blob: 9d578a83033f1671e270d5ee404dfe2736b08a60 [file] [log] [blame] [raw]
/*************************************************************************
* *
* $Id: s100_disk3.c 1997 2008-07-18 05:29:52Z hharte $ *
* *
* Copyright (c) 2007-2008 Howard M. Harte. *
* http://www.hartetec.com *
* *
* Permission is hereby granted, free of charge, to any person obtaining *
* a copy of this software and associated documentation files (the *
* "Software"), to deal in the Software without restriction, including *
* without limitation the rights to use, copy, modify, merge, publish, *
* distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to *
* the following conditions: *
* *
* The above copyright notice and this permission notice shall be *
* included in all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, *
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF *
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND *
* NONINFRINGEMENT. IN NO EVENT SHALL HOWARD M. HARTE BE LIABLE FOR ANY *
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, *
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE *
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
* *
* Except as contained in this notice, the name of Howard M. Harte shall *
* not be used in advertising or otherwise to promote the sale, use or *
* other dealings in this Software without prior written authorization *
* Howard M. Harte. *
* *
* SIMH Interface based on altairz80_hdsk.c, by Peter Schorn. *
* *
* Module Description: *
* CompuPro DISK3 Hard Disk Controller module for SIMH. *
* *
* Environment: *
* User mode only *
* *
*************************************************************************/
#include "altairz80_defs.h"
#if defined (_WIN32)
#include <windows.h>
#endif
#include "sim_imd.h"
/* Debug flags */
#define ERROR_MSG (1 << 0)
#define SEEK_MSG (1 << 1)
#define CMD_MSG (1 << 2)
#define RD_DATA_MSG (1 << 3)
#define WR_DATA_MSG (1 << 4)
#define STATUS_MSG (1 << 5)
#define IRQ_MSG (1 << 6)
#define VERBOSE_MSG (1 << 7)
#define SPECIFY_MSG (1 << 8)
#define DISK3_MAX_DRIVES 4
#define DISK3_CSR 0 /* R=DISK3 Status / W=DISK3 Control Register */
#define DISK3_DATA 1 /* R=Step Pulse / W=Write Data Register */
#define DISK3_OP_DRIVE 0x00
#define DISK3_OP_CYL 0x01
#define DISK3_OP_HEAD 0x02
#define DISK3_OP_SECTOR 0x03
#define DISK3_CMD_NULL 0x00
#define DISK3_CMD_READ_DATA 0x01
#define DISK3_CMD_WRITE_DATA 0x02
#define DISK3_CMD_WRITE_HEADER 0x03
#define DISK3_CMD_READ_HEADER 0x04
#define DISK3_STATUS_BUSY 0
#define DISK3_STATUS_RANGE 1
#define DISK3_STATUS_NOT_READY 2
#define DISK3_STATUS_TIMEOUT 3
#define DISK3_STATUS_DAT_CRC 4
#define DISK3_STATUS_WR_FAULT 5
#define DISK3_STATUS_OVERRUN 6
#define DISK3_STATUS_HDR_CRC 7
#define DISK3_STATUS_MAP_FULL 8
#define DISK3_STATUS_COMPLETE 0xFF /* Complete with No Error */
#define DISK3_CODE_NOOP 0x00
#define DISK3_CODE_VERSION 0x01
#define DISK3_CODE_GLOBAL 0x02
#define DISK3_CODE_SPECIFY 0x03
#define DISK3_CODE_SET_MAP 0x04
#define DISK3_CODE_HOME 0x05
#define DISK3_CODE_SEEK 0x06
#define DISK3_CODE_READ_HDR 0x07
#define DISK3_CODE_READWRITE 0x08
#define DISK3_CODE_RELOCATE 0x09
#define DISK3_CODE_FORMAT 0x0A
#define DISK3_CODE_FORMAT_BAD 0x0B
#define DISK3_CODE_STATUS 0x0C
#define DISK3_CODE_SELECT 0x0D
#define DISK3_CODE_EXAMINE 0x0E
#define DISK3_CODE_MODIFY 0x0F
#define DISK3_CMD_MASK 0x3F
#define DISK3_REQUEST_IRQ 0x80
#define DISK3_IOPB_LEN 16
#define DISK3_IOPB_CMD 0
#define DISK3_IOPB_STATUS 1
#define DISK3_IOPB_DRIVE 2
#define DISK3_IOPB_ARG1 3
#define DISK3_IOPB_ARG2 4
#define DISK3_IOPB_ARG3 5
#define DISK3_IOPB_ARG4 6
#define DISK3_IOPB_ARG5 7
#define DISK3_IOPB_ARG6 8
#define DISK3_IOPB_ARG7 9
#define DISK3_IOPB_DATA 10
#define DISK3_IOPB_LINK 13
#define DISK3_MODE_ABS 0xFF
#define DISK3_MODE_LOGICAL 0x00
typedef struct {
UNIT *uptr;
DISK_INFO *imd;
uint16 sectsize; /* sector size, not including pre/postamble */
uint16 nsectors; /* number of sectors/track */
uint16 nheads; /* number of heads */
uint16 ntracks; /* number of tracks */
uint16 res_tracks; /* Number of reserved tracks on drive. */
uint16 track; /* Current Track */
uint16 cur_sect; /* current starting sector of transfer */
uint16 cur_track; /* Current Track */
uint16 xfr_nsects; /* Number of sectors to transfer */
uint8 ready; /* Is drive ready? */
} DISK3_DRIVE_INFO;
typedef struct {
PNP_INFO pnp; /* Plug and Play */
uint8 sel_drive; /* Currently selected drive */
uint8 mode; /* mode (0xFF=absolute, 0x00=logical) */
uint8 retries; /* Number of retries to attempt */
uint8 ndrives; /* Number of drives attached to the controller */
uint32 link_addr; /* Link Address for next IOPB */
uint32 dma_addr; /* DMA Address for the current IOPB */
DISK3_DRIVE_INFO drive[DISK3_MAX_DRIVES];
uint8 iopb[16];
} DISK3_INFO;
static DISK3_INFO disk3_info_data = { { 0x0, 0, 0x90, 2 } };
static DISK3_INFO *disk3_info = &disk3_info_data;
/* Disk geometries:
* ST506 ST412 CMI5619 Q520 Q540 Q2080
* Sectsize: 1024 1024 1024 1024 1024 1024
* Sectors: 9 9 9 9 9 11
* Heads: 4 4 6 4 8 7
* Tracks: 153 306 306 512 512 1172
*/
/* Default geometry for a 20MB hard disk. */
#define C20MB_SECTSIZE 1024
#define C20MB_NSECTORS 9
#define C20MB_NHEADS 4
#define C20MB_NTRACKS 512
static int32 ntracks = C20MB_NTRACKS;
static int32 nheads = C20MB_NHEADS;
static int32 nsectors = C20MB_NSECTORS;
static int32 sectsize = C20MB_SECTSIZE;
extern uint32 PCX;
extern REG *sim_PC;
extern t_stat set_iobase(UNIT *uptr, int32 val, char *cptr, void *desc);
extern t_stat show_iobase(FILE *st, UNIT *uptr, int32 val, void *desc);
extern uint32 sim_map_resource(uint32 baseaddr, uint32 size, uint32 resource_type,
int32 (*routine)(const int32, const int32, const int32), uint8 unmap);
extern int32 find_unit_index(UNIT *uptr);
extern void raise_ss1_interrupt(uint8 intnum);
/* These are needed for DMA. */
extern void PutByteDMA(const uint32 Addr, const uint32 Value);
extern uint8 GetByteDMA(const uint32 Addr);
#define UNIT_V_DISK3_WLK (UNIT_V_UF + 0) /* write locked */
#define UNIT_DISK3_WLK (1 << UNIT_V_DISK3_WLK)
#define UNIT_V_DISK3_VERBOSE (UNIT_V_UF + 1) /* verbose mode, i.e. show error messages */
#define UNIT_DISK3_VERBOSE (1 << UNIT_V_DISK3_VERBOSE)
#define DISK3_CAPACITY (C20MB_NTRACKS*C20MB_NHEADS*C20MB_NSECTORS*C20MB_SECTSIZE) /* Default Disk Capacity */
static t_stat disk3_reset(DEVICE *disk3_dev);
static t_stat disk3_attach(UNIT *uptr, char *cptr);
static t_stat disk3_detach(UNIT *uptr);
static void raise_disk3_interrupt(void);
static int32 disk3dev(const int32 port, const int32 io, const int32 data);
/* static uint8 DISK3_Read(const uint32 Addr); */
static uint8 DISK3_Write(const uint32 Addr, uint8 cData);
static UNIT disk3_unit[] = {
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, DISK3_CAPACITY) },
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, DISK3_CAPACITY) },
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, DISK3_CAPACITY) },
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, DISK3_CAPACITY) }
};
static REG disk3_reg[] = {
{ DRDATA (NTRACKS, ntracks, 10), },
{ DRDATA (NHEADS, nheads, 8), },
{ DRDATA (NSECTORS, nsectors, 8), },
{ DRDATA (SECTSIZE, sectsize, 11), },
{ HRDATA (SEL_DRIVE, disk3_info_data.sel_drive, 3), },
{ HRDATA (MODE, disk3_info_data.mode, 8), },
{ HRDATA (RETRIES, disk3_info_data.retries, 8), },
{ HRDATA (NDRIVES, disk3_info_data.ndrives, 8), },
{ HRDATA (LINK_ADDR, disk3_info_data.link_addr, 32), },
{ HRDATA (DMA_ADDR, disk3_info_data.dma_addr, 32), },
{ BRDATA (IOPB, &disk3_info_data.iopb[DISK3_IOPB_CMD], 16, 8, 16), },
{ NULL }
};
static MTAB disk3_mod[] = {
{ MTAB_XTD|MTAB_VDV, 0, "IOBASE", "IOBASE", &set_iobase, &show_iobase, NULL },
{ UNIT_DISK3_WLK, 0, "WRTENB", "WRTENB", NULL },
{ UNIT_DISK3_WLK, UNIT_DISK3_WLK, "WRTLCK", "WRTLCK", NULL },
/* quiet, no warning messages */
{ UNIT_DISK3_VERBOSE, 0, "QUIET", "QUIET", NULL },
/* verbose, show warning messages */
{ UNIT_DISK3_VERBOSE, UNIT_DISK3_VERBOSE, "VERBOSE", "VERBOSE", NULL },
{ 0 }
};
#define TRACE_PRINT(level, args) if(disk3_dev.dctrl & level) { \
printf args; \
}
/* Debug Flags */
static DEBTAB disk3_dt[] = {
{ "ERROR", ERROR_MSG },
{ "SEEK", SEEK_MSG },
{ "CMD", CMD_MSG },
{ "RDDATA", RD_DATA_MSG },
{ "WRDATA", WR_DATA_MSG },
{ "STATUS", STATUS_MSG },
{ "IRQ", IRQ_MSG },
{ "VERBOSE",VERBOSE_MSG },
{ "SPECIFY",SPECIFY_MSG },
{ NULL, 0 }
};
DEVICE disk3_dev = {
"DISK3", disk3_unit, disk3_reg, disk3_mod,
DISK3_MAX_DRIVES, 10, 31, 1, DISK3_MAX_DRIVES, DISK3_MAX_DRIVES,
NULL, NULL, &disk3_reset,
NULL, &disk3_attach, &disk3_detach,
&disk3_info_data, (DEV_DISABLE | DEV_DIS | DEV_DEBUG), ERROR_MSG,
disk3_dt, NULL, "Compupro ST-506 Disk Controller DISK3"
};
/* Reset routine */
static t_stat disk3_reset(DEVICE *dptr)
{
PNP_INFO *pnp = (PNP_INFO *)dptr->ctxt;
if(dptr->flags & DEV_DIS) { /* Disconnect I/O Ports */
sim_map_resource(pnp->io_base, pnp->io_size, RESOURCE_TYPE_IO, &disk3dev, TRUE);
} else {
/* Connect DISK3 at base address */
if(sim_map_resource(pnp->io_base, pnp->io_size, RESOURCE_TYPE_IO, &disk3dev, FALSE) != 0) {
printf("%s: error mapping I/O resource at 0x%04x\n", __FUNCTION__, pnp->io_base);
return SCPE_ARG;
}
}
disk3_info->link_addr = 0x50; /* After RESET, the link pointer is at 0x50. */
return SCPE_OK;
}
/* Attach routine */
static t_stat disk3_attach(UNIT *uptr, char *cptr)
{
t_stat r = SCPE_OK;
DISK3_DRIVE_INFO *pDrive;
int i = 0;
i = find_unit_index(uptr);
if (i == -1) {
return (SCPE_IERR);
}
pDrive = &disk3_info->drive[i];
pDrive->ready = 1;
pDrive->track = 5;
pDrive->ntracks = C20MB_NTRACKS;
pDrive->nheads = C20MB_NHEADS;
pDrive->nsectors = C20MB_NSECTORS;
pDrive->sectsize = C20MB_SECTSIZE;
r = attach_unit(uptr, cptr); /* attach unit */
if ( r != SCPE_OK) /* error? */
return r;
/* Determine length of this disk */
if(sim_fsize(uptr->fileref) != 0) {
uptr->capac = sim_fsize(uptr->fileref);
} else {
uptr->capac = (pDrive->ntracks * pDrive->nsectors * pDrive->nheads * pDrive->sectsize);
}
pDrive->uptr = uptr;
/* Default for new file is DSK */
uptr->u3 = IMAGE_TYPE_DSK;
if(uptr->capac > 0) {
r = assignDiskType(uptr);
if (r != SCPE_OK) {
disk3_detach(uptr);
return r;
}
}
if (uptr->flags & UNIT_DISK3_VERBOSE)
printf("DISK3%d, attached to '%s', type=%s, len=%d\n", i, cptr,
uptr->u3 == IMAGE_TYPE_IMD ? "IMD" : uptr->u3 == IMAGE_TYPE_CPT ? "CPT" : "DSK",
uptr->capac);
if(uptr->u3 == IMAGE_TYPE_IMD) {
if(uptr->capac < 318000) {
printf("Cannot create IMD files with SIMH.\nCopy an existing file and format it with CP/M.\n");
disk3_detach(uptr);
return SCPE_OPENERR;
}
if (uptr->flags & UNIT_DISK3_VERBOSE)
printf("--------------------------------------------------------\n");
disk3_info->drive[i].imd = diskOpen((uptr->fileref), (uptr->flags & UNIT_DISK3_VERBOSE));
if (uptr->flags & UNIT_DISK3_VERBOSE)
printf("\n");
} else {
disk3_info->drive[i].imd = NULL;
}
return SCPE_OK;
}
/* Detach routine */
t_stat disk3_detach(UNIT *uptr)
{
DISK3_DRIVE_INFO *pDrive;
t_stat r;
int8 i;
i = find_unit_index(uptr);
if (i == -1) {
return (SCPE_IERR);
}
pDrive = &disk3_info->drive[i];
pDrive->ready = 0;
if (uptr->flags & UNIT_DISK3_VERBOSE)
printf("Detach DISK3%d\n", i);
r = detach_unit(uptr); /* detach unit */
if ( r != SCPE_OK)
return r;
return SCPE_OK;
}
static int32 disk3dev(const int32 port, const int32 io, const int32 data)
{
TRACE_PRINT(VERBOSE_MSG, ("DISK3: " ADDRESS_FORMAT " IO %s, Port %02x" NLP, PCX, io ? "WR" : "RD", port));
if(io) {
DISK3_Write(port, data);
return 0;
} else {
return(0xFF);
}
}
static uint8 DISK3_Write(const uint32 Addr, uint8 cData)
{
uint32 next_link;
uint8 result = DISK3_STATUS_COMPLETE;
uint8 i;
uint8 cmd;
DISK3_DRIVE_INFO *pDrive;
for(i = 0; i < DISK3_IOPB_LEN; i++) {
disk3_info->iopb[i] = GetByteDMA(disk3_info->link_addr + i);
}
cmd = disk3_info->iopb[DISK3_IOPB_CMD];
disk3_info->sel_drive = disk3_info->iopb[DISK3_IOPB_DRIVE] & 0x03;
disk3_info->dma_addr = disk3_info->iopb[0x0A];
disk3_info->dma_addr |= disk3_info->iopb[0x0B] << 8;
disk3_info->dma_addr |= disk3_info->iopb[0x0C] << 16;
next_link = disk3_info->iopb[DISK3_IOPB_LINK+0];
next_link |= disk3_info->iopb[DISK3_IOPB_LINK+1] << 8;
next_link |= disk3_info->iopb[DISK3_IOPB_LINK+2] << 16;
TRACE_PRINT(VERBOSE_MSG, ("DISK3[%d]: LINK=0x%05x, NEXT=0x%05x, CMD=%x, %s DMA@0x%05x\n",
disk3_info->sel_drive,
disk3_info->link_addr,
next_link,
disk3_info->iopb[DISK3_IOPB_CMD] & DISK3_CMD_MASK,
(disk3_info->iopb[DISK3_IOPB_CMD] & DISK3_REQUEST_IRQ) ? "IRQ" : "POLL",
disk3_info->dma_addr));
pDrive = &disk3_info->drive[disk3_info->sel_drive];
if(pDrive->ready) {
/* Perform command */
switch(cmd & DISK3_CMD_MASK) {
case DISK3_CODE_NOOP:
TRACE_PRINT(VERBOSE_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " NOOP" NLP, disk3_info->sel_drive, PCX));
break;
case DISK3_CODE_VERSION:
break;
case DISK3_CODE_GLOBAL:
TRACE_PRINT(CMD_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " GLOBAL" NLP, disk3_info->sel_drive, PCX));
disk3_info->mode = disk3_info->iopb[DISK3_IOPB_ARG1];
disk3_info->retries = disk3_info->iopb[DISK3_IOPB_ARG2];
disk3_info->ndrives = disk3_info->iopb[DISK3_IOPB_ARG3];
TRACE_PRINT(SPECIFY_MSG, (" Mode: 0x%02x" NLP, disk3_info->mode));
TRACE_PRINT(SPECIFY_MSG, (" # Retries: 0x%02x" NLP, disk3_info->retries));
TRACE_PRINT(SPECIFY_MSG, (" # Drives: 0x%02x" NLP, disk3_info->ndrives));
if(disk3_info->mode == DISK3_MODE_ABS) {
TRACE_PRINT(ERROR_MSG, ("DISK3: Absolute addressing not supported." NLP));
}
break;
case DISK3_CODE_SPECIFY:
{
uint8 specify_data[22];
TRACE_PRINT(CMD_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " SPECIFY" NLP, disk3_info->sel_drive, PCX));
for(i = 0; i < 22; i++) {
specify_data[i] = GetByteDMA(disk3_info->dma_addr + i);
}
pDrive->sectsize = specify_data[4] | (specify_data[5] << 8);
pDrive->nsectors = specify_data[6] | (specify_data[7] << 8);
pDrive->nheads = specify_data[8] | (specify_data[9] << 8);
pDrive->ntracks = specify_data[10] | (specify_data[11] << 8);
pDrive->res_tracks = specify_data[18] | (specify_data[19] << 8);
TRACE_PRINT(SPECIFY_MSG, (" Sectsize: %d" NLP, pDrive->sectsize));
TRACE_PRINT(SPECIFY_MSG, (" Sectors: %d" NLP, pDrive->nsectors));
TRACE_PRINT(SPECIFY_MSG, (" Heads: %d" NLP, pDrive->nheads));
TRACE_PRINT(SPECIFY_MSG, (" Tracks: %d" NLP, pDrive->ntracks));
TRACE_PRINT(SPECIFY_MSG, (" Reserved: %d" NLP, pDrive->res_tracks));
break;
}
case DISK3_CODE_HOME:
pDrive->track = 0;
TRACE_PRINT(SEEK_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " HOME" NLP, disk3_info->sel_drive, PCX));
break;
case DISK3_CODE_SEEK:
pDrive->track = disk3_info->iopb[DISK3_IOPB_ARG1];
pDrive->track |= (disk3_info->iopb[DISK3_IOPB_ARG2] << 8);
if(pDrive->track > pDrive->ntracks) {
TRACE_PRINT(ERROR_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " SEEK ERROR %d not found" NLP, disk3_info->sel_drive, PCX, pDrive->track));
pDrive->track = pDrive->ntracks - 1;
result = DISK3_STATUS_TIMEOUT;
} else {
TRACE_PRINT(SEEK_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " SEEK %d" NLP, disk3_info->sel_drive, PCX, pDrive->track));
}
break;
case DISK3_CODE_READ_HDR:
{
TRACE_PRINT(CMD_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " READ HEADER: %d" NLP, pDrive->track, PCX, pDrive->track >> 8));
PutByteDMA(disk3_info->dma_addr + 0, pDrive->track & 0xFF);
PutByteDMA(disk3_info->dma_addr + 1, (pDrive->track >> 8) & 0xFF);
PutByteDMA(disk3_info->dma_addr + 2, 0);
PutByteDMA(disk3_info->dma_addr + 3, 1);
break;
}
case DISK3_CODE_READWRITE:
{
uint32 track_len;
uint32 xfr_len;
uint32 file_offset;
uint32 xfr_count = 0;
uint8 *dataBuffer;
size_t rtn;
if(disk3_info->mode == DISK3_MODE_ABS) {
TRACE_PRINT(ERROR_MSG, ("DISK3: Absolute addressing not supported." NLP));
break;
}
pDrive->cur_sect = disk3_info->iopb[DISK3_IOPB_ARG2] | (disk3_info->iopb[DISK3_IOPB_ARG3] << 8);
pDrive->cur_track = disk3_info->iopb[DISK3_IOPB_ARG4] | (disk3_info->iopb[DISK3_IOPB_ARG5] << 8);
pDrive->xfr_nsects = disk3_info->iopb[DISK3_IOPB_ARG6] | (disk3_info->iopb[DISK3_IOPB_ARG7] << 8);
track_len = pDrive->nsectors * pDrive->sectsize;
file_offset = (pDrive->cur_track * track_len); /* Calculate offset based on current track */
file_offset += pDrive->cur_sect * pDrive->sectsize;
xfr_len = pDrive->xfr_nsects * pDrive->sectsize;
dataBuffer = malloc(xfr_len);
sim_fseek((pDrive->uptr)->fileref, file_offset, SEEK_SET);
if(disk3_info->iopb[DISK3_IOPB_ARG1] == 1) { /* Read */
rtn = sim_fread(dataBuffer, 1, xfr_len, (pDrive->uptr)->fileref);
TRACE_PRINT(RD_DATA_MSG,
("DISK3[%d]: " ADDRESS_FORMAT " READ @0x%05x T:%04d/S:%04d/#:%d %s" NLP,
disk3_info->sel_drive,
PCX,
disk3_info->dma_addr,
pDrive->cur_track,
pDrive->cur_sect,
pDrive->xfr_nsects,
rtn == (size_t)xfr_len ? "OK" : "NOK"
));
/* Perform DMA Transfer */
for(xfr_count = 0;xfr_count < xfr_len; xfr_count++) {
PutByteDMA(disk3_info->dma_addr + xfr_count, dataBuffer[xfr_count]);
}
} else { /* Write */
TRACE_PRINT(WR_DATA_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " WRITE @0x%05x T:%04d/S:%04d/#:%d" NLP,
disk3_info->sel_drive,
PCX,
disk3_info->dma_addr,
pDrive->cur_track,
pDrive->cur_sect,
pDrive->xfr_nsects
));
/* Perform DMA Transfer */
for(xfr_count = 0;xfr_count < xfr_len; xfr_count++) {
dataBuffer[xfr_count] = GetByteDMA(disk3_info->dma_addr + xfr_count);
}
sim_fwrite(dataBuffer, 1, xfr_len, (pDrive->uptr)->fileref);
}
free(dataBuffer);
/* Update Track/Sector in IOPB */
pDrive->cur_sect += pDrive->xfr_nsects;
if(pDrive->cur_sect >= pDrive->nsectors) {
pDrive->cur_sect = pDrive->cur_sect % pDrive->nsectors;
pDrive->cur_track++;
}
disk3_info->iopb[DISK3_IOPB_ARG2] = pDrive->cur_sect & 0xFF;
disk3_info->iopb[DISK3_IOPB_ARG3] = (pDrive->cur_sect >> 8) & 0xFF;
disk3_info->iopb[DISK3_IOPB_ARG4] = pDrive->cur_track & 0xFF;
disk3_info->iopb[DISK3_IOPB_ARG5] = (pDrive->cur_track >> 8) & 0xFF;
disk3_info->iopb[DISK3_IOPB_ARG6] = 0;
disk3_info->iopb[DISK3_IOPB_ARG7] = 0;
/* Update the DATA field in the IOPB */
disk3_info->dma_addr += xfr_len;
disk3_info->iopb[DISK3_IOPB_DATA+0] = disk3_info->dma_addr & 0xFF;
disk3_info->iopb[DISK3_IOPB_DATA+1] = (disk3_info->dma_addr >> 8) & 0xFF;
disk3_info->iopb[DISK3_IOPB_DATA+2] = (disk3_info->dma_addr >> 16) & 0xFF;
break;
}
case DISK3_CODE_FORMAT:
{
uint32 data_len;
uint32 file_offset;
uint8 *fmtBuffer;
data_len = pDrive->nsectors * pDrive->sectsize;
TRACE_PRINT(WR_DATA_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " FORMAT T:%d/H:%d/Fill=0x%02x/Len=%d" NLP,
disk3_info->sel_drive,
PCX,
pDrive->track,
disk3_info->iopb[DISK3_IOPB_ARG3],
disk3_info->iopb[DISK3_IOPB_ARG2],
data_len
));
file_offset = (pDrive->track * (pDrive->nheads) * data_len); /* Calculate offset based on current track */
file_offset += (disk3_info->iopb[DISK3_IOPB_ARG3] * data_len);
fmtBuffer = malloc(data_len);
memset(fmtBuffer, disk3_info->iopb[DISK3_IOPB_ARG2], data_len);
sim_fseek((pDrive->uptr)->fileref, file_offset, SEEK_SET);
sim_fwrite(fmtBuffer, 1, data_len, (pDrive->uptr)->fileref);
free(fmtBuffer);
break;
}
case DISK3_CODE_SET_MAP:
break;
case DISK3_CODE_RELOCATE:
case DISK3_CODE_FORMAT_BAD:
case DISK3_CODE_STATUS:
case DISK3_CODE_SELECT:
case DISK3_CODE_EXAMINE:
case DISK3_CODE_MODIFY:
default:
TRACE_PRINT(ERROR_MSG, ("DISK3[%d]: " ADDRESS_FORMAT " CMD=%x Unsupported" NLP, disk3_info->sel_drive, PCX, cmd & DISK3_CMD_MASK));
break;
}
} else { /* Drive not ready */
result = DISK3_STATUS_NOT_READY;
}
/* Return status */
disk3_info->iopb[DISK3_IOPB_STATUS] = result;
/* Update IOPB in host memory */
for(i = 0; i < DISK3_IOPB_LEN; i++) {
PutByteDMA(disk3_info->link_addr + i, disk3_info->iopb[i]);
}
if(cmd & DISK3_REQUEST_IRQ) {
raise_disk3_interrupt();
}
disk3_info->link_addr = next_link;
return 0;
}
#define SS1_VI1_INT 1 /* DISK2/DISK3 interrupts tied to VI1 */
static void raise_disk3_interrupt(void)
{
TRACE_PRINT(IRQ_MSG, ("DISK3: " ADDRESS_FORMAT " Interrupt" NLP, PCX));
raise_ss1_interrupt(SS1_VI1_INT);
}