blob: d8af0a68e0b773cbd127dbfbcaa1d11d8cfbae58 [file] [log] [blame] [raw]
/* hp2100_dr.c: HP 2100 12606B/12610B fixed head disk/drum simulator
Copyright (c) 1993-2008, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
DR 12606B 2770/2771 fixed head disk
12610B 2773/2774/2775 drum
09-Jul-08 JDB Revised drc_boot to use ibl_copy
26-Jun-08 JDB Rewrote device I/O to model backplane signals
28-Dec-06 JDB Added ioCRS state to I/O decoders
07-Oct-04 JDB Fixed enable/disable from either device
Fixed sector return in status word
Provided protected tracks and "Writing Enabled" status bit
Fixed DMA last word write, incomplete sector fill value
Added "parity error" status return on writes for 12606
Added track origin test for 12606
Added SCP test for 12606
Fixed 12610 SFC operation
Added "Sector Flag" status bit
Added "Read Inhibit" status bit for 12606
Fixed current-sector determination
Added PROTECTED, UNPROTECTED, TRACKPROT modifiers
26-Aug-04 RMS Fixed CLC to stop operation (from Dave Bryan)
26-Apr-04 RMS Fixed SFS x,C and SFC x,C
Revised boot rom to use IBL algorithm
Implemented DMA SRQ (follows FLG)
27-Jul-03 RMS Fixed drum sizes
Fixed variable capacity interaction with SAVE/RESTORE
10-Nov-02 RMS Added BOOT command
References:
- 12606B Disc Memory Interface Kit Operating and Service Manual
(12606-90012, Mar-1970)
- 12610B Drum Memory Interface Kit Operating and Service Manual
(12610-9001, Feb-1970)
These head-per-track devices are buffered in memory, to minimize overhead.
The drum data channel does not have a command flip-flop. Its control
flip-flop is not wired into the interrupt chain; accordingly, the
simulator uses command rather than control for the data channel. Its
flag does not respond to SFS, SFC, or STF.
The drum control channel does not have any of the traditional flip-flops.
The 12606 interface implements two diagnostic tests. An SFS CC instruction
will skip if the disk has passed the track origin (sector 0) since the last
CLF CC instruction, and an SFC CC instruction will skip if the Sector Clock
Phase (SCP) flip-flop is clear, indicating that the current sector is
accessible. The 12610 interface does not support these tests; the SKF signal
is not driven, so neither SFC CC nor SFS CC will skip.
The interface implements a track protect mechanism via a switch and a set of
on-card diodes. The switch sets the protected/unprotected status, and the
particular diodes installed indicate the range of tracks (a power of 2) that
are read-only in the protected mode.
Somewhat unusually, writing to a protected track completes normally, but the
data isn't actually written, as the write current is inhibited. There is no
"failure" status indication. Instead, a program must note the lack of
"Writing Enabled" status before the write is attempted.
Specifications (2770/2771):
- 90 sectors per logical track
- 45 sectors per revolution
- 64 words per sector
- 2880 words per revolution
- 3450 RPM = 17.4 ms/revolution
- data timing = 6.0 us/word, 375 us/sector
- inst timing = 4 inst/word, 11520 inst/revolution
Specifications 2773/2774/2775:
- 32 sectors per logical track
- 32 sectors per revolution
- 64 words per sector
- 2048 words per revolution
- 3450 RPM = 17.4 ms/revolution
- data timing = 8.5 us/word, 550 us/sector
- inst timing = 6 inst/word, 12288 inst/revolution
*/
#include "hp2100_defs.h"
#include "hp2100_cpu.h"
#include <math.h>
/* Constants */
#define DR_NUMWD 64 /* words/sector */
#define DR_FNUMSC 90 /* fhd sec/track */
#define DR_DNUMSC 32 /* drum sec/track */
#define DR_NUMSC ((drc_unit.flags & UNIT_DRUM)? DR_DNUMSC: DR_FNUMSC)
#define DR_SIZE (512 * DR_DNUMSC * DR_NUMWD) /* initial size */
#define DR_FTIME 4 /* fhd per-word time */
#define DR_DTIME 6 /* drum per-word time */
#define DR_OVRHEAD 5 /* overhead words at track start */
#define UNIT_V_PROT (UNIT_V_UF + 0) /* track protect */
#define UNIT_V_SZ (UNIT_V_UF + 1) /* disk vs drum */
#define UNIT_M_SZ 017 /* size */
#define UNIT_PROT (1 << UNIT_V_PROT)
#define UNIT_SZ (UNIT_M_SZ << UNIT_V_SZ)
#define UNIT_DRUM (1 << UNIT_V_SZ) /* low order bit */
#define SZ_180K 000 /* disks */
#define SZ_360K 002
#define SZ_720K 004
#define SZ_1024K 001 /* drums: default size */
#define SZ_1536K 003
#define SZ_384K 005
#define SZ_512K 007
#define SZ_640K 011
#define SZ_768K 013
#define SZ_896K 015
#define DR_GETSZ(x) (((x) >> UNIT_V_SZ) & UNIT_M_SZ)
/* Command word */
#define CW_WR 0100000 /* write vs read */
#define CW_V_FTRK 7 /* fhd track */
#define CW_M_FTRK 0177
#define CW_V_DTRK 5 /* drum track */
#define CW_M_DTRK 01777
#define MAX_TRK (((drc_unit.flags & UNIT_DRUM)? CW_M_DTRK: CW_M_FTRK) + 1)
#define CW_GETTRK(x) ((drc_unit.flags & UNIT_DRUM)? \
(((x) >> CW_V_DTRK) & CW_M_DTRK): \
(((x) >> CW_V_FTRK) & CW_M_FTRK))
#define CW_PUTTRK(x) ((drc_unit.flags & UNIT_DRUM)? \
(((x) & CW_M_DTRK) << CW_V_DTRK): \
(((x) & CW_M_FTRK) << CW_V_FTRK))
#define CW_V_FSEC 0 /* fhd sector */
#define CW_M_FSEC 0177
#define CW_V_DSEC 0 /* drum sector */
#define CW_M_DSEC 037
#define CW_GETSEC(x) ((drc_unit.flags & UNIT_DRUM)? \
(((x) >> CW_V_DSEC) & CW_M_DSEC): \
(((x) >> CW_V_FSEC) & CW_M_FSEC))
#define CW_PUTSEC(x) ((drc_unit.flags & UNIT_DRUM)? \
(((x) & CW_M_DSEC) << CW_V_DSEC): \
(((x) & CW_M_FSEC) << CW_V_FSEC))
/* Status register, ^ = dynamic */
#define DRS_V_NS 8 /* ^next sector */
#define DRS_M_NS 0177
#define DRS_SEC 0100000 /* ^sector flag */
#define DRS_RDY 0000200 /* ^ready */
#define DRS_RIF 0000100 /* ^read inhibit */
#define DRS_SAC 0000040 /* sector coincidence */
#define DRS_ABO 0000010 /* abort */
#define DRS_WEN 0000004 /* ^write enabled */
#define DRS_PER 0000002 /* parity error */
#define DRS_BSY 0000001 /* ^busy */
#define CALC_SCP(x) (((int32) fmod ((x) / (double) dr_time, \
(double) (DR_NUMWD))) >= (DR_NUMWD - 3))
int32 drc_cw = 0; /* fnc, addr */
int32 drc_sta = 0; /* status */
int32 drc_run = 0; /* run flip-flop */
FLIP_FLOP drd_control = CLEAR;
FLIP_FLOP drd_flag = CLEAR;
int32 drd_ibuf = 0; /* input buffer */
int32 drd_obuf = 0; /* output buffer */
int32 drd_ptr = 0; /* sector pointer */
int32 drc_pcount = 1; /* number of prot tracks */
int32 dr_stopioe = 1; /* stop on error */
int32 dr_time = DR_DTIME; /* time per word */
static int32 sz_tab[16] = {
184320, 1048576, 368640, 1572864, 737280, 393216, 0, 524288,
0, 655360, 0, 786432, 0, 917504, 0, 0 };
DEVICE drd_dev, drc_dev;
uint32 drdio (uint32 select_code, IOSIG signal, uint32 data);
uint32 drcio (uint32 select_code, IOSIG signal, uint32 data);
t_stat drc_svc (UNIT *uptr);
t_stat drc_reset (DEVICE *dptr);
t_stat drc_attach (UNIT *uptr, char *cptr);
t_stat drc_boot (int32 unitno, DEVICE *dptr);
int32 dr_incda (int32 trk, int32 sec, int32 ptr);
int32 dr_seccntr (double simtime);
t_stat dr_set_prot (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat dr_show_prot (FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat dr_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
/* DRD data structures
drd_dev device descriptor
drd_unit unit descriptor
drd_reg register list
*/
DIB dr_dib[] = {
{ DRD, &drdio },
{ DRC, &drcio }
};
#define drd_dib dr_dib[0]
#define drc_dib dr_dib[1]
UNIT drd_unit[] = {
{ UDATA (NULL, 0, 0) },
{ UDATA (NULL, UNIT_DIS, 0) }
};
#define TMR_ORG 0 /* origin timer */
#define TMR_INH 1 /* inhibit timer */
REG drd_reg[] = {
{ ORDATA (IBUF, drd_ibuf, 16) },
{ ORDATA (OBUF, drd_obuf, 16) },
{ FLDATA (CTL, drd_control, 0) },
{ FLDATA (FLG, drd_flag, 0) },
{ ORDATA (BPTR, drd_ptr, 6) },
{ ORDATA (DEVNO, drd_dib.devno, 6), REG_HRO },
{ NULL }
};
MTAB drd_mod[] = {
{ MTAB_XTD | MTAB_VDV, 1, "DEVNO", "DEVNO",
&hp_setdev, &hp_showdev, &drd_dev },
{ 0 }
};
DEVICE drd_dev = {
"DRD", drd_unit, drd_reg, drd_mod,
2, 0, 0, 0, 0, 0,
NULL, NULL, &drc_reset,
NULL, NULL, NULL,
&drd_dib, DEV_DISABLE
};
/* DRC data structures
drc_dev device descriptor
drc_unit unit descriptor
drc_mod unit modifiers
drc_reg register list
*/
UNIT drc_unit = {
UDATA (&drc_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+
UNIT_MUSTBUF+UNIT_DRUM+UNIT_BINK, DR_SIZE)
};
REG drc_reg[] = {
{ DRDATA (PCNT, drc_pcount, 10), REG_HIDDEN | PV_LEFT },
{ ORDATA (CW, drc_cw, 16) },
{ ORDATA (STA, drc_sta, 16) },
{ FLDATA (RUN, drc_run, 0) },
{ DRDATA (TIME, dr_time, 24), REG_NZ + PV_LEFT },
{ FLDATA (STOP_IOE, dr_stopioe, 0) },
{ ORDATA (DEVNO, drc_dib.devno, 6), REG_HRO },
{ DRDATA (CAPAC, drc_unit.capac, 24), REG_HRO },
{ NULL }
};
MTAB drc_mod[] = {
{ UNIT_DRUM, 0, "disk", NULL, NULL },
{ UNIT_DRUM, UNIT_DRUM, "drum", NULL, NULL },
{ UNIT_SZ, (SZ_180K << UNIT_V_SZ), NULL, "180K", &dr_set_size },
{ UNIT_SZ, (SZ_360K << UNIT_V_SZ), NULL, "360K", &dr_set_size },
{ UNIT_SZ, (SZ_720K << UNIT_V_SZ), NULL, "720K", &dr_set_size },
{ UNIT_SZ, (SZ_384K << UNIT_V_SZ), NULL, "384K", &dr_set_size },
{ UNIT_SZ, (SZ_512K << UNIT_V_SZ), NULL, "512K", &dr_set_size },
{ UNIT_SZ, (SZ_640K << UNIT_V_SZ), NULL, "640K", &dr_set_size },
{ UNIT_SZ, (SZ_768K << UNIT_V_SZ), NULL, "768K", &dr_set_size },
{ UNIT_SZ, (SZ_896K << UNIT_V_SZ), NULL, "896K", &dr_set_size },
{ UNIT_SZ, (SZ_1024K << UNIT_V_SZ), NULL, "1024K", &dr_set_size },
{ UNIT_SZ, (SZ_1536K << UNIT_V_SZ), NULL, "1536K", &dr_set_size },
{ UNIT_PROT, UNIT_PROT, "protected", "PROTECTED", NULL },
{ UNIT_PROT, 0, "unprotected", "UNPROTECTED", NULL },
{ MTAB_XTD | MTAB_VDV, 0, "TRACKPROT", "TRACKPROT",
&dr_set_prot, &dr_show_prot, NULL },
{ MTAB_XTD | MTAB_VDV, 1, "DEVNO", "DEVNO",
&hp_setdev, &hp_showdev, &drd_dev },
{ 0 }
};
DEVICE drc_dev = {
"DRC", &drc_unit, drc_reg, drc_mod,
1, 8, 21, 1, 8, 16,
NULL, NULL, &drc_reset,
&drc_boot, &drc_attach, NULL,
&drc_dib, DEV_DISABLE
};
/* Data channel I/O signal handler.
The data channel card does not follow the usual interface I/O configuration.
PRL is always asserted, the card does not drive IRQ, FLG, or SKF and does not
respond to IAK. SRQ is driven by the output of the flag flip-flop, which
obeys CLF only. There is no flag buffer. The control flip-flop obeys STC
and CLC. Clearing control clears the flag flip-flop, and setting control
sets the flag flip-flop if the interface is configured for writing. On the
12606B, POPIO and CRS clear the track address register.
Implementation notes:
1. In response to CRS, the 12606B data channel clears only the track address
register; the command channel clears the sector address register and the
direction flip-flop. Under simulation, all three form the control word,
and as CRS is sent to all devices, we simply clear the control word here.
*/
uint32 drdio (uint32 select_code, IOSIG signal, uint32 data)
{
const IOSIG base_signal = IOBASE (signal); /* derive base signal */
int32 t;
switch (base_signal) { /* dispatch base I/O signal */
case ioCLF: /* clear flag flip-flop */
drd_flag = CLEAR;
break;
case ioENF: /* enable flag */
drd_flag = SET;
break;
case ioIOI: /* I/O data input */
data = drd_ibuf;
break;
case ioIOO: /* I/O data output */
drd_obuf = data;
break;
case ioPOPIO: /* power-on preset to I/O */
/* fall into CRS handler */
case ioCRS: /* control reset */
if (!(drc_unit.flags & UNIT_DRUM)) /* 12606B? */
drc_cw = 0; /* clear control word */
/* fall into CLC handler */
case ioCLC: /* clear control flip-flop */
drd_flag = drd_control = CLEAR; /* clear control and flag */
if (!drc_run) /* cancel curr op */
sim_cancel (&drc_unit);
drc_sta = drc_sta & ~DRS_SAC; /* clear SAC flag */
break;
case ioSTC: /* set control flip-flop */
drd_control = SET; /* set ctl */
if (drc_cw & CW_WR) /* writing? */
drd_flag = SET; /* prime DMA */
drc_sta = 0; /* clr status */
drd_ptr = 0; /* clear sec ptr */
sim_cancel (&drc_unit); /* cancel curr op */
t = CW_GETSEC (drc_cw) - dr_seccntr (sim_gtime());
if (t <= 0) t = t + DR_NUMSC;
sim_activate (&drc_unit, t * DR_NUMWD * dr_time);
break;
case ioSIR: /* set interrupt request */
setstdSRQ (select_code, drd); /* set SRQ signal */
break;
default: /* all other signals */
break; /* are ignored */
}
if (signal > ioCLF) /* multiple signals? */
drdio (select_code, ioCLF, 0); /* issue CLF */
else if (signal > ioSIR) /* signal affected interrupt status? */
drdio (select_code, ioSIR, 0); /* set interrupt request */
return data;
}
/* Command channel I/O signal dispatcher.
The command channel card does not follow the usual interface I/O
configuration. PRL is always asserted, the card does not drive IRQ, FLG, or
SRQ and does not respond to IAK. There are no control, flag, or flag buffer
flip-flops. CLF clears the track origin flip-flop; STF is ignored. The
12606B drives SKF, whereas the 12610B does not. On the 12610B, SFS tests the
Track Origin flip-flop, and SFC tests the Sector Clock Phase (SCP) flip-flop.
Implementation notes:
1. CRS clears the Run Flip-Flop, stopping the current operation. Under
simulation, we allow the data channel signal handler to do this, as the
same operation is invoked by CLC DC, and as CRS is sent to all devices.
2. The command channel cannot interrupt, so there is no SIR handler.
*/
uint32 drcio (uint32 select_code, IOSIG signal, uint32 data)
{
const IOSIG base_signal = IOBASE (signal); /* derive base signal */
int32 sec;
switch (base_signal) { /* dispatch base I/O signal */
case ioCLF: /* clear flag flip-flop */
if (!(drc_unit.flags & UNIT_DRUM)) { /* disk? */
sec = dr_seccntr (sim_gtime ()); /* current sector */
sim_cancel (&drd_unit[TMR_ORG]); /* sched origin tmr */
sim_activate (&drd_unit[TMR_ORG],
(DR_FNUMSC - sec) * DR_NUMWD * dr_time);
}
break;
case ioSFC: /* skip if flag is clear */
if (!(drc_unit.flags & UNIT_DRUM)) /* 12606? */
setSKF (!(CALC_SCP (sim_gtime()))); /* skip if nearing end of sector */
break;
case ioSFS: /* skip if flag is set */
if (!(drc_unit.flags & UNIT_DRUM)) /* 12606? */
setSKF (!sim_is_active (&drd_unit[TMR_ORG])); /* skip if origin seen */
break;
case ioIOI: /* I/O data input */
data = drc_sta; /* static bits */
if (!(drc_unit.flags & UNIT_PROT) || /* not protected? */
(CW_GETTRK(drc_cw) >= drc_pcount)) /* or not in range? */
data = data | DRS_WEN; /* set wrt enb status */
if (drc_unit.flags & UNIT_ATT) { /* attached? */
data = data | (dr_seccntr (sim_gtime()) << DRS_V_NS) | DRS_RDY;
if (sim_is_active (&drc_unit)) /* op in progress? */
data = data | DRS_BSY;
if (CALC_SCP (sim_gtime())) /* SCP ff set? */
data = data | DRS_SEC; /* set sector flag */
if (sim_is_active (&drd_unit[TMR_INH]) && /* inhibit timer on? */
!(drc_cw & CW_WR))
data = data | DRS_RIF; /* set read inh flag */
}
break;
case ioIOO: /* I/O data output */
if (!(drc_unit.flags & UNIT_DRUM)) { /* disk? */
sim_cancel (&drd_unit[TMR_INH]); /* schedule inhibit timer */
sim_activate (&drd_unit[TMR_INH], DR_FTIME * DR_NUMWD);
}
drc_cw = data; /* get control word */
break;
case ioPOPIO: /* power-on preset to I/O */
/* fall into CRS handler */
case ioCRS: /* control reset */
break; /* allow data channel to handle this */
default: /* all other signals */
break; /* are ignored */
}
if (signal > ioCLF) /* multiple signals? */
drcio (select_code, ioCLF, 0); /* issue CLF */
return data;
}
/* Unit service */
t_stat drc_svc (UNIT *uptr)
{
int32 trk, sec;
uint32 da;
uint16 *bptr = (uint16 *) uptr->filebuf;
if ((uptr->flags & UNIT_ATT) == 0) {
drc_sta = DRS_ABO;
return IORETURN (dr_stopioe, SCPE_UNATT);
}
trk = CW_GETTRK (drc_cw);
sec = CW_GETSEC (drc_cw);
da = ((trk * DR_NUMSC) + sec) * DR_NUMWD;
drc_sta = drc_sta | DRS_SAC;
drc_run = 1; /* set run ff */
if (drc_cw & CW_WR) { /* write? */
if ((da < uptr->capac) && (sec < DR_NUMSC)) {
bptr[da + drd_ptr] = drd_obuf;
if (((uint32) (da + drd_ptr)) >= uptr->hwmark)
uptr->hwmark = da + drd_ptr + 1;
}
drd_ptr = dr_incda (trk, sec, drd_ptr); /* inc disk addr */
if (drd_control) { /* dch active? */
drdio (drd_dib.devno, ioENF, 0); /* set SRQ */
sim_activate (uptr, dr_time); /* sched next word */
}
else { /* done */
if (drd_ptr) /* need to fill? */
for ( ; drd_ptr < DR_NUMWD; drd_ptr++)
bptr[da + drd_ptr] = drd_obuf; /* fill with last word */
if (!(drc_unit.flags & UNIT_DRUM)) /* disk? */
drc_sta = drc_sta | DRS_PER; /* parity bit sets on write */
drc_run = 0; /* clear run ff */
}
} /* end write */
else { /* read */
if (drd_control) { /* dch active? */
if ((da >= uptr->capac) || (sec >= DR_NUMSC)) drd_ibuf = 0;
else drd_ibuf = bptr[da + drd_ptr];
drd_ptr = dr_incda (trk, sec, drd_ptr);
drdio (drd_dib.devno, ioENF, 0); /* set SRQ */
sim_activate (uptr, dr_time); /* sched next word */
}
else drc_run = 0; /* clear run ff */
}
return SCPE_OK;
}
/* Increment current disk address */
int32 dr_incda (int32 trk, int32 sec, int32 ptr)
{
ptr = ptr + 1; /* inc pointer */
if (ptr >= DR_NUMWD) { /* end sector? */
ptr = 0; /* new sector */
sec = sec + 1; /* adv sector */
if (sec >= DR_NUMSC) { /* end track? */
sec = 0; /* new track */
trk = trk + 1; /* adv track */
if (trk >= MAX_TRK) trk = 0; /* wraps at max */
}
drc_cw = (drc_cw & CW_WR) | CW_PUTTRK (trk) | CW_PUTSEC (sec);
}
return ptr;
}
/* Read the sector counter
The hardware sector counter contains the number of the next sector that will
pass under the heads (so it is one ahead of the current sector). For the
duration of the last sector of the track, the sector counter contains 90 for
the 12606 and 0 for the 12610. The sector counter resets to 0 at track
origin and increments at the start of the first sector. Therefore, the
counter value ranges from 0-90 for the 12606 and 0-31 for the 12610. The 0
state is quite short in the 12606 and long in the 12610, relative to the
other sector counter states.
The simulated sector counter is calculated from the simulation time, based on
the time per word and the number of words per track.
*/
int32 dr_seccntr (double simtime)
{
int32 curword;
curword = (int32) fmod (simtime / (double) dr_time,
(double) (DR_NUMWD * DR_NUMSC + DR_OVRHEAD));
if (curword <= DR_OVRHEAD) return 0;
else return ((curword - DR_OVRHEAD) / DR_NUMWD +
((drc_unit.flags & UNIT_DRUM)? 0: 1));
}
/* Reset routine */
t_stat drc_reset (DEVICE *dptr)
{
hp_enbdis_pair (dptr, /* make pair cons */
(dptr == &drd_dev)? &drc_dev: &drd_dev);
if (sim_switches & SWMASK ('P')) /* PON reset? */
drc_sta = drc_cw = drd_ptr = 0; /* clear controller state variables */
if (dptr == &drc_dev) /* command channel reset? */
drcio (drc_dib.devno, ioPOPIO, 0); /* send POPIO signal to command channel */
else /* data channel reset */
drdio (drd_dib.devno, ioPOPIO, 0); /* send POPIO signal to data channel */
sim_cancel (&drc_unit);
sim_cancel (&drd_unit[TMR_ORG]);
sim_cancel (&drd_unit[TMR_INH]);
return SCPE_OK;
}
/* Attach routine */
t_stat drc_attach (UNIT *uptr, char *cptr)
{
int32 sz = sz_tab[DR_GETSZ (uptr->flags)];
if (sz == 0) return SCPE_IERR;
uptr->capac = sz;
return attach_unit (uptr, cptr);
}
/* Set protected track count */
t_stat dr_set_prot (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 count;
t_stat status;
if (cptr == NULL)
return SCPE_ARG;
count = (int32) get_uint (cptr, 10, 768, &status);
if (status != SCPE_OK)
return status;
else switch (count) {
case 1:
case 2:
case 4:
case 8:
case 16:
case 32:
case 64:
case 128:
drc_pcount = count;
break;
case 256:
case 512:
case 768:
if (drc_unit.flags & UNIT_DRUM)
drc_pcount = count;
else return SCPE_ARG;
break;
default:
return SCPE_ARG;
}
return SCPE_OK;
}
/* Show protected track count */
t_stat dr_show_prot (FILE *st, UNIT *uptr, int32 val, void *desc)
{
fprintf (st, "protected tracks=%d", drc_pcount);
return SCPE_OK;
}
/* Set size routine */
t_stat dr_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 sz;
int32 szindex;
if (val < 0) return SCPE_IERR;
if ((sz = sz_tab[szindex = DR_GETSZ (val)]) == 0) return SCPE_IERR;
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
uptr->capac = sz;
if (szindex & UNIT_DRUM) dr_time = DR_DTIME; /* drum */
else {
dr_time = DR_FTIME; /* disk */
if (drc_pcount > 128) drc_pcount = 128; /* max prot track count */
}
return SCPE_OK;
}
/* Fixed head disk/drum bootstrap routine (disc subset of disc/paper tape loader) */
#define BOOT_START 060
static const BOOT_ROM dr_rom = { /* padded to start at x7760 */
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0020010, /*DMA 20000+DC */
0000000, /* 0 */
0107700, /* CLC 0,C */
0063756, /* LDA DMA ; DMA ctrl */
0102606, /* OTA 6 */
0002700, /* CLA,CCE */
0102611, /* OTA CC ; trk = sec = 0 */
0001500, /* ERA ; A = 100000 */
0102602, /* OTA 2 ; DMA in, addr */
0063777, /* LDA M64 */
0102702, /* STC 2 */
0102602, /* OTA 2 ; DMA wc = -64 */
0103706, /* STC 6,C ; start DMA */
0067776, /* LDB JSF ; get JMP . */
0074077, /* STB 77 ; in base page */
0102710, /* STC DC ; start disc */
0024077, /*JSF JMP 77 ; go wait */
0177700 /*M64 -100 */
};
t_stat drc_boot (int32 unitno, DEVICE *dptr)
{
const int32 dev = drd_dib.devno; /* data chan select code */
if (unitno != 0) /* only unit 0 */
return SCPE_NOFNC;
if (ibl_copy (dr_rom, dev)) /* copy boot to memory */
return SCPE_IERR;
WritePW (PC + IBL_DPC, dr_rom [IBL_DPC]); /* restore overwritten word */
WritePW (PC + IBL_END, dr_rom [IBL_END]); /* restore overwritten word */
PC = PC + BOOT_START; /* correct starting address */
return SCPE_OK;
}