* acc = arg */ | |
while (exponent-- > 0) { | |
O = O | fp_exec ((uint16) (0054 | p), /* square acc */ | |
ACCUM, NOP, NOP); | |
if (i & SIGN) | |
O = O | fp_exec ((uint16) (0050 | p), /* acc = acc * arg */ | |
ACCUM, NOP, op[2]); | |
i = i << 1; | |
} | |
op[2] = fp_accum (NULL, (OPSIZE) (fp_f + p)); /* get accum */ | |
if (op[2].fpk[0] == 0) /* result zero? */ | |
O = 1; /* underflow */ | |
} | |
if (entry == 014) /* .FPWR ? */ | |
op[0] = op[2]; /* copy result */ | |
else /* .TPWR */ | |
WriteOp (op[1].word, op[2], fp_t); /* write result */ | |
break; | |
case 017: /* [tst] 105337 (OP_N) */ | |
XR = 4; /* firmware revision */ | |
SR = 0102077; /* test passed code */ | |
PR = (PR + 1) & VAMASK; /* P+2 return for firmware w/DPOLY */ | |
return reason; | |
default: /* others undefined */ | |
return stop_inst; | |
} | |
AR = op[0].fpk[0]; /* save result */ | |
BR = op[0].fpk[1]; /* into A/B */ | |
return reason; | |
} | |
#endif /* end of int64 support */ |