blob: 5a3f1f6b5c0676696f15497092b34e7339040625 [file] [log] [blame] [raw]
/* dc4.c: SWTP DC-4 FDC Simulator
Copyright (c) 2005-2012, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
23 Apr 15 -- Modified to use simh_debug
NOTES:
The DC-4 is a 5-inch floppy controller which can control up
to 4 daisy-chained 5-inch floppy drives. The controller is based on
the Western Digital 1797 Floppy Disk Controller (FDC) chip. This
file only emulates the minimum DC-4 functionality to interface with
the virtual disk file.
The floppy controller is interfaced to the CPU by use of 5 memory
addreses. These are SS-30 slot numbers 5 and 6 (0x8014-0x801B).
Address Mode Function
------- ---- --------
0x8014 Read Returns FDC interrupt status
0x8014 Write Selects the drive/head/motor control
0x8018 Read Returns status of FDC
0x8018 Write FDC command register
0x8019 Read Returns FDC track register
0x8019 Write Set FDC track register
0x801A Read Returns FDC sector register
0x801A Write Set FDC sector register
0x801B Read Read data
0x801B Write Write data
Drive Select Read (0x8014):
+---+---+---+---+---+---+---+---+
| I | D | X | X | X | X | X | X |
+---+---+---+---+---+---+---+---+
I = Set indicates an interrupt request from the FDC pending.
D = DRQ pending - same as bit 1 of FDC status register.
Drive Select Write (0x8014):
+---+---+---+---+---+---+---+---+
| M | S | X | X | X | X | Device|
+---+---+---+---+---+---+---+---+
M = If this bit is 1, the one-shot is triggered/retriggered to
start/keep the motors on.
S = Side select. If set, side one is selected otherwise side zero
is selected.
X = not used
Device = value 0 thru 3, selects drive 0-3 to be controlled.
Drive Status Read (0x8018):
+---+---+---+---+---+---+---+---+
| R | P | H | S | C | L | D | B |
+---+---+---+---+---+---+---+---+
B - When 1, the controller is busy.
D - When 1, index mark detected (type I) or data request - read data
ready/write data empty (type II or III).
H - When 1, track 0 (type I) or lost data (type II or III).
C - When 1, crc error detected.
S - When 1, seek (type I) or RNF (type II or III) error.
H - When 1, head is currently loaded (type I) or record type/
write fault (type II or III).
P - When 1, indicates that diskette is write-protected.
R - When 1, drive is not ready.
Drive Control Write (0x8018) for type I commands:
+---+---+---+---+---+---+---+---+
| 0 | S2| S1| S0| H | V | R1| R0|
+---+---+---+---+---+---+---+---+
R0/R1 - Selects the step rate.
V - When 1, verify on destination track.
H - When 1, loads head to drive surface.
S0/S1/S2 = 000 - home.
001 - seek track in data register.
010 - step without updating track register.
011 - step and update track register.
100 - step in without updating track register.
101 - step in and update track register.
110 - step out without updating track register.
111 - step out and update track register.
Drive Control Write (0x8018) for type II commands:
+---+---+---+---+---+---+---+---+
| 1 | 0 | T | M | S | E | B | A |
+---+---+---+---+---+---+---+---+
A - Zero for read, 1 on write deleted data mark else data mark.
B - When 1, shifts sector length field definitions one place.
E - When, delay operation 15 ms, 0 no delay.
S - When 1, select side 1, 0 select side 0.
M - When 1, multiple records, 0 for single record.
T - When 1, write command, 0 for read.
Drive Control Write (0x8018) for type III commands:
+---+---+---+---+---+---+---+---+
| 1 | 1 | T0| T1| 0 | E | 0 | 0 |
+---+---+---+---+---+---+---+---+
E - When, delay operation 15 ms, 0 no delay.
T0/T1 - 00 - read address command.
10 - read track command.
11 - write track command.
Tracks are numbered from 0 up to one minus the last track in the 1797!
Track Register Read (0x8019):
+---+---+---+---+---+---+---+---+
| Track Number |
+---+---+---+---+---+---+---+---+
Reads the current 8-bit value from the track position.
Track Register Write (0x8019):
+---+---+---+---+---+---+---+---+
| Track Number |
+---+---+---+---+---+---+---+---+
Writes the 8-bit value to the track register.
Sectors are numbers from 1 up to the last sector in the 1797!
Sector Register Read (0x801A):
+---+---+---+---+---+---+---+---+
| Sector Number |
+---+---+---+---+---+---+---+---+
Reads the current 8-bit value from the sector position.
Sector Register Write (0x801A):
+---+---+---+---+---+---+---+---+
| Sector Number |
+---+---+---+---+---+---+---+---+
Writes the 8-bit value to the sector register.
Data Register Read (0x801B):
+---+---+---+---+---+---+---+---+
| Data |
+---+---+---+---+---+---+---+---+
Reads the current 8-bit value from the data register.
Data Register Write (0x801B):
+---+---+---+---+---+---+---+---+
| Data |
+---+---+---+---+---+---+---+---+
Writes the 8-bit value to the data register.
A FLEX disk is defined as follows:
Track Sector Use
0 1 Boot sector
0 2 Boot sector (cont)
0 3 Unused
0 4 System Identity Record (explained below)
0 5 Unused
0 6-last Directory - 10 entries/sector (explained below)
1 1 First available data sector
last-1 last Last available data sector
System Identity Record
Byte Use
0x00 Two bytes of zeroes (Clears forward link)
0x10 Volume name in ASCII(11 bytes)
0x1B Volume number in binary (2 bytes)
0x1D Address of first free data sector (Track-Sector) (2 bytes)
0x1F Address of last free data sector (Track-Sector) (2 bytes)
0x21 Total number of data sectors in binary (2 bytes)
0x23 Current date (Month-Day-Year) in binary
0x26 Highest track number on disk in binary (byte)
0x27 Highest sector number on a track in binary (byte)
The following unit registers are used by this controller emulation:
dsk_unit[cur_drv].u3 unit current flags
dsk_unit[cur_drv].u4 unit current track
dsk_unit[cur_drv].u5 unit current sector
dsk_unit[cur_drv].pos unit current sector byte index into buffer
dsk_unit[cur_drv].filebuf unit current sector buffer
dsk_unit[cur_drv].fileref unit current attached file reference
*/
#include <stdio.h>
#include "swtp_defs.h"
#define DEBUG 0
#define UNIT_V_ENABLE (UNIT_V_UF + 0) /* Write Enable */
#define UNIT_ENABLE (1 << UNIT_V_ENABLE)
/* emulate a SS FLEX disk with 72 sectors and 80 tracks */
#define NUM_DISK 4 /* standard 1797 maximum */
#define SECT_SIZE 256 /* standard FLEX sector */
#define NUM_SECT 72 /* sectors/track */
#define TRAK_SIZE (SECT_SIZE * NUM_SECT) /* trk size (bytes) */
#define HEADS 1 /* handle as SS with twice the sectors */
#define NUM_CYL 80 /* maximum tracks */
#define DSK_SIZE (NUM_SECT * HEADS * NUM_CYL * SECT_SIZE) /* dsk size (bytes) */
/* SIR offsets */
#define MAXCYL 0x26 /* last cylinder # */
#define MAXSEC 0x27 /* last sector # */
/* 1797 status bits */
#define BUSY 0x01
#define DRQ 0x02
#define WRPROT 0x40
#define NOTRDY 0x80
/* function prototypes */
t_stat dsk_reset (DEVICE *dptr);
/* SS-50 I/O address space functions */
int32 fdcdrv(int32 io, int32 data);
int32 fdccmd(int32 io, int32 data);
int32 fdctrk(int32 io, int32 data);
int32 fdcsec(int32 io, int32 data);
int32 fdcdata(int32 io, int32 data);
/* Local Variables */
int32 fdcbyte;
int32 intrq = 0; /* interrupt request flag */
int32 cur_dsk; /* Currently selected drive */
int32 wrt_flag = 0; /* FDC write flag */
int32 spt; /* sectors/track */
int32 trksiz; /* trk size (bytes) */
int32 heds; /* number of heads */
int32 cpd; /* cylinders/disk */
int32 dsksiz; /* dsk size (bytes) */
/* Floppy Disk Controller data structures
dsk_dev Mother Board device descriptor
dsk_unit Mother Board unit descriptor
dsk_reg Mother Board register list
dsk_mod Mother Board modifiers list
*/
UNIT dsk_unit[] = {
{ UDATA (NULL, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, 0) },
{ UDATA (NULL, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, 0) },
{ UDATA (NULL, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, 0) },
{ UDATA (NULL, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, 0) }
};
REG dsk_reg[] = {
{ HRDATA (DISK, cur_dsk, 4) },
{ NULL }
};
MTAB dsk_mod[] = {
{ UNIT_ENABLE, UNIT_ENABLE, "RW", "RW", NULL },
{ UNIT_ENABLE, 0, "RO", "RO", NULL },
{ 0 }
};
DEBTAB dsk_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ NULL }
};
DEVICE dsk_dev = {
"DC-4", //name
dsk_unit, //units
dsk_reg, //registers
dsk_mod, //modifiers
NUM_DISK, //numunits
16, //aradix
16, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
&dsk_reset, //reset
NULL, //boot
NULL, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG, //flags
0, //dctrl
dsk_debug, /* debflags */
NULL, //msize
NULL //lname
};
/* Reset routine */
t_stat dsk_reset (DEVICE *dptr)
{
int i;
cur_dsk = 5; /* force initial SIR read */
for (i=0; i<NUM_DISK; i++) {
dsk_unit[i].u3 = 0; /* clear current flags */
dsk_unit[i].u4 = 0; /* clear current cylinder # */
dsk_unit[i].u5 = 0; /* clear current sector # */
dsk_unit[i].pos = 0; /* clear current byte ptr */
if (dsk_unit[i].filebuf == NULL) {
dsk_unit[i].filebuf = malloc(256); /* allocate buffer */
if (dsk_unit[i].filebuf == NULL) {
printf("dc-4_reset: Malloc error\n");
return SCPE_MEM;
}
}
}
spt = 0;
trksiz = 0;
heds = 0;
cpd = 0;
dsksiz = 0;
return SCPE_OK;
}
/* I/O instruction handlers, called from the MP-B2 module when a
read or write occur to addresses 0x8004-0x8007. */
/* DC-4 drive select register routine - this register is not part of the 1797
*/
int32 fdcdrv(int32 io, int32 data)
{
static long pos;
static int32 err;
if (io) { /* write to DC-4 drive register */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdrv: Drive selected %d cur_dsk=%d",
data & 0x03, cur_dsk);
if (cur_dsk == (data & 0x03))
return 0; /* already selected */
cur_dsk = data & 0x03; /* only 2 drive select bits */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdrv: Drive set to %d", cur_dsk);
if ((dsk_unit[cur_dsk].flags & UNIT_ENABLE) == 0) {
dsk_unit[cur_dsk].u3 |= WRPROT; /* set 1797 WPROT */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdrv: Drive write protected");
} else {
dsk_unit[cur_dsk].u3 &= ~WRPROT; /* set 1797 not WPROT */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdrv: Drive NOT write protected");
}
pos = 0x200; /* Read in SIR */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdrv: Read pos = %ld ($%04X)",
pos, (unsigned int) pos);
err = sim_fseek(dsk_unit[cur_dsk].fileref, pos, SEEK_SET); /* seek to offset */
if (err) {
sim_printf("\nfdccmd: Seek error read in SIR\n");
return SCPE_IOERR;
}
err = sim_fread(dsk_unit[cur_dsk].filebuf, SECT_SIZE, 1, dsk_unit[cur_dsk].fileref); /* read in buffer */
if (err != 1) {
sim_printf("\nfdccmd: File error read in SIR\n");
return SCPE_IOERR;
}
dsk_unit[cur_dsk].u3 |= BUSY | DRQ; /* set DRQ & BUSY */
dsk_unit[cur_dsk].pos = 0; /* clear counter */
spt = *((uint8 *)(dsk_unit[cur_dsk].filebuf) + MAXSEC) & 0xFF;
heds = 0;
cpd = *((uint8 *)(dsk_unit[cur_dsk].filebuf) + MAXCYL) & 0xFF;
trksiz = spt * SECT_SIZE;
dsksiz = trksiz * cpd;
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdrv: spt=%d heds=%d cpd=%d trksiz=%d dsksiz=%d flags=%08X u3=%08X",
spt, heds, cpd, trksiz, dsksiz, dsk_unit[cur_dsk].flags, dsk_unit[cur_dsk].u3);
return 0;
} else { /* read from DC-4 drive register */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdrv: Drive read as %02X", intrq);
return intrq;
}
}
/* WD 1797 FDC command register routine */
int32 fdccmd(int32 io, int32 data)
{
static int32 val = 0, val1 = NOTRDY;
static long pos;
static int32 err;
if ((dsk_unit[cur_dsk].flags & UNIT_ATT) == 0) { /* not attached */
dsk_unit[cur_dsk].u3 |= NOTRDY; /* set not ready flag */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Drive %d is not attached", cur_dsk);
return 0;
} else {
dsk_unit[cur_dsk].u3 &= ~NOTRDY; /* clear not ready flag */
}
if (io) { /* write command to fdc */
switch(data) {
case 0x8C: /* read command */
case 0x9C:
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Read of disk %d, track %d, sector %d",
cur_dsk, dsk_unit[cur_dsk].u4, dsk_unit[cur_dsk].u5);
pos = trksiz * dsk_unit[cur_dsk].u4; /* calculate file offset */
pos += SECT_SIZE * (dsk_unit[cur_dsk].u5 - 1);
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Read pos = %ld ($%08X)",
pos, (unsigned int) pos);
err = sim_fseek(dsk_unit[cur_dsk].fileref, pos, SEEK_SET); /* seek to offset */
if (err) {
sim_printf("\nfdccmd: Seek error in read command\n");
return SCPE_IOERR;
}
err = sim_fread(dsk_unit[cur_dsk].filebuf, SECT_SIZE, 1, dsk_unit[cur_dsk].fileref); /* read in buffer */
if (err != 1) {
sim_printf("\nfdccmd: File error in read command\n");
return SCPE_IOERR;
}
dsk_unit[cur_dsk].u3 |= BUSY | DRQ; /* set DRQ & BUSY */
dsk_unit[cur_dsk].pos = 0; /* clear counter */
break;
case 0xAC: /* write command */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Write of disk %d, track %d, sector %d",
cur_dsk, dsk_unit[cur_dsk].u4, dsk_unit[cur_dsk].u5);
if (dsk_unit[cur_dsk].u3 & WRPROT) {
printf("\nfdccmd: Drive %d is write-protected", cur_dsk);
} else {
pos = trksiz * dsk_unit[cur_dsk].u4; /* calculate file offset */
pos += SECT_SIZE * (dsk_unit[cur_dsk].u5 - 1);
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Write pos = %ld ($%08X)",
pos, (unsigned int) pos);
err = sim_fseek(dsk_unit[cur_dsk].fileref, pos, SEEK_SET); /* seek to offset */
if (err) {
sim_printf("\nfdccmd: Seek error in write command\n");
return SCPE_IOERR;
}
wrt_flag = 1; /* set write flag */
dsk_unit[cur_dsk].u3 |= BUSY | DRQ;/* set DRQ & BUSY */
dsk_unit[cur_dsk].pos = 0; /* clear counter */
}
break;
case 0x18: /* seek command */
case 0x1B:
dsk_unit[cur_dsk].u4 = fdcbyte; /* set track */
dsk_unit[cur_dsk].u3 &= ~(BUSY | DRQ); /* clear flags */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Seek of disk %d, track %d",
cur_dsk, fdcbyte);
break;
case 0x0B: /* restore command */
dsk_unit[cur_dsk].u4 = 0; /* home the drive */
dsk_unit[cur_dsk].u3 &= ~(BUSY | DRQ); /* clear flags */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Drive %d homed", cur_dsk);
break;
case 0xF0: /* write track command */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Write track command for drive %d",
cur_dsk);
break;
default:
printf("Unknown FDC command %02XH\n\r", data);
}
} else { /* read status from fdc */
val = dsk_unit[cur_dsk].u3; /* set return value */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Exit Drive %d status=%02X",
cur_dsk, val);
sim_debug (DEBUG_flow, &dsk_dev, "\n%02X", val); //even this short fails it!
if (val1 == 0 && ((val & (BUSY + DRQ)) == (BUSY + DRQ))) /* delay BUSY going high */
val &= ~BUSY;
if (val != val1) /* now allow BUSY after one read */
val1 = val;
sim_debug (DEBUG_flow, &dsk_dev, "\nfdccmd: Exit Drive %d status=%02X",
cur_dsk, val);
}
return val;
}
/* WD 1797 FDC track register routine */
int32 fdctrk(int32 io, int32 data)
{
if (io) {
dsk_unit[cur_dsk].u4 = data & 0xFF;
sim_debug (DEBUG_flow, &dsk_dev, "\nfdctrk: Drive %d track set to %d",
cur_dsk, dsk_unit[cur_dsk].u4);
}
sim_debug (DEBUG_flow, &dsk_dev, "\nfdctrk: Drive %d track read as %d",
cur_dsk, dsk_unit[cur_dsk].u4);
return dsk_unit[cur_dsk].u4;
}
/* WD 1797 FDC sector register routine */
int32 fdcsec(int32 io, int32 data)
{
if (io) {
dsk_unit[cur_dsk].u5 = data & 0xFF;
if (dsk_unit[cur_dsk].u5 == 0) /* fix for swtp boot! */
dsk_unit[cur_dsk].u5 = 1;
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcsec: Drive %d sector set to %d",
cur_dsk, dsk_unit[cur_dsk].u5);
}
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcsec: Drive %d sector read as %d",
cur_dsk, dsk_unit[cur_dsk].u5);
return dsk_unit[cur_dsk].u5;
}
/* WD 1797 FDC data register routine */
int32 fdcdata(int32 io, int32 data)
{
int32 val;
if (io) { /* write byte to fdc */
fdcbyte = data; /* save for seek */
if (dsk_unit[cur_dsk].pos < SECT_SIZE) { /* copy bytes to buffer */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdata: Writing byte %d of %02X",
dsk_unit[cur_dsk].pos, data);
*((uint8 *)(dsk_unit[cur_dsk].filebuf) + dsk_unit[cur_dsk].pos) = data; /* byte into buffer */
dsk_unit[cur_dsk].pos++; /* step counter */
if (dsk_unit[cur_dsk].pos == SECT_SIZE) {
dsk_unit[cur_dsk].u3 &= ~(BUSY | DRQ);
if (wrt_flag) { /* if initiated by FDC write command */
sim_fwrite(dsk_unit[cur_dsk].filebuf, SECT_SIZE, 1, dsk_unit[cur_dsk].fileref); /* write it */
wrt_flag = 0; /* clear write flag */
}
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdata: Sector write complete");
}
}
return 0;
} else { /* read byte from fdc */
if (dsk_unit[cur_dsk].pos < SECT_SIZE) { /* copy bytes from buffer */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdata: Reading byte %d u3=%02X",
dsk_unit[cur_dsk].pos, dsk_unit[cur_dsk].u3);
val = *((uint8 *)(dsk_unit[cur_dsk].filebuf) + dsk_unit[cur_dsk].pos) & 0xFF;
dsk_unit[cur_dsk].pos++; /* step counter */
if (dsk_unit[cur_dsk].pos == SECT_SIZE) { /* done? */
dsk_unit[cur_dsk].u3 &= ~(BUSY | DRQ); /* clear flags */
sim_debug (DEBUG_flow, &dsk_dev, "\nfdcdata: Sector read complete");
}
return val;
} else
return 0;
}
}
/* end of dc-4.c */