blob: 2a8eea73bb500c9f35096d423afe09017bc3bffa [file] [log] [blame] [raw]
/* pdp1_cpu.c: PDP-1 CPU simulator
Copyright (c) 1993-2015, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu PDP-1 central processor
27-Mar-15 RMS Backported changed from GitHub master
21-Mar-12 RMS Fixed & vs && in Ea_ch (Michael Bloom)
30-May-07 RMS Fixed typo in SBS clear (Norm Lastovica)
28-Dec-06 RMS Added 16-channel SBS support, PDP-1D support
28-Jun-06 RMS Fixed bugs in MUS and DIV
22-Sep-05 RMS Fixed declarations (Sterling Garwood)
16-Aug-05 RMS Fixed C++ declaration and cast problems
09-Nov-04 RMS Added instruction history
08-Feb-04 PLB Added display device spacewar/test switches
07-Sep-03 RMS Added additional explanation on I/O simulation
01-Sep-03 RMS Added address switches for hardware readin
23-Jul-03 RMS Revised to detect I/O wait hang
05-Dec-02 RMS Added drum support
06-Oct-02 RMS Revised for V2.10
20-Aug-02 RMS Added DECtape support
30-Dec-01 RMS Added old PC queue
07-Dec-01 RMS Revised to use breakpoint package
30-Nov-01 RMS Added extended SET/SHOW support
16-Dec-00 RMS Fixed bug in XCT address calculation
14-Apr-99 RMS Changed t_addr to unsigned
The PDP-1 was Digital's first computer. Although Digital built four
other 18b computers, the later systems (the PDP-4, PDP-7, PDP-9, and
PDP-15) were similar to each other and quite different from the PDP-1.
Accordingly, the PDP-1 requires a distinct simulator.
The register state for the PDP-1 is:
AC<0:17> accumulator
IO<0:17> IO register
OV overflow flag
PC<0:15> program counter
IOSTA I/O status register
SBS<0:2> sequence break flip flops
IOH I/O halt flip flop
IOS I/O synchronizer (completion) flip flop
EXTM extend mode
PF<1:6> program flags
SS<1:6> sense switches
TW<0:17> test word (switch register)
The 16-channel sequence break system adds additional state:
sbs_req<0:15> interrupt requests
sbs_enb<0:15> enabled levels
sbs_act<0:15> active levels
The PDP-1D adds additional state:
L link (SN 45 only)
RNG ring mode
RM restrict mode
RMASK restrict mode mask
RNAME rename table (SN 45 only)
RTB restict mode trap buffer (SN 45 only)
Questions:
cks: which bits are line printer print done and space done?
cks: is there a bit for sequence break enabled (yes, according
to the 1963 Handbook)
sbs: do sequence breaks accumulate while the system is disabled
(yes, according to the Maintenance Manual)
The PDP-1 has seven instruction formats: memory reference, skips,
shifts, load immediate, I/O transfer, operate, and (PDP-1D) special.
The memory reference format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in| address | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<0:4> <5> mnemonic action
00
02 AND AC = AC & M[MA]
04 IOR AC = AC | M[MA]
06 XOR AC = AC ^ M[MA]
10 XCT M[MA] is executed as an instruction
12 LCH load character (PDP-1D)
14 DCH store character (PDP-1D)
16 0 CAL M[100] = AC, AC = PC, PC = 101
16 1 JDA M[MA] = AC, AC = PC, PC = MA + 1
20 LAC AC = M[MA]
22 LIO IO = M[MA]
24 DAC M[MA] = AC
26 DAP M[MA]<6:17> = AC<6:17>
30 DIP M[MA]<0:5> = AC<0:5>
32 DIO M[MA] = IO
34 DZM M[MA] = 0
36 TAD L'AC = AC + M[MA] + L
40 ADD AC = AC + M[MA]
42 SUB AC = AC - M[MA]
44 IDX AC = M[MA] = M[MA] + 1
46 ISP AC = M[MA] = M[MA] + 1, skip if AC >= 0
50 SAD skip if AC != M[MA]
52 SAS skip if AC == M[MA]
54 MUL AC'IO = AC * M[MA]
56 DIV AC, IO = AC'IO / M[MA]
60 JMP PC = MA
62 JSP AC = PC, PC = MA
Memory reference instructions can access an address space of 64K words.
The address space is divided into sixteen 4K word fields. An
instruction can directly address, via its 12b address, the entire
current field. If extend mode is off, indirect addresses access
the current field, and indirect addressing is multi-level; if off,
they can access all 64K, and indirect addressing is single level.
The skip format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1 0| | | | | | | | | | | | | | skip
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | \______/ \______/
| | | | | | | | |
| | | | | | | | +---- program flags
| | | | | | | +------------- sense switches
| | | | | | +------------------- AC == 0
| | | | | +---------------------- AC >= 0
| | | | +------------------------- AC < 0
| | | +---------------------------- OV == 0
| | +------------------------------- IO >= 0
| +---------------------------------- IO != 0 (PDP-1D)
+------------------------------------- invert skip
The shift format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1 1| subopcode | encoded count | shift
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The load immediate format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 0| S| immediate | LAW
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<0:4> mnemonic action
70 LAW if S = 0, AC = IR<6:17>
else AC = ~IR<6:17>
The I/O transfer format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 1| W| C| subopcode | device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The IO transfer instruction sends the the specified subopcode to
specified I/O device. The I/O device may take data from the IO or
return data to the IO, initiate or cancel operations, etc. The
W bit specifies whether the CPU waits for completion, the C bit
whether a completion pulse will be returned from the device.
The special operate format (PDP-1D) is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 0| | | | | | | | | | | | | | special
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | |
| | | | | | | | | | +------- CML (3)
| | | | | | | | | +---------- CLL (1)
| | | | | | | | +------------- SZL (1)
| | | | | | | +---------------- SCF (1)
| | | | | | +------------------- SCI (1)
| | | | | +---------------------- SCM (2)
| | | | +------------------------- IDA (3)
| | | +---------------------------- IDC (4)
| | +------------------------------- IFI (2)
| +---------------------------------- IIF (2)
+------------------------------------- reverse skip
The special operate instruction can be microprogrammed.
The standard operate format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 1| | | | | | | | | | | | | | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | \______/
| | | | | | | | | | |
| | | | | | | | | | +---- PF select
| | | | | | | | | +---------- clear/set PF
| | | | | | | | +------------- LIA (PDP-1D)
| | | | | | | +---------------- LAI (PDP-1D)
| | | | | | +------------------- or PC
| | | | | +---------------------- CLA
| | | | +------------------------- halt
| | | +---------------------------- CMA
| | +------------------------------- or TW
| +---------------------------------- CLI
+------------------------------------- CMI (PDP-1D)
The standard operate instruction can be microprogrammed.
This routine is the instruction decode routine for the PDP-1.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
unimplemented instruction and STOP_INST flag set
XCT loop
indirect address loop
infinite wait state
I/O error in I/O simulator
2. Interrupts. With a single channel sequence break system, the
PDP-1 has a single break request (flop b2, here sbs<SB_V_RQ>).
If sequence breaks are enabled (flop sbm, here sbs<SB_V_ON>),
and one is not already in progress (flop b4, here sbs<SB_V_IP>),
a sequence break occurs. With a 16-channel sequence break
system, the PDP-1 has 16 request flops (sbs_req), 16 enable
flops (sbs_enb), and 16 active flops (sbs_act). It also has
16 synchronizer flops, which are not needed in simulation.
3. Arithmetic. The PDP-1 is a 1's complement system. In 1's
complement arithmetic, a negative number is represented by the
complement (XOR 0777777) of its absolute value. Addition of 1's
complement numbers requires propagating the carry out of the high
order bit back to the low order bit.
4. Adding I/O devices. Three modules must be modified:
pdp1_defs.h add interrupt request definition
pdp1_cpu.c add IOT dispatch code
pdp1_sys.c add sim_devices table entry
*/
#include "pdp1_defs.h"
#define PCQ_SIZE 64 /* must be 2**n */
#define PCQ_MASK (PCQ_SIZE - 1)
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = PC
#define UNIT_V_MDV (UNIT_V_UF + 0) /* mul/div */
#define UNIT_V_SBS (UNIT_V_UF + 1)
#define UNIT_V_1D (UNIT_V_UF + 2)
#define UNIT_V_1D45 (UNIT_V_UF + 3)
#define UNIT_V_MSIZE (UNIT_V_UF + 4) /* dummy mask */
#define UNIT_MDV (1 << UNIT_V_MDV)
#define UNIT_SBS (1 << UNIT_V_SBS)
#define UNIT_1D (1 << UNIT_V_1D)
#define UNIT_1D45 (1 << UNIT_V_1D45)
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
#define HIST_PC 0x40000000
#define HIST_V_SHF 18
#define HIST_MIN 64
#define HIST_MAX 65536
#define MA_GETBNK(x) ((cpu_unit.flags & UNIT_1D45)? \
(((x) >> RM45_V_BNK) & RM45_M_BNK): \
(((x) >> RM48_V_BNK) & RM48_M_BNK))
typedef struct {
uint32 pc;
uint32 ir;
uint32 ovac;
uint32 pfio;
uint32 ea;
uint32 opnd;
} InstHistory;
int32 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 AC = 0; /* AC */
int32 IO = 0; /* IO */
int32 PC = 0; /* PC */
int32 MA = 0; /* MA */
int32 MB = 0; /* MB */
int32 OV = 0; /* overflow */
int32 SS = 0; /* sense switches */
int32 PF = 0; /* program flags */
int32 TA = 0; /* address switches */
int32 TW = 0; /* test word */
int32 iosta = 0; /* status reg */
int32 sbs = 0; /* sequence break */
int32 sbs_init = 0; /* seq break start */
int32 ioh = 0; /* I/O halt */
int32 ios = 0; /* I/O syncronizer */
int32 cpls = 0; /* pending compl */
int32 sbs_req = 0; /* sbs requests */
int32 sbs_enb = 0; /* sbs enabled */
int32 sbs_act = 0; /* sbs active */
int32 extm = 0; /* ext mem mode */
int32 rm = 0; /* restrict mode */
int32 rmask = 0; /* restrict mask */
int32 rname[RN45_SIZE]; /* rename table */
int32 rtb = 0; /* restr trap buf */
int32 extm_init = 0; /* ext mem startup */
int32 stop_inst = 0; /* stop rsrv inst */
int32 xct_max = 16; /* XCT limit */
int32 ind_max = 16; /* ind limit */
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
int32 pcq_p = 0; /* PC queue ptr */
REG *pcq_r = NULL; /* PC queue reg ptr */
int32 hst_p = 0; /* history pointer */
int32 hst_lnt = 0; /* history length */
InstHistory *hst = NULL; /* inst history */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cpu_set_1d (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
t_stat Ea (int32 IR);
t_stat Ea_ch (int32 IR, int32 *byte_num);
int32 inc_bp (int32 bp);
t_stat set_rmv (int32 code);
int32 sbs_eval (void);
int32 sbs_ffo (int32 mask);
t_stat Read (void);
t_stat Write (void);
extern int32 ptr (int32 inst, int32 dev, int32 dat);
extern int32 ptp (int32 inst, int32 dev, int32 dat);
extern int32 tti (int32 inst, int32 dev, int32 dat);
extern int32 tto (int32 inst, int32 dev, int32 dat);
extern int32 lpt (int32 inst, int32 dev, int32 dat);
extern int32 dt (int32 inst, int32 dev, int32 dat);
extern int32 drm (int32 inst, int32 dev, int32 dat);
extern int32 clk (int32 inst, int32 dev, int32 dat);
extern int32 dcs (int32 inst, int32 dev, int32 dat);
#ifdef USE_DISPLAY
extern int32 dpy (int32 inst, int32 dev, int32 dat, int32 dat2);
extern int32 spacewar (int32 inst, int32 dev, int32 dat);
#endif
const int32 sc_map[512] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, /* 00000xxxx */
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 00001xxxx */
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 00010xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 00011xxxx */
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 00100xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 00101xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 00110xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 00111xxxx */
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 01000xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 01001xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 01010xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 01011xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 01100xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 01101xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 01110xxxx */
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 01111xxxx */
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 10000xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 10001xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 10010xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 10011xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 10100xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 10101xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 10110xxxx */
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11011xxxx */
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 11000xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 11001xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 11010xxxx */
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11011xxxx */
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 11100xxxx */
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11101xxxx */
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11110xxxx */
5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9 /* 11111xxxx */
};
const int32 ffo_map[256] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
const int32 byt_shf[4] = { 0, 0, 6, 12 };
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit
cpu_reg CPU register list
cpu_mod CPU modifier list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATAD (PC, PC, ASIZE, "program counter") },
{ ORDATAD (AC, AC, 18, "accumulator") },
{ ORDATAD (IO, IO, 18, "I/O register") },
{ ORDATA (MA, MA, 16) },
{ ORDATA (MB, MB, 18) },
{ FLDATAD (OV, OV, 0, "overflow flag") },
{ ORDATAD (PF, PF, 8, "programs flags <1:6>") },
{ ORDATAD (SS, SS, 6, "sense switches <1:6>") },
{ ORDATAD (TA, TA, ASIZE, "address switches") },
{ ORDATAD (TW, TW, 18, "test word (front panel switches)") },
{ FLDATAD (EXTM, extm, 0, "extend mode") },
{ FLDATAD (RNGM, PF, PF_V_RNG, "ring mode (PDP-1D only)") },
{ FLDATAD (L, PF, PF_V_L, "link (PDP-1D #45 only)") },
{ FLDATAD (RM, rm, 0, "restrict mode (PDP-1D)") },
{ ORDATAD (RMASK, rmask, 18, "restrict memory mask (PDP-1D)") },
{ ORDATAD (RTB, rtb, 18, "restrict trap buffer (PDP-1D #45 only)") },
{ BRDATAD (RNAME, rname, 8, 2, RN45_SIZE, "rename map (PDP-1D #45 only)") },
{ FLDATAD (SBON, sbs, SB_V_ON, "sequence break enable") },
{ FLDATAD (SBRQ, sbs, SB_V_RQ, "sequence break request") },
{ FLDATAD (SBIP, sbs, SB_V_IP, "sequence break in progress") },
{ ORDATAD (SBSREQ, sbs_req, 16, "pending sequence break requests") },
{ ORDATAD (SBSENB, sbs_enb, 16, "enabled sequence break levels") },
{ ORDATAD (SBSACT, sbs_act, 16, "active sequence break levels") },
{ ORDATAD (IOSTA, iosta, 18, "I/O status register"), REG_RO },
{ ORDATA (CPLS, cpls, 6) },
{ FLDATAD (IOH, ioh, 0, "I/O halt in progress") },
{ FLDATAD (IOS, ios, 0, "I/O synchronizer (completion)") },
{ BRDATAD (PCQ, pcq, 8, ASIZE, PCQ_SIZE, "PC prior to last jump or interrupt; most recent PC change first"), REG_RO+REG_CIRC },
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
{ FLDATAD (STOP_INST, stop_inst, 0, "stop on undefined instruction") },
{ FLDATAD (SBS_INIT, sbs_init, SB_V_ON, "initial state of sequence break enable") },
{ FLDATAD (EXTM_INIT, extm_init, 0, "initial state of extend mode") },
{ DRDATAD (XCT_MAX, xct_max, 8, "maximum XCT chain"), PV_LEFT + REG_NZ },
{ DRDATAD (IND_MAX, ind_max, 8, "maximum nested indirect addresses"), PV_LEFT + REG_NZ },
{ ORDATAD (WRU, sim_int_char, 8, "interrupt character") },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_1D+UNIT_1D45, 0, "standard CPU", "PDP1C" },
{ UNIT_1D+UNIT_1D45, UNIT_1D, "PDP-1D #48", "PDP1D48", &cpu_set_1d },
{ UNIT_1D+UNIT_1D45, UNIT_1D+UNIT_1D45, "PDP1D #45", "PDP1D45", &cpu_set_1d },
{ UNIT_MDV, UNIT_MDV, "multiply/divide", "MDV", NULL },
{ UNIT_MDV, 0, "no multiply/divide", "NOMDV", NULL },
{ UNIT_SBS, UNIT_SBS, "SBS", "SBS", NULL },
{ UNIT_SBS, 0, "no SBS", "NOSBS", NULL },
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
{ UNIT_MSIZE, 65536, NULL, "64K", &cpu_set_size },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY",
&cpu_set_hist, &cpu_show_hist },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, ASIZE, 1, 8, 18,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL,
NULL, 0
};
t_stat sim_instr (void)
{
int32 IR, op, i, t, xct_count;
int32 sign, signd, v, sbs_lvl, byno;
int32 dev, pulse, io_data, sc, skip;
t_stat reason;
static int32 fs_test[8] = {
0, PF_SS_1, PF_SS_2, PF_SS_3,
PF_SS_4, PF_SS_5, PF_SS_6, PF_SS_ALL
};
#define EPC_WORD ((OV << 17) | (extm << 16) | PC)
#define INCR_ADDR(x) (((x) & EPCMASK) | (((x) + 1) & DAMASK))
#define DECR_ADDR(x) (((x) & EPCMASK) | (((x) - 1) & DAMASK))
#define ABS(x) ((x) ^ (((x) & SIGN)? DMASK: 0))
if (cpu_unit.flags & UNIT_1D) { /* PDP-1D? */
cpu_unit.flags |= UNIT_SBS|UNIT_MDV; /* 16-chan SBS, mdv */
if (!(cpu_unit.flags & UNIT_1D45)) { /* SN 48? */
PF &= ~PF_L; /* no link */
rtb = 0; /* no RTB */
for (i = 0; i < RN45_SIZE; i++) /* no rename */
rname[i] = i;
}
}
else { /* standard PDP-1 */
PF &= ~(PF_L|PF_RNG); /* no link, ring */
rm = 0; /* no restrict mode */
rtb = 0; /* no RTB */
for (i = 0; i < RN45_SIZE; i++) /* no rename */
rname[i] = i;
}
if (cpu_unit.flags & UNIT_SBS) { /* 16-chan SBS? */
sbs = sbs & SB_ON; /* yes, only SB ON */
sbs_lvl = sbs_eval (); /* eval SBS system */
}
else sbs_lvl = sbs_req = sbs_enb = sbs_act = 0; /* no, clr SBS sys */
/* Main instruction fetch/decode loop: check events and interrupts */
reason = 0;
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if ((reason = sim_process_event ()))
break;
sbs_lvl = sbs_eval (); /* eval sbs system */
}
if ((cpu_unit.flags & UNIT_SBS)? /* test interrupt */
((sbs & SB_ON) && sbs_lvl): /* 16-chan SBS? */
(sbs == (SB_ON | SB_RQ))) { /* 1-chan SBS? */
if (cpu_unit.flags & UNIT_SBS) { /* 16-chan intr */
int32 lvl = sbs_lvl - 1; /* get level */
MA = lvl << 2; /* status block */
sbs_req &= ~SBS_MASK (lvl); /* clr lvl request */
sbs_act |= SBS_MASK (lvl); /* set lvl active */
sbs_lvl = sbs_eval (); /* re-eval SBS */
}
else { /* 1-chan intr */
MA = 0; /* always level 0 */
sbs = SB_ON | SB_IP; /* set in prog flag */
}
PCQ_ENTRY; /* save old PC */
MB = AC; /* save AC */
Write ();
MA = MA + 1;
MB = EPC_WORD; /* save OV'EXT'PC */
Write ();
MA = MA + 1;
MB = IO; /* save IO */
Write ();
PC = MA + 1; /* PC = block + 3 */
extm = 0; /* extend off */
OV = 0; /* clear overflow */
}
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break;
}
/* Fetch, decode instruction */
MA = PC;
if (Read ()) /* fetch inst */
break;
IR = MB; /* save in IR */
PC = INCR_ADDR (PC); /* increment PC */
xct_count = 0; /* track XCT's */
sim_interval = sim_interval - 1;
if (hst_lnt) { /* history enabled? */
hst_p = (hst_p + 1); /* next entry */
if (hst_p >= hst_lnt)
hst_p = 0;
hst[hst_p].pc = MA | HIST_PC; /* save state */
hst[hst_p].ir = IR;
hst[hst_p].ovac = (OV << HIST_V_SHF) | AC;
hst[hst_p].pfio = (PF << HIST_V_SHF) | IO;
}
xct_instr: /* label for XCT */
op = ((IR >> 13) & 037); /* get opcode */
switch (op) { /* decode IR<0:4> */
/* Logical, load, store instructions */
case 001: /* AND */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = AC & MB;
break;
case 002: /* IOR */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = AC | MB;
break;
case 003: /* XOR */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = AC ^ MB;
break;
case 004: /* XCT */
if (xct_count >= xct_max) { /* too many XCT's? */
reason = STOP_XCT;
break;
}
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
xct_count = xct_count + 1; /* count XCT's */
IR = MB; /* get instruction */
goto xct_instr; /* go execute */
case 005: /* LCH */
if (cpu_unit.flags & UNIT_1D) { /* PDP-1D? */
if ((reason = Ea_ch (IR, &byno))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = (MB << byt_shf[byno]) & 0770000; /* extract byte */
}
else reason = stop_inst; /* no, illegal */
break;
case 006: /* DCH */
if (cpu_unit.flags & UNIT_1D) { /* PDP-1D? */
if ((reason = Ea_ch (IR, &byno))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
MB = (MB & ~(0770000 >> byt_shf[byno])) | /* insert byte */
((AC & 0770000) >> byt_shf[byno]);
Write (); /* rewrite */
AC = ((AC << 6) | (AC >> 12)) & DMASK; /* rot AC left 6 */
}
else reason = stop_inst; /* no, illegal */
break;
case 007: /* CAL, JDA */
MA = (PC & EPCMASK) | ((IR & IA)? (IR & DAMASK): 0100);
if (hst_p) /* history enabled? */
hst[hst_p].ea = MA;
PCQ_ENTRY;
MB = AC; /* save AC */
AC = EPC_WORD;
PC = INCR_ADDR (MA);
reason = Write ();
break;
case 010: /* LAC */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = MB;
break;
case 011: /* LIO */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
IO = MB;
break;
case 012: /* DAC */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
MB = AC;
reason = Write ();
break;
case 013: /* DAP */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
MB = (AC & DAMASK) | (MB & ~DAMASK);
reason = Write ();
break;
case 014: /* DIP */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
MB = (AC & ~DAMASK) | (MB & DAMASK);
reason = Write ();
break;
case 015: /* DIO */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
MB = IO;
reason = Write ();
break;
case 016: /* DZM */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
MB = 0;
reason = Write ();
break;
/* Add, subtract, control
Add is performed in sequential steps, as follows:
1. add
2. end around carry propagate
3. overflow check
4. -0 cleanup
Subtract is performed in sequential steps, as follows:
1. complement AC
2. add
3. end around carry propagate
4. overflow check
5. complement AC
Because no -0 check is done, (-0) - (+0) yields a result of -0 */
case 017: /* TAD */
if (cpu_unit.flags & UNIT_1D) { /* PDP-1D? */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = AC + MB + ((PF & PF_L)? 1: 0); /* AC + opnd + L */
if (AC > DMASK) /* carry? set L */
PF = PF | PF_L;
else PF = PF & ~PF_L; /* no, clear L */
AC = AC & DMASK; /* mask AC */
}
else reason = stop_inst; /* no, illegal */
break;
case 020: /* ADD */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
t = AC;
AC = AC + MB;
if (AC > 0777777) /* end around carry */
AC = (AC + 1) & DMASK;
if (((~t ^ MB) & (t ^ AC)) & SIGN)
OV = 1;
if (AC == DMASK) /* minus 0 cleanup */
AC = 0;
break;
case 021: /* SUB */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
t = AC ^ DMASK; /* complement AC */
AC = t + MB; /* -AC + MB */
if (AC > DMASK) /* end around carry */
AC = (AC + 1) & DMASK;
if (((~t ^ MB) & (t ^ AC)) & SIGN)
OV = 1;
AC = AC ^ DMASK; /* recomplement AC */
break;
case 022: /* IDX */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = MB + 1;
if (AC >= DMASK)
AC = (AC + 1) & DMASK;
MB = AC;
reason = Write ();
break;
case 023: /* ISP */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
AC = MB + 1;
if (AC >= DMASK)
AC = (AC + 1) & DMASK;
MB = AC;
if (!(AC & SIGN))
PC = INCR_ADDR (PC);
reason = Write ();
break;
case 024: /* SAD */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
if (AC != MB)
PC = INCR_ADDR (PC);
break;
case 025: /* SAS */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
if (AC == MB)
PC = INCR_ADDR (PC);
break;
case 030: /* JMP */
if (sbs && /* SBS enabled? */
((PC & EPCMASK) == 0) && /* in bank 0? */
((IR & (IA|07703)) == (IA|00001)) && /* jmp i 00x1/5? */
((cpu_unit.flags & UNIT_SBS) || /* 16-chan SBS or */
((IR & 00074) == 0))) { /* jmp i 0001? */
if (cpu_unit.flags & UNIT_SBS) { /* 16-chan SBS dbk? */
int32 lvl = (IR >> 2) & SBS_LVL_MASK; /* lvl = MA<14:15> */
sbs_act &= ~SBS_MASK (lvl); /* clr level active */
sbs_lvl = sbs_eval (); /* eval SBS system */
}
else sbs = sbs & ~SB_IP; /* 1-chan dbk */
PCQ_ENTRY; /* save old PC */
MA = IR & DAMASK; /* ind addr */
Read (); /* eff addr word */
OV = (MB >> 17) & 1; /* restore OV */
extm = (MB >> 16) & 1; /* restore ext mode */
PC = MB & AMASK; /* jmp i 00x1/5 */
if (hst_p) /* history enabled? */
hst[hst_p].ea = PC;
}
else { /* normal JMP */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
PCQ_ENTRY;
PC = MA;
}
break;
case 031: /* JSP */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
AC = EPC_WORD;
PCQ_ENTRY;
PC = MA;
break;
case 034: /* LAW */
AC = (IR & 07777) ^ ((IR & IA)? 0777777: 0);
break;
/* Multiply and divide
Multiply and divide step and hardware multiply are exact implementations.
Hardware divide is a 2's complement analog to the actual hardware.
*/
case 026: /* MUL */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
if (cpu_unit.flags & UNIT_MDV) { /* hardware? */
sign = AC ^ MB; /* result sign */
IO = ABS (AC); /* IO = |AC| */
v = ABS (MB); /* v = |mpy| */
for (i = AC = 0; i < 17; i++) {
if (IO & 1)
AC = AC + v;
IO = (IO >> 1) | ((AC & 1) << 17);
AC = AC >> 1;
}
if ((sign & SIGN) && (AC | IO)) { /* negative, > 0? */
AC = AC ^ DMASK;
IO = IO ^ DMASK;
}
}
else { /* multiply step */
if (IO & 1)
AC = AC + MB;
if (AC > DMASK)
AC = (AC + 1) & DMASK;
IO = (IO >> 1) | ((AC & 1) << 17);
AC = AC >> 1;
}
break;
case 027: /* DIV */
if ((reason = Ea (IR))) /* MA <- eff addr */
break;
if ((reason = Read ())) /* MB <- data */
break;
if (cpu_unit.flags & UNIT_MDV) { /* hardware */
sign = AC ^ MB; /* result sign */
signd = AC; /* remainder sign */
v = ABS (MB); /* v = |divr| */
if (ABS (AC) >= v) /* overflow? */
break;
if (AC & SIGN) {
AC = AC ^ DMASK; /* AC'IO = |AC'IO| */
IO = IO ^ DMASK;
}
for (i = t = 0; i < 18; i++) {
if (t)
AC = (AC + v) & DMASK;
else AC = (AC - v) & DMASK;
t = AC >> 17;
if (i != 17)
AC = ((AC << 1) | (IO >> 17)) & DMASK;
IO = ((IO << 1) | (t ^ 1)) & 0777777;
}
if (t) /* fix remainder */
AC = (AC + v) & DMASK;
t = ((signd & SIGN) && AC)? AC ^ DMASK: AC;
AC = ((sign & SIGN) && IO)? IO ^ DMASK: IO;
IO = t;
PC = INCR_ADDR (PC); /* skip */
}
else { /* divide step */
t = AC >> 17;
AC = ((AC << 1) | (IO >> 17)) & DMASK;
IO = ((IO << 1) | (t ^ 1)) & DMASK;
if (IO & 1)
AC = AC + (MB ^ DMASK);
else AC = AC + MB + 1;
if (AC > DMASK)
AC = (AC + 1) & DMASK;
if (AC == DMASK)
AC = 0;
}
break;
/* Skips */
case 032: /* skip */
v = (IR >> 3) & 07; /* sense switches */
t = IR & 07; /* program flags */
skip = (((cpu_unit.flags & UNIT_1D) &&
(IR & 04000) && (IO != 0)) || /* SNI (PDP-1D) */
((IR & 02000) && !(IO & SIGN)) || /* SPI */
((IR & 01000) && (OV == 0)) || /* SZO */
((IR & 00400) && (AC & SIGN)) || /* SMA */
((IR & 00200) && !(AC & SIGN)) || /* SPA */
((IR & 00100) && (AC == 0)) || /* SZA */
(v && ((SS & fs_test[v]) == 0)) || /* SZSn */
(t && ((PF & fs_test[t]) == 0))); /* SZFn */
if (IR & IA) /* invert skip? */
skip = skip ^ 1;
if (skip)
PC = INCR_ADDR (PC);
if (IR & 01000) /* SOV clears OV */
OV = 0;
break;
/* Shifts */
case 033:
sc = sc_map[IR & 0777]; /* map shift count */
switch ((IR >> 9) & 017) { /* case on IR<5:8> */
case 001: /* RAL */
AC = ((AC << sc) | (AC >> (18 - sc))) & DMASK;
break;
case 002: /* RIL */
IO = ((IO << sc) | (IO >> (18 - sc))) & DMASK;
break;
case 003: /* RCL */
t = AC;
AC = ((AC << sc) | (IO >> (18 - sc))) & DMASK;
IO = ((IO << sc) | (t >> (18 - sc))) & DMASK;
break;
case 005: /* SAL */
t = (AC & SIGN)? DMASK: 0;
AC = (AC & SIGN) | ((AC << sc) & 0377777) |
(t >> (18 - sc));
break;
case 006: /* SIL */
t = (IO & SIGN)? DMASK: 0;
IO = (IO & SIGN) | ((IO << sc) & 0377777) |
(t >> (18 - sc));
break;
case 007: /* SCL */
t = (AC & SIGN)? DMASK: 0;
AC = (AC & SIGN) | ((AC << sc) & 0377777) |
(IO >> (18 - sc));
IO = ((IO << sc) | (t >> (18 - sc))) & DMASK;
break;
case 011: /* RAR */
AC = ((AC >> sc) | (AC << (18 - sc))) & DMASK;
break;
case 012: /* RIR */
IO = ((IO >> sc) | (IO << (18 - sc))) & DMASK;
break;
case 013: /* RCR */
t = IO;
IO = ((IO >> sc) | (AC << (18 - sc))) & DMASK;
AC = ((AC >> sc) | (t << (18 - sc))) & DMASK;
break;
case 015: /* SAR */
t = (AC & SIGN)? DMASK: 0;
AC = ((AC >> sc) | (t << (18 - sc))) & DMASK;
break;
case 016: /* SIR */
t = (IO & SIGN)? DMASK: 0;
IO = ((IO >> sc) | (t << (18 - sc))) & DMASK;
break;
case 017: /* SCR */
t = (AC & SIGN)? DMASK: 0;
IO = ((IO >> sc) | (AC << (18 - sc))) & DMASK;
AC = ((AC >> sc) | (t << (18 - sc))) & DMASK;
break;
default: /* undefined */
reason = stop_inst;
break;
} /* end switch shf */
break;
/* Special operates (PDP-1D) - performed in order shown */
case 036: /* special */
if (cpu_unit.flags & UNIT_1D) { /* PDP-1D? */
if (IR & 000100) /* SCI */
IO = 0;
if (IR & 000040) /* SCF */
PF = 0;
if (cpu_unit.flags & UNIT_1D45) { /* SN 45? */
if ((IR & 000020) && /* SZL/SNL? */
(((PF & PF_L) == 0) == ((IR & IA) == 0)))
PC = INCR_ADDR (PC);
if (IR & 000010) /* CLL */
PF = PF & ~PF_L;
if (IR & 000200) { /* SCM */
AC = (AC ^ DMASK) + ((PF & PF_L)? 1: 0);
if (AC > DMASK) /* carry? set L */
PF = PF | PF_L;
else PF = PF & ~PF_L; /* no, clear L */
AC = AC & DMASK; /* mask AC */
}
}
t = IO & PF_VR_ALL;
if (IR & 004000) /* IIF */
IO = IO | PF;
if (IR & 002000) /* IFI */
PF = PF | t;
if (cpu_unit.flags & UNIT_1D45) { /* SN 45? */
if (IR & 000004) /* CML */
PF = PF ^ PF_L;
if (IR & 000400) /* IDA */
AC = (PF & PF_RNG)?
(AC & 0777770) | ((AC + 1) & 07):
(AC + 1) & DMASK;
}
else PF = PF & ~PF_L; /* no link */
if (IR & 01000) /* IDC */
AC = inc_bp (AC);
}
else reason = stop_inst; /* no, illegal */
break;
/* Operates - performed in the order shown */
case 037: /* operate */
if (IR & 004000) /* CLI */
IO = 0;
if (IR & 000200) /* CLA */
AC = 0;
if (IR & 002000) /* LAT */
AC = AC | TW;
if (IR & 000100) /* LAP */
AC = AC | EPC_WORD;
if (IR & 001000) /* CMA */
AC = AC ^ DMASK;
if (cpu_unit.flags & UNIT_1D) { /* PDP-1D? */
if (IR & 010000) /* CMI */
IO = IO ^ DMASK;
MB = IO;
if (IR & 000020) /* LIA */
IO = AC;
if (IR & 000040) /* LAI */
AC = MB;
}
t = IR & 07; /* flag select */
if (IR & 010) /* STFn */
PF = PF | fs_test[t];
else PF = PF & ~fs_test[t]; /* CLFn */
if (IR & 000400) { /* HLT */
if (rm && !sbs_act) /* restrict, ~brk? */
reason = set_rmv (RTB_HLT); /* violation */
else reason = STOP_HALT; /* no, halt */
}
break;
/* IOT - The simulator behaves functionally like a real PDP-1 but does not
use the same mechanisms or state bits. In particular,
- If an IOT does not specify IO_WAIT, the IOT will be executed, and the
I/O halt flag (IOH) will not be disturbed. On the real PDP-1, IOH is
stored in IHS, IOH is cleared, the IOT is executed, and then IOH is
restored from IHS. Because IHS is not otherwise used, it is not
explicitly simulated.
- If an IOT does specify IO_WAIT, then IOH specifies whether an I/O halt
(wait) is already in progress.
> If already set, I/O wait is in progress. The simulator looks for
a completion pulse (IOS). If there is a pulse, IOH is cleared. If
not, the IOT is fetched again. In either case, execution of the
IOT is skipped.
> If not set, I/O wait must start. IOH is set, the PC is backed up,
and the IOT is executed.
- On a real PDP-1, IOC is the I/O command enable and enables the IOT
pulses. In the simulator, the enabling of IOT pulses is done through
code flow, and IOC is not explicitly simulated.
*/
case 035:
if (rm && !sbs_act) { /* restrict, ~brk? */
reason = set_rmv (RTB_IOT); /* violation */
break;
}
if (IR & IO_WAIT) { /* wait? */
if (ioh) { /* I/O halt? */
if (ios) /* comp pulse? done */
ioh = 0;
else { /* wait more */
PC = DECR_ADDR (PC); /* re-execute */
if (cpls == 0) { /* pending pulses? */
reason = STOP_WAIT; /* no, CPU hangs */
break;
}
sim_interval = 0; /* force event */
}
break; /* skip iot */
}
ioh = 1; /* turn on halt */
PC = DECR_ADDR (PC); /* re-execute */
}
dev = IR & 077; /* get dev addr */
pulse = (IR >> 6) & 077; /* get pulse data */
io_data = IO; /* default data */
switch (dev) { /* case on dev */
case 000: /* I/O wait */
break;
case 001:
if (IR & 003700) /* DECtape */
io_data = dt (IR, dev, IO);
else io_data = ptr (IR, dev, IO); /* paper tape rdr */
break;
case 002: case 030: /* paper tape rdr */
io_data = ptr (IR, dev, IO);
break;
case 003: /* typewriter */
io_data = tto (IR, dev, IO);
break;
case 004: /* keyboard */
io_data = tti (IR, dev, IO);
break;
case 005: case 006: /* paper tape punch */
io_data = ptp (IR, dev, IO);
break;
#ifdef USE_DISPLAY
case 007: /* display */
io_data = dpy (IR, dev, IO, AC);
break;
#endif
case 010: /* leave ring mode */
if (cpu_unit.flags & UNIT_1D)
PF = PF & ~PF_RNG;
else reason = stop_inst;
break;
case 011: /* enter ring mode */
if (cpu_unit.flags & UNIT_1D)
PF = PF | PF_RNG;
else
#ifdef USE_DISPLAY
io_data = spacewar (IR, dev, IO);
#else
reason = stop_inst;
#endif
break;
case 022: /* data comm sys */
io_data = dcs (IR, dev, IO);
break;
case 032: /* clock */
io_data = clk (IR, dev, IO);
break;
case 033: /* check status */
io_data = iosta | ((sbs & SB_ON)? IOS_SQB: 0);
break;
case 035: /* check trap buf */
if (cpu_unit.flags & UNIT_1D45) { /* SN 45? */
io_data = rtb;
rtb = 0;
}
else reason = stop_inst;
break;
case 045: /* line printer */
io_data = lpt (IR, dev, IO);
break;
case 050: /* deact seq break */
if (cpu_unit.flags & UNIT_SBS)
sbs_enb &= ~SBS_MASK (pulse & SBS_LVL_MASK);
else reason = stop_inst;
break;
case 051: /* act seq break */
if (cpu_unit.flags & UNIT_SBS)
sbs_enb |= SBS_MASK (pulse & SBS_LVL_MASK);
else reason = stop_inst;
break;
case 052: /* start seq break */
if (cpu_unit.flags & UNIT_SBS)
sbs_req |= SBS_MASK (pulse & SBS_LVL_MASK);
else reason = stop_inst;
break;
case 053: /* clear all chan */
if (cpu_unit.flags & UNIT_SBS)
sbs_enb = 0;
else reason = stop_inst;
break;
case 054: /* seq brk off */
sbs = sbs & ~SB_ON;
break;
case 055: /* seq brk on */
sbs = sbs | SB_ON;
break;
case 056: /* clear seq brk */
sbs = 0; /* clear PI */
sbs_req = 0;
sbs_enb = 0;
sbs_act = 0;
break;
case 061: case 062: case 063: /* drum */
io_data = drm (IR, dev, IO);
break;
case 064: /* drum/leave rm */
if (cpu_unit.flags & UNIT_1D)
rm = 0;
else io_data = drm (IR, dev, IO);
break;
case 065: /* enter rm */
if (cpu_unit.flags & UNIT_1D) {
rm = 1;
rmask = IO;
}
else reason = stop_inst;
break;
case 066: /* rename mem */
if (cpu_unit.flags & UNIT_1D45) { /* SN45? */
int32 from = (IR >> 9) & RM45_M_BNK;
int32 to = (IR >> 6) & RM45_M_BNK;
rname[from] = to;
}
else reason = stop_inst;
break;
case 067: /* reset renaming */
if (cpu_unit.flags & UNIT_1D45) { /* SN45 */
for (i = 0; i < RN45_SIZE; i++)
rname[i] = i;
}
else reason = stop_inst;
break;
case 074: /* extend mode */
extm = (IR >> 11) & 1; /* set from IR<6> */
break;
default: /* undefined */
reason = stop_inst;
break;
} /* end switch dev */
IO = io_data & DMASK;
if (io_data & IOT_SKP) /* skip? */
PC = INCR_ADDR (PC);
if (io_data >= IOT_REASON)
reason = io_data >> IOT_V_REASON;
sbs_lvl = sbs_eval (); /* eval SBS system */
break;
default: /* undefined */
if (rm && !sbs_act) /* restrict, ~brk? */
reason = set_rmv (RTB_ILL); /* violation */
else reason = STOP_RSRV; /* halt */
break;
} /* end switch op */
if (reason == ERR_RMV) { /* restrict viol? */
sbs_req |= SBS_MASK (SBS_LVL_RMV); /* request break */
sbs_lvl = sbs_eval (); /* re-eval SBS */
reason = 0; /* continue */
}
} /* end while */
pcq_r->qptr = pcq_p; /* update pc q ptr */
return reason;
}
/* Effective address routine for standard memory reference instructions */
t_stat Ea (int32 IR)
{
int32 i;
t_stat r;
MA = (PC & EPCMASK) | (IR & DAMASK); /* direct address */
if (IR & IA) { /* indirect addr? */
if (extm) { /* extend? */
if ((r = Read ())) /* read; err? */
return r;
MA = MB & AMASK; /* one level */
}
else { /* multi-level */
for (i = 0; i < ind_max; i++) { /* count indirects */
if ((r = Read ())) /* get ind word */
return r;
MA = (PC & EPCMASK) | (MB & DAMASK);
if ((MB & IA) == 0)
break;
}
if (i >= ind_max) /* indirect loop? */
return STOP_IND;
} /* end else !extm */
} /* end if indirect */
if (hst_p) /* history enabled? */
hst[hst_p].ea = MA;
return SCPE_OK;
}
/* Effective address routine for character instructions */
t_stat Ea_ch (int32 IR, int32 *bn)
{
int32 i;
t_stat r;
MA = (PC & EPCMASK) | (IR & DAMASK); /* direct address */
if (extm) { /* extend? */
if ((r = Read ())) /* read; err? */
return r;
}
else { /* multi-level */
for (i = 0; i < ind_max; i++) { /* count indirects */
if ((r = Read ())) /* get ind word */
return r;
if ((MB & IA) == 0)
break;
MA = (PC & EPCMASK) | (MB & DAMASK);
}
if (i >= ind_max) /* indirect loop? */
return STOP_IND;
} /* end else !extm */
if (IR & IA) { /* automatic mode? */
if (rm && !sbs_act && ((MB & 0607777) == 0607777)) /* page cross? */
return set_rmv (RTB_CHR);
MB = inc_bp (MB); /* incr byte ptr */
Write (); /* rewrite */
}
*bn = (MB >> 16) & 03; /* byte num */
if (extm) /* final ea */
MA = MB & AMASK;
else MA = (PC & EPCMASK) | (MB & DAMASK);
if (hst_p) /* history enabled? */
hst[hst_p].ea = MA;
return SCPE_OK;
}
/* Increment byte pointer, allowing for ring mode */
int32 inc_bp (int32 bp)
{
bp = bp + (1 << 16); /* add to bit<1> */
if (bp > DMASK) { /* carry out? */
if (PF & PF_RNG) /* ring mode? */
bp = (1 << 16) | (bp & 0177770) | ((bp + 1) & 07);
else bp = (1 << 16) | ((bp + 1) & AMASK);
}
return bp;
}
/* Read and write memory */
t_stat Read (void)
{
if (rm && !sbs_act) { /* restrict check? */
int32 bnk = MA_GETBNK (MA); /* get bank */
if ((rmask << bnk) & SIGN)
return set_rmv (0);
}
MB = M[MA];
if (hst_p) /* history enabled? */
hst[hst_p].opnd = MB;
return SCPE_OK;
}
t_stat Write (void)
{
if (hst_p) /* hist? old contents */
hst[hst_p].opnd = M[MA];
if (rm && !sbs_act) { /* restrict check? */
int32 bnk = MA_GETBNK (MA); /* get bank */
if ((rmask << bnk) & SIGN)
return set_rmv (0);
}
if (MEM_ADDR_OK (MA))
M[MA] = MB;
return SCPE_OK;
}
/* Restrict mode trap */
t_stat set_rmv (int32 code)
{
rtb = code | (MB & RTB_MB_MASK);
return ERR_RMV;
}
/* Evaluate SBS system */
int32 sbs_eval (void)
{
int32 hi;
if (cpu_unit.flags & UNIT_SBS) { /* SBS enabled? */
if (sbs_req == 0) /* any requests? */
return 0;
hi = sbs_ffo (sbs_req); /* find highest */
if (hi < sbs_ffo (sbs_act)) /* higher? */
return hi + 1;
}
return 0;
}
/* Find first one in a 16b field */
int32 sbs_ffo (int32 mask)
{
if (mask & 0177400)
return ffo_map[(mask >> 8) & 0377];
else return (ffo_map[mask & 0377] + 8);
}
/* Device request interrupt */
t_stat dev_req_int (int32 lvl)
{
if (cpu_unit.flags & UNIT_SBS) { /* SBS enabled? */
if (lvl >= SBS_LVLS) /* invalid level? */
return SCPE_IERR;
if (sbs_enb & SBS_MASK (lvl)) /* level active? */
sbs_req |= SBS_MASK (lvl); /* set SBS request */
}
else sbs |= SB_RQ; /* PI request */
return SCPE_OK;
}
/* Device set/show SBS level */
t_stat dev_set_sbs (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 *lvl = (int32 *) desc;
int32 newlvl;
t_stat r;
if ((cptr == NULL) || (*cptr == 0))
return SCPE_ARG;
newlvl = get_uint (cptr, 10, SBS_LVLS - 1, &r);
if (r != SCPE_OK)
return SCPE_ARG;
*lvl = newlvl;
return SCPE_OK;
}
t_stat dev_show_sbs (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
const int32 *lvl = (const int32 *) desc;
if (lvl == NULL)
return SCPE_IERR;
fprintf (st, "SBS level %d", *lvl);
return SCPE_OK;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
int32 i;
sbs = sbs_init;
extm = extm_init;
ioh = 0;
ios = 0;
cpls = 0;
sbs_act = 0;
sbs_req = 0;
sbs_enb = 0;
OV = 0;
PF = 0;
MA = 0;
MB = 0;
rm = 0;
rtb = 0;
rmask = 0;
for (i = 0; i < RN45_SIZE; i++)
rname[i] = i;
pcq_r = find_reg ("PCQ", NULL, dptr);
if (pcq_r)
pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
if (vptr != NULL)
*vptr = M[addr] & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
M[addr] = val & DMASK;
return SCPE_OK;
}
/* Change memory size */
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 mc = 0;
uint32 i;
if ((val <= 0) || (((size_t)val) > MAXMEMSIZE) || ((val & 07777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++)
mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++)
M[i] = 0;
return SCPE_OK;
}
/* Set PDP-1D */
t_stat cpu_set_1d (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
uptr->flags |= UNIT_SBS|UNIT_MDV;
return SCPE_OK;
}
/* Set history */
t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 i, lnt;
t_stat r;
if (cptr == NULL) {
for (i = 0; i < hst_lnt; i++)
hst[i].pc = 0;
hst_p = 0;
return SCPE_OK;
}
lnt = (int32) get_uint (cptr, 10, HIST_MAX, &r);
if ((r != SCPE_OK) || (lnt && (lnt < HIST_MIN)))
return SCPE_ARG;
hst_p = 0;
if (hst_lnt) {
free (hst);
hst_lnt = 0;
hst = NULL;
}
if (lnt) {
hst = (InstHistory *) calloc (lnt, sizeof (InstHistory));
if (hst == NULL)
return SCPE_MEM;
hst_lnt = lnt;
}
return SCPE_OK;
}
/* Show history */
t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
int32 ov, pf, op, k, di, lnt;
const char *cptr = (const char *) desc;
t_stat r;
t_value sim_eval;
InstHistory *h;
if (hst_lnt == 0) /* enabled? */
return SCPE_NOFNC;
if (cptr) {
lnt = (int32) get_uint (cptr, 10, hst_lnt, &r);
if ((r != SCPE_OK) || (lnt == 0))
return SCPE_ARG;
}
else lnt = hst_lnt;
di = hst_p - lnt; /* work forward */
if (di < 0)
di = di + hst_lnt;
fprintf (st, "PC OV AC IO PF EA IR\n\n");
for (k = 0; k < lnt; k++) { /* print specified */
h = &hst[(++di) % hst_lnt]; /* entry pointer */
if (h->pc & HIST_PC) { /* instruction? */
ov = (h->ovac >> HIST_V_SHF) & 1; /* overflow */
pf = (h->pfio >> HIST_V_SHF) & PF_VR_ALL; /* prog flags */
op = ((h->ir >> 13) & 037); /* get opcode */
fprintf (st, "%06o %o %06o %06o %03o ",
h->pc & AMASK, ov, h->ovac & DMASK, h->pfio & DMASK, pf);
if ((op < 032) && (op != 007)) /* mem ref instr */
fprintf (st, "%06o ", h->ea);
else fprintf (st, " ");
sim_eval = h->ir;
if ((fprint_sym (st, h->pc & AMASK, &sim_eval, &cpu_unit, SWMASK ('M'))) > 0)
fprintf (st, "(undefined) %06o", h->ir);
else if (op < 030) /* mem ref instr */
fprintf (st, " [%06o]", h->opnd);
fputc ('\n', st); /* end line */
} /* end else instruction */
} /* end for */
return SCPE_OK;
}
#ifdef USE_DISPLAY
/* set "test switches"; from display code */
void cpu_set_switches(unsigned long bits)
{
/* just what we want; smaller CPUs might want to shift down? */
TW = bits;
}
unsigned long cpu_get_switches(void)
{
return TW;
}
#endif