blob: 912d3968c6babebc90ec9953efd586b14f5ffe00 [file] [log] [blame] [raw]
/* pdp18b_rp.c: RP15/RP02 disk pack simulator
Copyright (c) 1993-2016, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rp RP15/RP02/RP03 disk pack
15-Mar-16 RMS Added RP03 support
Fixed handling of done flag
07-Mar-16 RMS Revised for dynamically allocated memory
13-Sep-15 RMS Added APIVEC register
14-Jan-04 RMS Revised IO device call interface
06-Feb-03 RMS Revised IOT decoding, fixed bug in initiation
05-Oct-02 RMS Added DIB, device number support
06-Jan-02 RMS Revised enable/disable support
29-Nov-01 RMS Added read only unit support
25-Nov-01 RMS Revised interrupt structure
Changed FLG to array
26-Apr-01 RMS Added device enable/disable support
14-Apr-99 RMS Changed t_addr to unsigned
29-Jun-96 RMS Added unit enable/disable support
*/
#include "pdp18b_defs.h"
/* Constants */
#define RP_NUMWD 256 /* words/sector */
#define RP_NUMSC 10 /* sectors/surface */
#define RP_NUMSF 20 /* surfaces/cylinder */
#define RP02_NUMCY 203 /* cylinders/drive */
#define RP03_NUMCY 406
#define RP_NUMDR 8 /* drives/controller */
#define RP02_SIZE (RP02_NUMCY * RP_NUMSF * RP_NUMSC * RP_NUMWD)
#define RP03_SIZE (RP03_NUMCY * RP_NUMSF * RP_NUMSC * RP_NUMWD)
#define RP_QCYL(f) (((f) & UNIT_RP03)? RP03_NUMCY: RP02_NUMCY)
#define RP_QSIZE(f) (((f) & UNIT_RP03)? RP03_SIZE: RP02_SIZE)
/* Unit specific flags */
#define UNIT_V_WLK (UNIT_V_UF + 0) /* hwre write lock */
#define UNIT_V_RP03 (UNIT_V_UF + 1) /* RP03 */
#define UNIT_WLK (1u << UNIT_V_WLK)
#define UNIT_RP03 (1u << UNIT_V_RP03)
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write protect */
/* Parameters in the unit descriptor */
#define CYL u3 /* current cylinder */
#define FUNC u4 /* function */
/* Status register A */
#define STA_V_UNIT 15 /* unit select */
#define STA_M_UNIT 07
#define STA_V_FUNC 12 /* function */
#define STA_M_FUNC 07
#define FN_IDLE 0
#define FN_READ 1
#define FN_WRITE 2
#define FN_RECAL 3
#define FN_SEEK 4
#define FN_RDALL 5
#define FN_WRALL 6
#define FN_WRCHK 7
#define FN_2ND 010 /* second state flag */
#define STA_IED 0004000 /* int enable done */
#define STA_IEA 0002000 /* int enable attn */
#define STA_GO 0001000 /* go */
#define STA_WPE 0000400 /* write lock error */
#define STA_NXC 0000200 /* nx cyl error */
#define STA_NXF 0000100 /* nx surface error */
#define STA_NXS 0000040 /* nx sector error */
#define STA_HNF 0000020 /* hdr not found */
#define STA_SUWP 0000010 /* sel unit wrt lock */
#define STA_SUSI 0000004 /* sel unit seek inc */
#define STA_DON 0000002 /* done */
#define STA_ERR 0000001 /* error */
#define STA_RW 0777000 /* read/write */
#define STA_EFLGS (STA_WPE | STA_NXC | STA_NXF | STA_NXS | \
STA_HNF | STA_SUSI) /* error flags */
#define STA_DYN (STA_SUWP | STA_SUSI) /* per unit status */
#define GET_UNIT(x) (((x) >> STA_V_UNIT) & STA_M_UNIT)
#define GET_FUNC(x) (((x) >> STA_V_FUNC) & STA_M_FUNC)
/* Status register B */
#define STB_V_ATT0 17 /* unit 0 attention */
#define STB_ATTN 0776000 /* attention flags */
#define STB_SUFU 0001000 /* sel unit unsafe */
#define STB_PGE 0000400 /* programming error */
#define STB_EOP 0000200 /* end of pack */
#define STB_TME 0000100 /* timing error */
#define STB_FME 0000040 /* format error */
#define STB_WCE 0000020 /* write check error */
#define STB_WPE 0000010 /* word parity error */
#define STB_LON 0000004 /* long parity error */
#define STB_SUSU 0000002 /* sel unit seeking */
#define STB_SUNR 0000001 /* sel unit not rdy */
#define STB_EFLGS (STB_SUFU | STB_PGE | STB_EOP | STB_TME | STB_FME | \
STB_WCE | STB_WPE | STB_LON ) /* error flags */
#define STB_DYN (STB_SUFU | STB_SUSU | STB_SUNR) /* per unit */
/* Disk address */
#define DA_V_SECT 0 /* sector */
#define DA_M_SECT 017
#define DA_V_C256 4
#define DA_C256 (1 << DA_V_C256)
#define DA_V_SURF 5
#define DA_M_SURF 037
#define DA_V_CYL 10 /* cylinder */
#define DA_M_CYL 0377
#define GET_SECT(x) (((x) >> DA_V_SECT) & DA_M_SECT)
#define GET_SURF(x) (((x) >> DA_V_SURF) & DA_M_SURF)
#define GET_CYL(x) ((((x) >> DA_V_CYL) & DA_M_CYL) + \
(((x) & DA_C256)? 256: 0))
#define GET_DA(x) ((((GET_CYL (x) * RP_NUMSF) + GET_SURF (x)) * \
RP_NUMSC) + GET_SECT (x))
/* Current cylinder */
#define CCYL_RP03 0400000 /* RP03 flag */
#define RP_MIN 2
#define MAX(x,y) (((x) > (y))? (x): (y))
extern int32 *M;
extern int32 int_hwre[API_HLVL+1], nexm;
extern int32 api_vec[API_HLVL][32];
extern UNIT cpu_unit;
int32 rp_sta = 0; /* status A */
int32 rp_stb = 0; /* status B */
int32 rp_ma = 0; /* memory address */
int32 rp_da = 0; /* disk address */
int32 rp_wc = 0; /* word count */
int32 rp_busy = 0; /* busy */
int32 rp_stopioe = 1; /* stop on error */
int32 rp_swait = 10; /* seek time */
int32 rp_rwait = 10; /* rotate time */
DEVICE rp_dev;
int32 rp63 (int32 dev, int32 pulse, int32 dat);
int32 rp64 (int32 dev, int32 pulse, int32 dat);
int32 rp_iors (void);
t_stat rp_svc (UNIT *uptr);
void rp_updsta (int32 newa, int32 newb);
t_stat rp_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat rp_reset (DEVICE *dptr);
t_stat rp_attach (UNIT *uptr, char *cptr);
t_stat rp_detach (UNIT *uptr);
/* RP15 data structures
rp_dev RP device descriptor
rp_unit RP unit list
rp_reg RP register list
rp_mod RP modifier list
*/
DIB rp_dib = { DEV_RP, 2, &rp_iors, { &rp63, &rp64 } };
UNIT rp_unit[] = {
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP02_SIZE) }
};
REG rp_reg[] = {
{ ORDATA (STA, rp_sta, 18) },
{ ORDATA (STB, rp_stb, 18) },
{ ORDATA (DA, rp_da, 18) },
{ ORDATA (MA, rp_ma, 18) },
{ ORDATA (WC, rp_wc, 18) },
{ FLDATA (INT, int_hwre[API_RP], INT_V_RP) },
{ FLDATA (BUSY, rp_busy, 0) },
{ FLDATA (STOP_IOE, rp_stopioe, 0) },
{ DRDATA (STIME, rp_swait, 24), PV_LEFT },
{ DRDATA (RTIME, rp_rwait, 24), PV_LEFT },
{ ORDATA (DEVNO, rp_dib.dev, 6), REG_HRO },
{ ORDATA (APIVEC, api_vec[API_RP][INT_V_RP], 6), REG_HRO },
{ NULL }
};
MTAB rp_mod[] = {
{ UNIT_RP03, 0, "RP02", "RP02", &rp_set_size },
{ UNIT_RP03, UNIT_RP03, "RP03", "RP03", &rp_set_size },
{ UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", "DEVNO", &set_devno, &show_devno },
{ 0 }
};
DEVICE rp_dev = {
"RP", rp_unit, rp_reg, rp_mod,
RP_NUMDR, 8, 26, 1, 8, 18,
NULL, NULL, &rp_reset,
NULL, &rp_attach, &rp_detach,
&rp_dib, DEV_DISABLE
};
/* IOT routines */
int32 rp63 (int32 dev, int32 pulse, int32 dat)
{
int32 sb = pulse & 060; /* subopcode */
rp_updsta (0, 0);
if (pulse & 01) {
if ((sb == 000) && /* DPSF */
((rp_sta & (STA_DON | STA_ERR)) || (rp_stb & STB_ATTN)))
dat = IOT_SKP | dat;
else if ((sb == 020) && (rp_stb & STB_ATTN)) /* DPSA */
dat = IOT_SKP | dat;
else if ((sb == 040) && (rp_sta & STA_DON)) /* DPSJ */
dat = IOT_SKP | dat;
else if ((sb == 060) && (rp_sta & STA_ERR)) /* DPSE */
dat = IOT_SKP | dat;
}
if (pulse & 02) {
if (sb == 000) /* DPOSA */
dat = dat | rp_sta;
else if (sb == 020) /* DPOSB */
dat = dat | rp_stb;
}
if (pulse & 04) {
if (rp_busy) { /* busy? */
rp_updsta (0, STB_PGE); /* prog error */
return dat;
}
else if (sb == 000) { /* DPLA */
int32 u = GET_UNIT (rp_sta);
rp_da = dat & DMASK;
if (GET_SECT (rp_da) >= RP_NUMSC)
rp_updsta (STA_NXS, 0);
if (GET_SURF (rp_da) >= RP_NUMSF)
rp_updsta (STA_NXF, 0);
if (GET_CYL (rp_da) >= RP_QCYL (rp_unit[u].flags))
rp_updsta (STA_NXC, 0);
}
else if (sb == 020) { /* DPCS */
rp_sta = rp_sta & ~(STA_HNF | STA_DON); /* clr err, done */
rp_stb = rp_stb & ~(STB_FME | STB_WPE | STB_LON | STB_WCE |
STB_TME | STB_PGE | STB_EOP);
rp_updsta (0, 0);
}
else if (sb == 040) /* DPCA */
rp_ma = dat & DMASK;
else if (sb == 060) /* DPWC */
rp_wc = dat & DMASK;
}
return dat;
}
/* IOT 64 */
int32 rp64 (int32 dev, int32 pulse, int32 dat)
{
int32 u, f, c, sb;
UNIT *uptr;
sb = pulse & 060;
if (pulse & 01) {
if (sb == 020) /* DPSN */
dat = IOT_SKP | dat;
}
if (pulse & 02) {
if (sb == 000) { /* DPOU */
u = GET_UNIT (rp_sta);
uptr = rp_dev.units + u; /* select unit */
dat = dat | uptr->CYL | ((uptr->flags & UNIT_RP03)? CCYL_RP03: 0);
}
else if (sb == 020) /* DPOA */
dat = dat | rp_da;
else if (sb == 040) /* DPOC */
dat = dat | rp_ma;
else if (sb == 060) /* DPOW */
dat = dat | rp_wc;
}
if (pulse & 04) {
if (sb == 000) { /* DPCF */
rp_reset (&rp_dev); /* reset dev */
return dat;
}
if (rp_busy != 0) { /* others: busy? */
rp_updsta (0, STB_PGE); /* prog error */
return dat;
}
if (sb == 020) /* DPLZ */
rp_sta = rp_sta & (dat | ~STA_RW);
else if (sb == 040) /* DPLO */
rp_sta = rp_sta | (dat & STA_RW);
else if (sb == 060) /* DPLF */
rp_sta = (rp_sta & ~STA_RW) | (dat & STA_RW);
u = GET_UNIT (rp_sta); /* get unit num */
uptr = rp_dev.units + u; /* select unit */
if ((rp_sta & STA_GO) && !sim_is_active (uptr)) {
f = uptr->FUNC = GET_FUNC (rp_sta); /* get function */
rp_busy = 1; /* set ctrl busy */
rp_sta = rp_sta & ~STA_HNF; /* clear flag */
rp_stb = rp_stb & ~(STB_FME | STB_WPE | STB_LON | STB_WCE |
STB_TME | STB_PGE | STB_EOP | (1 << (STB_V_ATT0 - u)));
if (((uptr->flags & UNIT_ATT) == 0) || (f == FN_IDLE) ||
(f == FN_SEEK) || (f == FN_RECAL))
sim_activate (uptr, RP_MIN); /* short delay */
else {
c = GET_CYL (rp_da);
c = abs (c - uptr->CYL) * rp_swait; /* seek time */
sim_activate (uptr, MAX (RP_MIN, c + rp_rwait));
rp_sta = rp_sta & ~STA_DON; /* clear done */
}
}
}
rp_updsta (0, 0);
return dat;
}
/* Unit service
If function = idle, clear busy
If seek or recal initial state, clear busy, compute seek time,
put on cylinder, set second state
If unit not attached, give error
If seek or recal second state, set attention line, compute errors
Else complete data transfer command
The unit control block contains the function and cylinder for
the current command.
*/
static int32 fill[RP_NUMWD] = { 0 };
t_stat rp_svc (UNIT *uptr)
{
int32 f, u, comp, cyl, sect, surf;
int32 err, pa, da, wc, awc, i;
u = (int32) (uptr - rp_dev.units); /* get drv number */
f = uptr->FUNC; /* get function */
if (f == FN_IDLE) { /* idle? */
rp_busy = 0; /* clear busy */
return SCPE_OK;
}
if ((f == FN_SEEK) || (f == FN_RECAL)) { /* seek or recal? */
rp_busy = 0; /* not busy */
cyl = (f == FN_SEEK)? GET_CYL (rp_da): 0; /* get cylinder */
sim_activate (uptr, MAX (RP_MIN, abs (cyl - uptr->CYL) * rp_swait));
uptr->CYL = cyl; /* on cylinder */
uptr->FUNC = FN_SEEK | FN_2ND; /* set second state */
rp_updsta (0, 0); /* update status */
return SCPE_OK;
}
if (f == (FN_SEEK | FN_2ND)) { /* seek done? */
rp_updsta (0, rp_stb | (1 << (STB_V_ATT0 - u))); /* set attention */
return SCPE_OK;
}
if ((uptr->flags & UNIT_ATT) == 0) { /* not attached? */
rp_updsta (STA_DON, STB_SUFU); /* done, unsafe */
return IORETURN (rp_stopioe, SCPE_UNATT);
}
if ((f == FN_WRITE) && (uptr->flags & UNIT_WPRT)) { /* write locked? */
rp_updsta (STA_DON | STA_WPE, 0); /* error */
return SCPE_OK;
}
if (GET_SECT (rp_da) >= RP_NUMSC)
rp_updsta (STA_NXS, 0);
if (GET_SURF (rp_da) >= RP_NUMSF)
rp_updsta (STA_NXF, 0);
if (GET_CYL (rp_da) >= RP_QCYL (uptr->flags))
rp_updsta (STA_NXC, 0);
if (rp_sta & (STA_NXS | STA_NXF | STA_NXC)) { /* or bad disk addr? */
rp_updsta (STA_DON, STB_SUFU); /* done, unsafe */
return SCPE_OK;
}
uptr->CYL = GET_CYL (rp_da); /* on cylinder */
pa = rp_ma & AMASK; /* get mem addr */
da = GET_DA (rp_da) * RP_NUMWD; /* get disk addr */
wc = 01000000 - rp_wc; /* get true wc */
if (((uint32) (pa + wc)) > MEMSIZE) { /* memory overrun? */
nexm = 1; /* set nexm flag */
wc = MEMSIZE - pa; /* limit xfer */
}
if ((da + wc) > RP_QSIZE (uptr->flags)) { /* disk overrun? */
rp_updsta (0, STB_EOP); /* error */
wc = RP_QSIZE (uptr->flags) - da; /* limit xfer */
}
err = fseek (uptr->fileref, da * sizeof (int32), SEEK_SET);
if ((f == FN_READ) && (err == 0)) { /* read? */
awc = fxread (&M[pa], sizeof (int32), wc, uptr->fileref);
for ( ; awc < wc; awc++)
M[pa + awc] = 0;
err = ferror (uptr->fileref);
}
if ((f == FN_WRITE) && (err == 0)) { /* write? */
fxwrite (&M[pa], sizeof (int32), wc, uptr->fileref);
err = ferror (uptr->fileref);
if ((err == 0) && (i = (wc & (RP_NUMWD - 1)))) {
fxwrite (fill, sizeof (int32), i, uptr->fileref);
err = ferror (uptr->fileref);
}
}
if ((f == FN_WRCHK) && (err == 0)) { /* write check? */
for (i = 0; (err == 0) && (i < wc); i++) {
awc = fxread (&comp, sizeof (int32), 1, uptr->fileref);
if (awc == 0)
comp = 0;
if (comp != M[pa + i])
rp_updsta (0, STB_WCE);
}
err = ferror (uptr->fileref);
}
rp_wc = (rp_wc + wc) & DMASK; /* final word count */
rp_ma = (rp_ma + wc) & DMASK; /* final mem addr */
da = (da + wc + (RP_NUMWD - 1)) / RP_NUMWD; /* final sector num */
cyl = da / (RP_NUMSC * RP_NUMSF); /* get cyl */
if (cyl >= RP_QCYL (uptr->flags)) /* cyl ovflo wraps */
cyl = 0;
surf = (da % (RP_NUMSC * RP_NUMSF)) / RP_NUMSC; /* get surface */
sect = (da % (RP_NUMSC * RP_NUMSF)) % RP_NUMSC; /* get sector */
rp_da = ((cyl & DA_M_CYL) << DA_V_CYL) | (surf << DA_V_SURF) | (sect << DA_V_SECT);
if (cyl >= 256) /* cyl >= 8 bits? */
rp_da = rp_da | DA_C256;
rp_busy = 0; /* clear busy */
rp_updsta (STA_DON, 0); /* set done */
if (err != 0) { /* error? */
sim_perror ("RP I/O error");
clearerr (uptr->fileref);
return IORETURN (rp_stopioe, SCPE_IOERR);
}
return SCPE_OK;
}
/* Update status */
void rp_updsta (int32 newa, int32 newb)
{
int32 f;
UNIT *uptr;
uptr = rp_dev.units + GET_UNIT (rp_sta);
rp_sta = (rp_sta & ~(STA_DYN | STA_ERR)) | newa;
rp_stb = (rp_stb & ~STB_DYN) | newb;
if (uptr->flags & UNIT_WPRT)
rp_sta = rp_sta | STA_SUWP;
if ((uptr->flags & UNIT_ATT) == 0)
rp_stb = rp_stb | STB_SUFU | STB_SUNR;
else if (sim_is_active (uptr)) {
f = (uptr->FUNC) & STA_M_FUNC;
if ((f == FN_SEEK) || (f == FN_RECAL))
rp_stb = rp_stb | STB_SUSU | STB_SUNR;
}
else if (uptr->CYL >= RP_QCYL (uptr->flags))
rp_sta = rp_sta | STA_SUSI;
if ((rp_sta & STA_EFLGS) || (rp_stb & STB_EFLGS))
rp_sta = rp_sta | STA_ERR;
if (((rp_sta & (STA_ERR | STA_DON)) && (rp_sta & STA_IED)) ||
((rp_stb & STB_ATTN) && (rp_sta & STA_IEA)))
SET_INT (RP);
else CLR_INT (RP);
return;
}
/* Reset routine */
t_stat rp_reset (DEVICE *dptr)
{
int32 i;
UNIT *uptr;
rp_sta = rp_stb = rp_da = rp_wc = rp_ma = rp_busy = 0;
CLR_INT (RP);
for (i = 0; i < RP_NUMDR; i++) {
uptr = rp_dev.units + i;
sim_cancel (uptr);
uptr->CYL = uptr->FUNC = 0;
}
return SCPE_OK;
}
/* IORS routine */
int32 rp_iors (void)
{
return ((rp_sta & (STA_ERR | STA_DON)) || (rp_stb & STB_ATTN))? IOS_RP: 0;
}
/* Attach unit */
t_stat rp_attach (UNIT *uptr, char *cptr)
{
t_stat reason;
uptr->capac = RP_QSIZE (uptr->flags);
reason = attach_unit (uptr, cptr);
rp_updsta (0, 0);
return reason;
}
/* Detach unit */
t_stat rp_detach (UNIT *uptr)
{
t_stat reason;
reason = detach_unit (uptr);
rp_updsta (0, 0);
return reason;
}
/* Set size routine */
t_stat rp_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (uptr->flags & UNIT_ATT)
return SCPE_ALATT;
uptr->capac = RP_QSIZE (val);
return SCPE_OK;
}