blob: 3b771c26b4284bfa6c91cec66f51f4341e68e9c5 [file] [log] [blame] [raw]
/* hp2100_cpu.c: HP 2100 CPU simulator
Copyright (c) 1993-2005, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
CPU 2116A/2100A/21MX-M/21MX-E central processing unit
MP 12892B memory protect
DMA0,DMA1 12895A/12897B direct memory access/dual channel port controller
21-Jan-05 JDB Reorganized CPU option flags
15-Jan-05 RMS Split out EAU and MAC instructions
26-Dec-04 RMS DMA reset doesn't clear alternate CTL flop (from Dave Bryan)
DMA reset shouldn't clear control words (from Dave Bryan)
Alternate CTL flop not visible as register (from Dave Bryan)
Fixed CBS, SBS, TBS to perform virtual reads
Separated A/B from M[0/1] for DMA IO (from Dave Bryan)
Fixed bug in JPY (from Dave Bryan)
25-Dec-04 JDB Added SET CPU 21MX-M, 21MX-E (21MX defaults to MX-E)
TIMER/EXECUTE/DIAG instructions disabled for 21MX-M
T-register reflects changes in M-register when halted
25-Sep-04 JDB Moved MP into its own device; added MP option jumpers
Modified DMA to allow disabling
Modified SET CPU 2100/2116 to truncate memory > 32K
Added -F switch to SET CPU to force memory truncation
Fixed S-register behavior on 2116
Fixed LIx/MIx behavior for DMA on 2116 and 2100
Fixed LIx/MIx behavior for empty I/O card slots
Modified WRU to be REG_HRO
Added BRK and DEL to save console settings
Fixed use of "unsigned int16" in cpu_reset
Modified memory size routine to return SCPE_INCOMP if
memory size truncation declined
20-Jul-04 RMS Fixed bug in breakpoint test (reported by Dave Bryan)
Back up PC on instruction errors (from Dave Bryan)
14-May-04 RMS Fixed bugs and added features from Dave Bryan
- SBT increments B after store
- DMS console map must check dms_enb
- SFS x,C and SFC x,C work
- MP violation clears automatically on interrupt
- SFS/SFC 5 is not gated by protection enabled
- DMS enable does not disable mem prot checks
- DMS status inconsistent at simulator halt
- Examine/deposit are checking wrong addresses
- Physical addresses are 20b not 15b
- Revised DMS to use memory rather than internal format
- Added instruction printout to HALT message
- Added M and T internal registers
- Added N, S, and U breakpoints
Revised IBL facility to conform to microcode
Added DMA EDT I/O pseudo-opcode
Separated DMA SRQ (service request) from FLG
12-Mar-03 RMS Added logical name support
02-Feb-03 RMS Fixed last cycle bug in DMA output (found by Mike Gemeny)
22-Nov-02 RMS Added 21MX IOP support
24-Oct-02 RMS Fixed bugs in IOP and extended instructions
Fixed bugs in memory protection and DMS
Added clock calibration
25-Sep-02 RMS Fixed bug in DMS decode (found by Robert Alan Byer)
26-Jul-02 RMS Restructured extended instructions, added IOP support
22-Mar-02 RMS Changed to allocate memory array dynamically
11-Mar-02 RMS Cleaned up setjmp/auto variable interaction
17-Feb-02 RMS Added DMS support
Fixed bugs in extended instructions
03-Feb-02 RMS Added terminal multiplexor support
Changed PCQ macro to use unmodified PC
Fixed flop restore logic (found by Bill McDermith)
Fixed SZx,SLx,RSS bug (found by Bill McDermith)
Added floating point support
16-Jan-02 RMS Added additional device support
07-Jan-02 RMS Fixed DMA register tables (found by Bill McDermith)
07-Dec-01 RMS Revised to use breakpoint package
03-Dec-01 RMS Added extended SET/SHOW support
10-Aug-01 RMS Removed register in declarations
26-Nov-00 RMS Fixed bug in dual device number routine
21-Nov-00 RMS Fixed bug in reset routine
15-Oct-00 RMS Added dynamic device number support
References:
- 21MX M-Series Computer, HP 2108B and HP 2112B, Operating and Reference Manual
(02108-90037, Apr-1979)
- HP 1000 M/E/F-Series Computers Engineering and Reference Documentation
(92851-90001, Mar-1981)
The register state for the HP 2116 CPU is:
AR<15:0> A register - addressable as location 0
BR<15:0> B register - addressable as location 1
PC<14:0> P register (program counter)
SR<15:0> S register
MR<14:0> M register - memory address
TR<15:0> T register - memory data
E extend flag (carry out)
O overflow flag
The 2100 adds memory protection logic:
mp_fence<14:0> memory fence register
mp_viol<15:0> memory protection violation register (F register)
The 21MX adds a pair of index registers and memory expansion logic:
XR<15:0> X register
YR<15:0> Y register
dms_sr<15:0> dynamic memory system status register
dms_vr<15:0> dynamic memory system violation register
The original HP 2116 has four instruction formats: memory reference,
shift, alter/skip, and I/O. The HP 2100 added extended memory reference
and extended arithmetic. The HP21MX added extended byte, bit, and word
instructions as well as extended memory.
The memory reference format is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in| op |cp| offset | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<14:11> mnemonic action
0010 AND A = A & M[MA]
0011 JSB M[MA] = P, P = MA + 1
0100 XOR A = A ^ M[MA]
0101 JMP P = MA
0110 IOR A = A | M[MA]
0111 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
1000 ADA A = A + M[MA]
1001 ADB B = B + M[MA]
1010 CPA skip if A != M[MA]
1011 CPB skip if B != M[MA]
1100 LDA A = M[MA]
1101 LDB B = M[MA]
1110 STA M[MA] = A
1111 STB M[MA] = B
<15,10> mode action
0,0 page zero direct MA = IR<9:0>
0,1 current page direct MA = PC<14:0>'IR,9:0>
1,0 page zero indirect MA = M[IR<9:0>]
1,1 current page indirect MA = M[PC<14:10>'IR<9:0>]
Memory reference instructions can access an address space of 32K words.
An instruction can directly reference the first 1024 words of memory
(called page zero), as well as 1024 words of the current page; it can
indirectly access all 32K.
The shift format is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 0 0 0|ab| 0|s1| op1 |ce|s2|sl| op2 | shift
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | \---+---/ | | | \---+---/
| | | | | | |
| | | | | | +---- shift 2 opcode
| | | | | +---------- skip if low bit == 0
| | | | +------------- shift 2 enable
| | | +---------------- clear Extend
| | +---------------------- shift 1 opcode
| +---------------------------- shift 1 enable
+---------------------------------- A/B select
The alter/skip format is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 0 0 0|ab| 1|regop| e op|se|ss|sl|in|sz|rs| alter/skip
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| \-+-/ \-+-/ | | | | | |
| | | | | | | | +- reverse skip sense
| | | | | | | +---- skip if register == 0
| | | | | | +------- increment register
| | | | | +---------- skip if low bit == 0
| | | | +------------- skip if sign bit == 0
| | | +---------------- skip if Extend == 0
| | +--------------------- clr/com/set Extend
| +--------------------------- clr/com/set register
+---------------------------------- A/B select
The I/O transfer format is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 0 0 0|ab| 1|hc| opcode | device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | \---+---/\-------+-------/
| | | |
| | | +--------- device select
| | +---------------------- opcode
| +---------------------------- hold/clear flag
+---------------------------------- A/B select
The IO transfer instruction controls the specified device.
Depending on the opcode, the instruction may set or clear
the device flag, start or stop I/O, or read or write data.
The 2100 added an extended memory reference instruction;
the 21MX added extended arithmetic, operate, byte, word,
and bit instructions. Note that the HP 21xx is, despite
the right-to-left bit numbering, a big endian system.
Bits <15:8> are byte 0, and bits <7:0> are byte 1.
The extended memory reference format (HP 2100) is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 0 0 0|op| 0| opcode | extended mem ref
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in| operand address |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The extended arithmetic format (HP 2100) is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 0 0 0 0 0|dr| 0 0| opcode |shift count| extended arithmetic
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The extended operate format (HP 21MX) is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 0 0 0|op| 0| 1 1 1 1 1| opcode | extended operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The extended byte and word format (HP 21MX) is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 0 0 0 1 0 1 1 1 1 1 1| opcode | extended byte/word
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in| operand address |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The extended bit operate format (HP 21MX) is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 0 0 0 1 0 1 1 1 1 1 1 1| opcode | extended bit operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in| operand address |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in| operand address |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
This routine is the instruction decode routine for the HP 2100.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
infinite indirection loop
unimplemented instruction and stop_inst flag set
unknown I/O device and stop_dev flag set
I/O error in I/O simulator
2. Interrupts. I/O devices are modelled as five parallel arrays:
device commands as bit array dev_cmd[2][31..0]
device flags as bit array dev_flg[2][31..0]
device flag buffers as bit array dev_fbf[2][31..0]
device controls as bit array dev_ctl[2][31..0]
device service requests as bit array dev_srq[3][31..0]
The HP 2100 interrupt structure is based on flag, flag buffer,.
and control. If a device flag is set, the flag buffer is set,
the control bit is set, and the device is the highest priority
on the interrupt chain, it requests an interrupt. When the
interrupt is acknowledged, the flag buffer is cleared, preventing
further interrupt requests from that device. The combination of
flag and control set blocks interrupts from lower priority devices.
Command plays no direct role in interrupts. The command flop
tells whether a device is active. It is set by STC and cleared
by CLC; it is also cleared when the device flag is set. Simple
devices don't need to track command separately from control.
Service requests are used to trigger the DMA service logic.
3. Non-existent memory. On the HP 2100, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
hp2100_defs.h add interrupt request definition
hp2100_sys.c add sim_devices table entry
5. Instruction interruptibility. The simulator is fast enough, compared
to the run-time of the longest instructions, for interruptibility not
to matter. But the HP diagnostics explicitly test interruptibility in
EIS and DMS instructions, and long indirect address chains. Accordingly,
the simulator does "just enough" to pass these tests. In particular, if
an interrupt is pending but deferred at the beginning of an interruptible
instruction, the interrupt is taken at the appropriate point; but there
is no testing for new interrupts during execution (that is, the event
timer is not called).
*/
#include "hp2100_defs.h"
#include <setjmp.h>
#include "hp2100_cpu.h"
#define UNIT_V_MP_JSB (UNIT_V_UF + 0) /* MP jumper W5 out */
#define UNIT_V_MP_INT (UNIT_V_UF + 1) /* MP jumper W6 out */
#define UNIT_V_MP_SEL1 (UNIT_V_UF + 2) /* MP jumper W7 out */
#define UNIT_MP_JSB (1 << UNIT_V_MP_JSB)
#define UNIT_MP_INT (1 << UNIT_V_MP_INT)
#define UNIT_MP_SEL1 (1 << UNIT_V_MP_SEL1)
#define MOD_211X (1 << TYPE_211X)
#define MOD_2100 (1 << TYPE_2100)
#define MOD_21MX (1 << TYPE_21MX)
#define MOD_CURRENT (1 << CPU_TYPE)
#define UNIT_SYSTEM (UNIT_CPU_MASK | UNIT_OPTS)
#define UNIT_SYS_2116 (UNIT_2116)
#define UNIT_SYS_2100 (UNIT_2100 | UNIT_EAU)
#define UNIT_SYS_21MX_M (UNIT_21MX_M | UNIT_EAU | UNIT_FP | UNIT_DMS)
#define UNIT_SYS_21MX_E (UNIT_21MX_E | UNIT_EAU | UNIT_FP | UNIT_DMS)
#define ABORT(val) longjmp (save_env, (val))
#define DMAR0 1
#define DMAR1 2
#define ALL_BKPTS (SWMASK('E')|SWMASK('N')|SWMASK('S')|SWMASK('U'))
uint16 *M = NULL; /* memory */
uint32 saved_AR = 0; /* A register */
uint32 saved_BR = 0; /* B register */
uint16 ABREG[2]; /* during execution */
uint32 PC = 0; /* P register */
uint32 SR = 0; /* S register */
uint32 MR = 0; /* M register */
uint32 TR = 0; /* T register */
uint32 XR = 0; /* X register */
uint32 YR = 0; /* Y register */
uint32 E = 0; /* E register */
uint32 O = 0; /* O register */
uint32 dev_cmd[2] = { 0 }; /* device command */
uint32 dev_ctl[2] = { 0 }; /* device control */
uint32 dev_flg[2] = { 0 }; /* device flags */
uint32 dev_fbf[2] = { 0 }; /* device flag bufs */
uint32 dev_srq[2] = { 0 }; /* device svc reqs */
struct DMA dmac[2] = { { 0 }, { 0 } }; /* DMA channels */
uint32 ion = 0; /* interrupt enable */
uint32 ion_defer = 0; /* interrupt defer */
uint32 intaddr = 0; /* interrupt addr */
uint32 mp_fence = 0; /* mem prot fence */
uint32 mp_viol = 0; /* mem prot viol reg */
uint32 mp_mevff = 0; /* mem exp (dms) viol */
uint32 mp_evrff = 1; /* update mp_viol */
uint32 err_PC = 0; /* error PC */
uint32 dms_enb = 0; /* dms enable */
uint32 dms_ump = 0; /* dms user map */
uint32 dms_sr = 0; /* dms status reg */
uint32 dms_vr = 0; /* dms violation reg */
uint16 dms_map[MAP_NUM * MAP_LNT] = { 0 }; /* dms maps */
uint32 iop_sp = 0; /* iop stack */
uint32 ind_max = 16; /* iadr nest limit */
uint32 stop_inst = 1; /* stop on ill inst */
uint32 stop_dev = 0; /* stop on ill dev */
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
uint32 pcq_p = 0; /* PC queue ptr */
REG *pcq_r = NULL; /* PC queue reg ptr */
jmp_buf save_env; /* abort handler */
struct opt_table { /* options table */
int32 optf;
int32 cpuf;
};
static struct opt_table opt_val[] = {
{ UNIT_EAU, MOD_211X },
{ UNIT_FP, MOD_2100 },
{ UNIT_DMS, MOD_21MX },
{ UNIT_IOP, MOD_2100 | MOD_21MX },
{ UNIT_FFP, MOD_2100 | MOD_21MX },
{ TYPE_211X, MOD_211X | MOD_2100 | MOD_21MX },
{ TYPE_2100, MOD_211X | MOD_2100 | MOD_21MX },
{ TYPE_21MX, MOD_211X | MOD_2100 | MOD_21MX },
{ 0, 0 }
};
extern int32 sim_interval;
extern int32 sim_int_char;
extern int32 sim_brk_char;
extern int32 sim_del_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern FILE *sim_log;
extern DEVICE *sim_devices[];
extern int32 sim_switches;
extern char halt_msg[];
t_stat Ea (uint32 IR, uint32 *addr, uint32 irq);
uint16 ReadIO (uint32 addr, uint32 map);
uint16 ReadPW (uint32 addr);
uint16 ReadTAB (uint32 addr);
void WriteIO (uint32 addr, uint32 dat, uint32 map);
void WritePW (uint32 addr, uint32 dat);
uint32 dms (uint32 va, uint32 map, uint32 prot);
uint32 dms_io (uint32 va, uint32 map);
uint32 shift (uint32 inval, uint32 flag, uint32 oper);
void dma_cycle (uint32 chan, uint32 map);
uint32 calc_dma (void);
uint32 calc_int (void);
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_boot (int32 unitno, DEVICE *dptr);
t_stat mp_reset (DEVICE *dptr);
t_stat dma0_reset (DEVICE *dptr);
t_stat dma1_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_opt (UNIT *uptr, int32 val, char *cptr, void *desc);
t_bool dev_conflict (void);
void hp_post_cmd (t_bool from_scp);
extern t_stat cpu_eau (uint32 IR, uint32 intrq);
extern t_stat cpu_uig_0 (uint32 IR, uint32 intrq);
extern t_stat cpu_uig_1 (uint32 IR, uint32 intrq);
extern int32 clk_delay (int32 flg);
extern void (*sim_vm_post) (t_bool from_scp);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, VASIZE) };
REG cpu_reg[] = {
{ ORDATA (P, PC, 15) },
{ ORDATA (A, saved_AR, 16) },
{ ORDATA (B, saved_BR, 16) },
{ ORDATA (M, MR, 15) },
{ ORDATA (T, TR, 16), REG_RO },
{ ORDATA (X, XR, 16) },
{ ORDATA (Y, YR, 16) },
{ ORDATA (S, SR, 16) },
{ FLDATA (E, E, 0) },
{ FLDATA (O, O, 0) },
{ FLDATA (ION, ion, 0) },
{ FLDATA (ION_DEFER, ion_defer, 0) },
{ ORDATA (CIR, intaddr, 6) },
{ FLDATA (DMSENB, dms_enb, 0) },
{ FLDATA (DMSCUR, dms_ump, VA_N_PAG) },
{ ORDATA (DMSSR, dms_sr, 16) },
{ ORDATA (DMSVR, dms_vr, 16) },
{ BRDATA (DMSMAP, dms_map, 8, 16, MAP_NUM * MAP_LNT) },
{ ORDATA (IOPSP, iop_sp, 16) },
{ FLDATA (STOP_INST, stop_inst, 0) },
{ FLDATA (STOP_DEV, stop_dev, 1) },
{ DRDATA (INDMAX, ind_max, 16), REG_NZ + PV_LEFT },
{ BRDATA (PCQ, pcq, 8, 15, PCQ_SIZE), REG_RO+REG_CIRC },
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
{ ORDATA (WRU, sim_int_char, 8), REG_HRO },
{ ORDATA (BRK, sim_brk_char, 8), REG_HRO },
{ ORDATA (DEL, sim_del_char, 8), REG_HRO },
{ ORDATA (HCMD, dev_cmd[0], 32), REG_HRO },
{ ORDATA (LCMD, dev_cmd[1], 32), REG_HRO },
{ ORDATA (HCTL, dev_ctl[0], 32), REG_HRO },
{ ORDATA (LCTL, dev_ctl[1], 32), REG_HRO },
{ ORDATA (HFLG, dev_flg[0], 32), REG_HRO },
{ ORDATA (LFLG, dev_flg[1], 32), REG_HRO },
{ ORDATA (HFBF, dev_fbf[0], 32), REG_HRO },
{ ORDATA (LFBF, dev_fbf[1], 32), REG_HRO },
{ ORDATA (HSRQ, dev_srq[0], 32), REG_HRO },
{ ORDATA (LSRQ, dev_srq[1], 32), REG_HRO },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_SYSTEM, UNIT_SYS_2116, NULL, "2116", &cpu_set_opt, NULL,
(void *) TYPE_211X },
{ UNIT_SYSTEM, UNIT_SYS_2100, NULL, "2100", &cpu_set_opt, NULL,
(void *) TYPE_2100 },
{ UNIT_SYSTEM, UNIT_SYS_21MX_E, NULL, "21MX-E", &cpu_set_opt, NULL,
(void *) TYPE_21MX },
{ UNIT_SYSTEM, UNIT_SYS_21MX_M, NULL, "21MX-M", &cpu_set_opt, NULL,
(void *) TYPE_21MX },
{ UNIT_CPU_MASK, UNIT_2116, "2116", NULL, NULL },
{ UNIT_CPU_MASK, UNIT_2100, "2100", NULL, NULL },
{ UNIT_CPU_MASK, UNIT_21MX_E, "21MX-E", NULL, NULL },
{ UNIT_CPU_MASK, UNIT_21MX_M, "21MX-M", NULL, NULL },
{ UNIT_EAU, UNIT_EAU, "EAU", "EAU", &cpu_set_opt, NULL,
(void *) UNIT_EAU },
{ UNIT_EAU, 0, "no EAU", "NOEAU", &cpu_set_opt, NULL,
(void *) UNIT_EAU },
{ UNIT_FP, UNIT_FP, "FP", "FP", &cpu_set_opt, NULL,
(void *) UNIT_FP },
{ UNIT_FP, 0, "no FP", "NOFP", &cpu_set_opt, NULL,
(void *) UNIT_FP },
{ UNIT_IOP, UNIT_IOP, "IOP", "IOP", &cpu_set_opt, NULL,
(void *) UNIT_IOP },
{ UNIT_IOP, 0, "no IOP", "NOIOP", &cpu_set_opt, NULL,
(void *) UNIT_IOP },
{ UNIT_DMS, UNIT_DMS, "DMS", "DMS", &cpu_set_opt, NULL,
(void *) UNIT_DMS },
{ UNIT_DMS, 0, "no DMS", "NODMS", &cpu_set_opt, NULL,
(void *) UNIT_DMS },
{ UNIT_FFP, UNIT_FFP, "FFP", "FFP", &cpu_set_opt, NULL,
(void *) UNIT_FFP },
{ UNIT_FFP, 0, "no FFP", "NOFFP", &cpu_set_opt, NULL,
(void *) UNIT_FFP },
{ MTAB_XTD | MTAB_VDV, 4096, NULL, "4K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 8192, NULL, "8K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 16384, NULL, "16K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 32768, NULL, "32K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 65536, NULL, "64K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 131072, NULL, "128K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 262144, NULL, "256K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 524288, NULL, "512K", &cpu_set_size },
{ MTAB_XTD | MTAB_VDV, 1048576, NULL, "1024K", &cpu_set_size },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, PA_N_SIZE, 1, 8, 16,
&cpu_ex, &cpu_dep, &cpu_reset,
&cpu_boot, NULL, NULL
};
/* Memory protect data structures
mp_dev MP device descriptor
mp_unit MP unit descriptor
mp_reg MP register list
mp_mod MP modifiers list
*/
UNIT mp_unit = { UDATA (NULL, UNIT_MP_SEL1, 0) };
REG mp_reg[] = {
{ FLDATA (CTL, dev_ctl[PRO/32], INT_V (PRO)) },
{ FLDATA (FLG, dev_flg[PRO/32], INT_V (PRO)) },
{ FLDATA (FBF, dev_fbf[PRO/32], INT_V (PRO)) },
{ ORDATA (FR, mp_fence, 15) },
{ ORDATA (VR, mp_viol, 16) },
{ FLDATA (MEV, mp_mevff, 0) },
{ FLDATA (EVR, mp_evrff, 0) },
{ NULL }
};
MTAB mp_mod[] = {
{ UNIT_MP_JSB, UNIT_MP_JSB, "JSB (W5) in", "JSBIN", NULL },
{ UNIT_MP_JSB, 0, "JSB (W5) out", "JSBOUT", NULL },
{ UNIT_MP_INT, UNIT_MP_INT, "INT (W6) in", "INTIN", NULL },
{ UNIT_MP_INT, 0, "INT (W6) out", "INTOUT", NULL },
{ UNIT_MP_SEL1, UNIT_MP_SEL1, "SEL1 (W7) in", "SEL1IN", NULL },
{ UNIT_MP_SEL1, 0, "SEL1 (W7) out", "SEL1OUT", NULL },
{ 0 }
};
DEVICE mp_dev = {
"MP", &mp_unit, mp_reg, mp_mod,
1, 8, 1, 1, 8, 16,
NULL, NULL, &mp_reset,
NULL, NULL, NULL,
NULL, DEV_DISABLE | DEV_DIS
};
/* DMA controller data structures
dmax_dev DMAx device descriptor
dmax_reg DMAx register list
*/
UNIT dma0_unit = { UDATA (NULL, 0, 0) };
REG dma0_reg[] = {
{ FLDATA (CMD, dev_cmd[DMA0/32], INT_V (DMA0)) },
{ FLDATA (CTL, dev_ctl[DMA0/32], INT_V (DMA0)) },
{ FLDATA (FLG, dev_flg[DMA0/32], INT_V (DMA0)) },
{ FLDATA (FBF, dev_fbf[DMA0/32], INT_V (DMA0)) },
{ FLDATA (CTLALT, dev_ctl[DMALT0/32], INT_V (DMALT0)) },
{ ORDATA (CW1, dmac[0].cw1, 16) },
{ ORDATA (CW2, dmac[0].cw2, 16) },
{ ORDATA (CW3, dmac[0].cw3, 16) },
{ NULL }
};
DEVICE dma0_dev = {
"DMA0", &dma0_unit, dma0_reg, NULL,
1, 8, 1, 1, 8, 16,
NULL, NULL, &dma0_reset,
NULL, NULL, NULL,
NULL, DEV_DISABLE
};
UNIT dma1_unit = { UDATA (NULL, 0, 0) };
REG dma1_reg[] = {
{ FLDATA (CMD, dev_cmd[DMA1/32], INT_V (DMA1)) },
{ FLDATA (CTL, dev_ctl[DMA1/32], INT_V (DMA1)) },
{ FLDATA (FLG, dev_flg[DMA1/32], INT_V (DMA1)) },
{ FLDATA (FBF, dev_fbf[DMA1/32], INT_V (DMA1)) },
{ FLDATA (CTLALT, dev_ctl[DMALT1/32], INT_V (DMALT1)) },
{ ORDATA (CW1, dmac[1].cw1, 16) },
{ ORDATA (CW2, dmac[1].cw2, 16) },
{ ORDATA (CW3, dmac[1].cw3, 16) },
{ NULL }
};
DEVICE dma1_dev = {
"DMA1", &dma1_unit, dma1_reg, NULL,
1, 8, 1, 1, 8, 16,
NULL, NULL, &dma1_reset,
NULL, NULL, NULL,
NULL, DEV_DISABLE
};
/* Interrupt defer table */
static const int32 defer_tab[] = { 0, 1, 1, 1, 0, 0, 0, 1 };
/* Device dispatch table */
uint32 devdisp (uint32 devno, uint32 inst, uint32 IR, uint32 outdat);
int32 cpuio (int32 op, int32 IR, int32 outdat);
int32 ovfio (int32 op, int32 IR, int32 outdat);
int32 pwrio (int32 op, int32 IR, int32 outdat);
int32 proio (int32 op, int32 IR, int32 outdat);
int32 dmsio (int32 op, int32 IR, int32 outdat);
int32 dmpio (int32 op, int32 IR, int32 outdat);
int32 nulio (int32 op, int32 IR, int32 outdat);
int32 (*dtab[64])() = {
&cpuio, &ovfio, &dmsio, &dmsio, &pwrio, &proio, &dmpio, &dmpio,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
t_stat sim_instr (void)
{
uint32 intrq, dmarq; /* set after setjmp */
uint32 iotrap = 0; /* set after setjmp */
t_stat reason; /* set after setjmp */
int32 i, dev; /* temp */
DEVICE *dptr; /* temp */
DIB *dibp; /* temp */
int abortval;
/* Restore register state */
if (dev_conflict ()) return SCPE_STOP; /* check consistency */
AR = saved_AR & DMASK; /* restore reg */
BR = saved_BR & DMASK;
err_PC = PC = PC & VAMASK; /* load local PC */
reason = 0;
/* Restore I/O state */
if (mp_dev.flags & DEV_DIS) dtab[PRO] = NULL;
else dtab[PRO] = &proio; /* set up MP dispatch */
if (dma0_dev.flags & DEV_DIS) dtab[DMA0] = dtab[DMALT0] = NULL;
else {
dtab[DMA0] = &dmpio; /* set up DMA0 dispatch */
dtab[DMALT0] = &dmsio;
}
if (dma1_dev.flags & DEV_DIS) dtab[DMA1] = dtab[DMALT1] = NULL;
else {
dtab[DMA1] = &dmpio; /* set up DMA1 dispatch */
dtab[DMALT1] = &dmsio;
}
for (i = VARDEV; i <= I_DEVMASK; i++) dtab[i] = NULL; /* clr disp table */
dev_cmd[0] = dev_cmd[0] & M_FXDEV; /* clear dynamic info */
dev_ctl[0] = dev_ctl[0] & M_FXDEV;
dev_flg[0] = dev_flg[0] & M_FXDEV;
dev_fbf[0] = dev_fbf[0] & M_FXDEV;
dev_srq[0] = dev_srq[1] = 0; /* init svc requests */
dev_cmd[1] = dev_ctl[1] = dev_flg[1] = dev_fbf[1] = 0;
for (i = 0; dptr = sim_devices[i]; i++) { /* loop thru dev */
dibp = (DIB *) dptr->ctxt; /* get DIB */
if (dibp && !(dptr->flags & DEV_DIS)) { /* exist, enabled? */
dev = dibp->devno; /* get dev # */
if (dibp->cmd) { setCMD (dev); } /* restore cmd */
if (dibp->ctl) { setCTL (dev); } /* restore ctl */
if (dibp->flg) { setFLG (dev); } /* restore flg */
clrFBF (dev); /* also sets fbf */
if (dibp->fbf) { setFBF (dev); } /* restore fbf */
if (dibp->srq) { setSRQ (dev); } /* restore srq */
dtab[dev] = dibp->iot; /* set I/O dispatch */
}
}
sim_rtc_init (clk_delay (0)); /* recalibrate clock */
/* Abort handling
If an abort occurs in memory protection, the relocation routine
executes a longjmp to this area OUTSIDE the main simulation loop.
Memory protection errors are the only sources of aborts in the
HP 2100. All referenced variables must be globals, and all sim_instr
scoped automatics must be set after the setjmp.
*/
abortval = setjmp (save_env); /* set abort hdlr */
if (abortval != 0) { /* mem mgt abort? */
setFLG (PRO); /* req interrupt */
mp_evrff = 0; /* block mp_viol upd */
}
dmarq = calc_dma (); /* recalc DMA masks */
intrq = calc_int (); /* recalc interrupts */
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
uint32 IR, MA, absel, v1, t, skip;
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break;
dmarq = calc_dma (); /* recalc DMA reqs */
intrq = calc_int (); /* recalc interrupts */
}
if (dmarq) {
if (dmarq & DMAR0) dma_cycle (0, PAMAP); /* DMA1 cycle? */
if (dmarq & DMAR1) dma_cycle (1, PBMAP); /* DMA2 cycle? */
dmarq = calc_dma (); /* recalc DMA reqs */
intrq = calc_int (); /* recalc interrupts */
}
/* (From Dave Bryan)
Unlike most other I/O devices, the MP flag flip-flop is cleared
automatically when the interrupt is acknowledged and not by a programmed
instruction (CLF and STF affect the parity error enable FF instead).
Section 4.4.3 "Memory Protect and I/O Interrupt Generation" of the "HP 1000
M/E/F-Series Computers Engineering and Reference Documentation" (HP
92851-90001) says:
"When IAK occurs and IRQ5 is asserted, the FLAGBFF is cleared, FLAGFF
clocked off at next T2, and IRQ5 will no longer occur." */
if (intrq && ((intrq <= PRO) || !ion_defer)) { /* interrupt request? */
iotrap = 1; /* I/O trap cell instr */
clrFBF (intrq); /* clear flag buffer */
if (intrq == PRO) clrFLG (PRO); /* MP flag follows fbuf */
intaddr = intrq; /* save int addr */
if (dms_enb) dms_sr = dms_sr | MST_ENBI; /* dms enabled? */
else dms_sr = dms_sr & ~MST_ENBI;
if (dms_ump) { /* user map? */
dms_sr = dms_sr | MST_UMPI;
dms_ump = SMAP; /* switch to system */
}
else dms_sr = dms_sr & ~MST_UMPI;
IR = ReadW (intrq); /* get dispatch instr */
ion_defer = 1; /* defer interrupts */
intrq = 0; /* clear request */
if (((IR & I_NMRMASK) != I_IO) || /* if not I/O or */
(I_GETIOOP (IR) == ioHLT)) /* if halt, */
clrCTL (PRO); /* protection off */
}
else { /* normal instruction */
iotrap = 0;
err_PC = PC; /* save PC for error */
if (sim_brk_summ && /* any breakpoints? */
sim_brk_test (PC, SWMASK ('E') | /* unconditional or */
(dms_enb? (dms_ump? SWMASK ('U'): SWMASK ('S')):
SWMASK ('N')))) { /* or right type for DMS? */
reason = STOP_IBKPT; /* stop simulation */
break;
}
if (mp_evrff) mp_viol = PC; /* if ok, upd mp_viol */
IR = ReadW (PC); /* fetch instr */
PC = (PC + 1) & VAMASK;
sim_interval = sim_interval - 1;
ion_defer = 0;
}
/* Instruction decode. The 21MX does a 256-way decode on IR<15:8>
15 14 13 12 11 10 09 08 instruction
x <-!= 0-> x x x x memory reference
0 0 0 0 x 0 x x shift
0 0 0 0 x 0 x x alter-skip
1 0 0 0 x 1 x x IO
1 0 0 0 0 0 x 0 extended arithmetic
1 0 0 0 0 0 0 1 divide (decoded as 100400)
1 0 0 0 1 0 0 0 double load (decoded as 104000)
1 0 0 0 1 0 0 1 double store (decoded as 104400)
1 0 0 0 1 0 1 0 extended instr group 0 (A/B must be set)
1 0 0 0 x 0 1 1 extended instr group 1 (A/B ignored) */
absel = (IR & I_AB)? 1: 0; /* get A/B select */
switch ((IR >> 8) & 0377) { /* decode IR<15:8> */
/* Memory reference instructions */
case 0020:case 0021:case 0022:case 0023:
case 0024:case 0025:case 0026:case 0027:
case 0220:case 0221:case 0222:case 0223:
case 0224:case 0225:case 0226:case 0227:
if (reason = Ea (IR, &MA, intrq)) break; /* AND */
AR = AR & ReadW (MA);
break;
case 0030:case 0031:case 0032:case 0033:
case 0034:case 0035:case 0036:case 0037:
case 0230:case 0231:case 0232:case 0233:
case 0234:case 0235:case 0236:case 0237:
if (reason = Ea (IR, &MA, intrq)) break; /* JSB */
if ((mp_unit.flags & UNIT_MP_JSB) && /* MP if W7 (JSB) out */
CTL (PRO) && (MA < mp_fence))
ABORT (ABORT_PRO);
WriteW (MA, PC); /* store PC */
PCQ_ENTRY;
PC = (MA + 1) & VAMASK; /* jump */
if (IR & I_IA) ion_defer = 1; /* ind? defer intr */
break;
case 0040:case 0041:case 0042:case 0043:
case 0044:case 0045:case 0046:case 0047:
case 0240:case 0241:case 0242:case 0243:
case 0244:case 0245:case 0246:case 0247:
if (reason = Ea (IR, &MA, intrq)) break; /* XOR */
AR = AR ^ ReadW (MA);
break;
case 0050:case 0051:case 0052:case 0053:
case 0054:case 0055:case 0056:case 0057:
case 0250:case 0251:case 0252:case 0253:
case 0254:case 0255:case 0256:case 0257:
if (reason = Ea (IR, &MA, intrq)) break; /* JMP */
mp_dms_jmp (MA); /* validate jump addr */
PCQ_ENTRY;
PC = MA; /* jump */
if (IR & I_IA) ion_defer = 1; /* ind? defer int */
break;
case 0060:case 0061:case 0062:case 0063:
case 0064:case 0065:case 0066:case 0067:
case 0260:case 0261:case 0262:case 0263:
case 0264:case 0265:case 0266:case 0267:
if (reason = Ea (IR, &MA, intrq)) break; /* IOR */
AR = AR | ReadW (MA);
break;
case 0070:case 0071:case 0072:case 0073:
case 0074:case 0075:case 0076:case 0077:
case 0270:case 0271:case 0272:case 0273:
case 0274:case 0275:case 0276:case 0277:
if (reason = Ea (IR, &MA, intrq)) break; /* ISZ */
t = (ReadW (MA) + 1) & DMASK;
WriteW (MA, t);
if (t == 0) PC = (PC + 1) & VAMASK;
break;
case 0100:case 0101:case 0102:case 0103:
case 0104:case 0105:case 0106:case 0107:
case 0300:case 0301:case 0302:case 0303:
case 0304:case 0305:case 0306:case 0307:
if (reason = Ea (IR, &MA, intrq)) break; /* ADA */
v1 = ReadW (MA);
t = AR + v1;
if (t > DMASK) E = 1;
if (((~AR ^ v1) & (AR ^ t)) & SIGN) O = 1;
AR = t & DMASK;
break;
case 0110:case 0111:case 0112:case 0113:
case 0114:case 0115:case 0116:case 0117:
case 0310:case 0311:case 0312:case 0313:
case 0314:case 0315:case 0316:case 0317:
if (reason = Ea (IR, &MA, intrq)) break; /* ADB */
v1 = ReadW (MA);
t = BR + v1;
if (t > DMASK) E = 1;
if (((~BR ^ v1) & (BR ^ t)) & SIGN) O = 1;
BR = t & DMASK;
break;
case 0120:case 0121:case 0122:case 0123:
case 0124:case 0125:case 0126:case 0127:
case 0320:case 0321:case 0322:case 0323:
case 0324:case 0325:case 0326:case 0327:
if (reason = Ea (IR, &MA, intrq)) break; /* CPA */
if (AR != ReadW (MA)) PC = (PC + 1) & VAMASK;
break;
case 0130:case 0131:case 0132:case 0133:
case 0134:case 0135:case 0136:case 0137:
case 0330:case 0331:case 0332:case 0333:
case 0334:case 0335:case 0336:case 0337:
if (reason = Ea (IR, &MA, intrq)) break; /* CPB */
if (BR != ReadW (MA)) PC = (PC + 1) & VAMASK;
break;
case 0140:case 0141:case 0142:case 0143:
case 0144:case 0145:case 0146:case 0147:
case 0340:case 0341:case 0342:case 0343:
case 0344:case 0345:case 0346:case 0347:
if (reason = Ea (IR, &MA, intrq)) break; /* LDA */
AR = ReadW (MA);
break;
case 0150:case 0151:case 0152:case 0153:
case 0154:case 0155:case 0156:case 0157:
case 0350:case 0351:case 0352:case 0353:
case 0354:case 0355:case 0356:case 0357:
if (reason = Ea (IR, &MA, intrq)) break; /* LDB */
BR = ReadW (MA);
break;
case 0160:case 0161:case 0162:case 0163:
case 0164:case 0165:case 0166:case 0167:
case 0360:case 0361:case 0362:case 0363:
case 0364:case 0365:case 0366:case 0367:
if (reason = Ea (IR, &MA, intrq)) break; /* STA */
WriteW (MA, AR);
break;
case 0170:case 0171:case 0172:case 0173:
case 0174:case 0175:case 0176:case 0177:
case 0370:case 0371:case 0372:case 0373:
case 0374:case 0375:case 0376:case 0377:
if (reason = Ea (IR, &MA, intrq)) break; /* STB */
WriteW (MA, BR);
break;
/* Alter/skip instructions */
case 0004:case 0005:case 0006:case 0007:
case 0014:case 0015:case 0016:case 0017:
skip = 0; /* no skip */
if (IR & 000400) t = 0; /* CLx */
else t = ABREG[absel];
if (IR & 001000) t = t ^ DMASK; /* CMx */
if (IR & 000001) { /* RSS? */
if ((IR & 000040) && (E != 0)) skip = 1; /* SEZ,RSS */
if (IR & 000100) E = 0; /* CLE */
if (IR & 000200) E = E ^ 1; /* CME */
if (((IR & 000030) == 000030) && /* SSx,SLx,RSS */
((t & 0100001) == 0100001)) skip = 1;
if (((IR & 000030) == 000020) && /* SSx,RSS */
((t & SIGN) != 0)) skip = 1;
if (((IR & 000030) == 000010) && /* SLx,RSS */
((t & 1) != 0)) skip = 1;
if (IR & 000004) { /* INx */
t = (t + 1) & DMASK;
if (t == 0) E = 1;
if (t == SIGN) O = 1;
}
if ((IR & 000002) && (t != 0)) skip = 1; /* SZx,RSS */
if ((IR & 000072) == 0) skip = 1; /* RSS */
} /* end if RSS */
else {
if ((IR & 000040) && (E == 0)) skip = 1; /* SEZ */
if (IR & 000100) E = 0; /* CLE */
if (IR & 000200) E = E ^ 1; /* CME */
if ((IR & 000020) && /* SSx */
((t & SIGN) == 0)) skip = 1;
if ((IR & 000010) && /* SLx */
((t & 1) == 0)) skip = 1;
if (IR & 000004) { /* INx */
t = (t + 1) & DMASK;
if (t == 0) E = 1;
if (t == SIGN) O = 1;
}
if ((IR & 000002) && (t == 0)) skip = 1; /* SZx */
} /* end if ~RSS */
ABREG[absel] = t; /* store result */
PC = (PC + skip) & VAMASK; /* add in skip */
break; /* end if alter/skip */
/* Shift instructions */
case 0000:case 0001:case 0002:case 0003:
case 0010:case 0011:case 0012:case 0013:
t = shift (ABREG[absel], IR & 01000, IR >> 6); /* do first shift */
if (IR & 000040) E = 0; /* CLE */
if ((IR & 000010) && ((t & 1) == 0)) /* SLx */
PC = (PC + 1) & VAMASK;
ABREG[absel] = shift (t, IR & 00020, IR); /* do second shift */
break; /* end if shift */
/* I/O instructions */
case 0204:case 0205:case 0206:case 0207:
case 0214:case 0215:case 0216:case 0217:
reason = iogrp (IR, iotrap); /* execute instr */
dmarq = calc_dma (); /* recalc DMA */
intrq = calc_int (); /* recalc interrupts */
break; /* end if I/O */
/* Extended arithmetic */
case 0200: /* EAU group 0 */
case 0201: /* divide */
case 0202: /* EAU group 2 */
case 0210: /* DLD */
case 0211: /* DST */
reason = cpu_eau (IR, intrq); /* extended arith */
break;
/* Extended instructions */
case 0212: /* UIG 0 extension */
reason = cpu_uig_0 (IR, intrq); /* extended opcode */
dmarq = calc_dma (); /* recalc DMA masks */
intrq = calc_int (); /* recalc interrupts */
break;
case 0203: /* UIG 1 extension */
case 0213:
reason = cpu_uig_1 (IR, intrq); /* extended opcode */
dmarq = calc_dma (); /* recalc DMA masks */
intrq = calc_int (); /* recalc interrupts */
break;
} /* end case IR */
if (reason == STOP_INDINT) { /* indirect intr? */
PC = err_PC; /* back out of inst */
ion_defer = 0; /* clear defer */
reason = 0; /* continue */
}
} /* end while */
/* Simulation halted */
saved_AR = AR & DMASK;
saved_BR = BR & DMASK;
if (iotrap && (reason == STOP_HALT)) MR = intaddr; /* HLT in trap cell? */
else MR = (PC - 1) & VAMASK; /* no, M = P - 1 */
TR = ReadTAB (MR); /* last word fetched */
if ((reason == STOP_RSRV) || (reason == STOP_IODV) || /* instr error? */
(reason == STOP_IND)) PC = err_PC; /* back up PC */
dms_upd_sr (); /* update dms_sr */
for (i = 0; dptr = sim_devices[i]; i++) { /* loop thru dev */
dibp = (DIB *) dptr->ctxt; /* get DIB */
if (dibp) { /* exist? */
dev = dibp->devno;
dibp->cmd = CMD (dev);
dibp->ctl = CTL (dev);
dibp->flg = FLG (dev);
dibp->fbf = FBF (dev);
dibp->srq = SRQ (dev);
}
}
pcq_r->qptr = pcq_p; /* update pc q ptr */
return reason;
}
/* Resolve indirect addresses */
t_stat resolve (uint32 MA, uint32 *addr, uint32 irq)
{
uint32 i;
for (i = 0; (i < ind_max) && (MA & I_IA); i++) { /* resolve multilevel */
if (irq && /* int req? */
((i >= 2) || (mp_unit.flags & UNIT_MP_INT)) && /* ind > 3 or W6 out? */
!(mp_unit.flags & DEV_DIS)) /* MP installed? */
return STOP_INDINT; /* break out */
MA = ReadW (MA & VAMASK);
}
if (i >= ind_max) return STOP_IND; /* indirect loop? */
*addr = MA;
return SCPE_OK;
}
/* Get effective address from IR */
t_stat Ea (uint32 IR, uint32 *addr, uint32 irq)
{
uint32 MA;
MA = IR & (I_IA | I_DISP); /* ind + disp */
if (IR & I_CP) MA = ((PC - 1) & I_PAGENO) | MA; /* current page? */
return resolve (MA, addr, irq); /* resolve indirects */
}
/* Shift micro operation */
uint32 shift (uint32 t, uint32 flag, uint32 op)
{
uint32 oldE;
op = op & 07; /* get shift op */
if (flag) { /* enabled? */
switch (op) { /* case on operation */
case 00: /* signed left shift */
return ((t & SIGN) | ((t << 1) & 077777));
case 01: /* signed right shift */
return ((t & SIGN) | (t >> 1));
case 02: /* rotate left */
return (((t << 1) | (t >> 15)) & DMASK);
case 03: /* rotate right */
return (((t >> 1) | (t << 15)) & DMASK);
case 04: /* left shift, 0 sign */
return ((t << 1) & 077777);
case 05: /* ext right rotate */
oldE = E;
E = t & 1;
return ((t >> 1) | (oldE << 15));
case 06: /* ext left rotate */
oldE = E;
E = (t >> 15) & 1;
return (((t << 1) | oldE) & DMASK);
case 07: /* rotate left four */
return (((t << 4) | (t >> 12)) & DMASK);
} /* end case */
} /* end if */
if (op == 05) E = t & 1; /* disabled ext rgt rot */
if (op == 06) E = (t >> 15) & 1; /* disabled ext lft rot */
return t; /* input unchanged */
}
/* IO instruction decode */
t_stat iogrp (uint32 ir, uint32 iotrap)
{
uint32 dev, sop, iodata, ab;
ab = (ir & I_AB)? 1: 0; /* get A/B select */
dev = ir & I_DEVMASK; /* get device */
sop = I_GETIOOP (ir); /* get subopcode */
if (!iotrap && CTL (PRO) && /* protected? */
((sop == ioHLT) || /* halt or !ovf? */
((dev != OVF) && (mp_unit.flags & UNIT_MP_SEL1)))) {
if (sop == ioLIX) ABREG[ab] = 0; /* A/B writes anyway */
ABORT (ABORT_PRO);
}
iodata = devdisp (dev, sop, ir, ABREG[ab]); /* process I/O */
ion_defer = defer_tab[sop]; /* set defer */
if ((sop == ioMIX) || (sop == ioLIX)) /* store ret data */
ABREG[ab] = iodata & DMASK;
if (sop == ioHLT) { /* halt? */
int32 len = strlen (halt_msg); /* find end msg */
sprintf (&halt_msg[len - 6], "%06o", ir); /* add the halt */
return STOP_HALT;
}
return (iodata >> IOT_V_REASON); /* return status */
}
/* Device dispatch */
uint32 devdisp (uint32 devno, uint32 inst, uint32 IR, uint32 dat)
{
if (dtab[devno]) return dtab[devno] (inst, IR, dat);
else return nulio (inst, IR, dat);
}
/* Calculate DMA requests */
uint32 calc_dma (void)
{
uint32 r = 0;
if (CMD (DMA0) && SRQ (dmac[0].cw1 & I_DEVMASK)) /* check DMA0 cycle */
r = r | DMAR0;
if (CMD (DMA1) && SRQ (dmac[1].cw1 & I_DEVMASK)) /* check DMA1 cycle */
r = r | DMAR1;
return r;
}
/* Calculate interrupt requests
This routine takes into account all the relevant state of the
interrupt system: ion, dev_flg, dev_fbf, and dev_ctl.
1. dev_flg & dev_ctl determines the end of the priority grant.
The break in the chain will occur at the first device for
which dev_flg & dev_ctl is true. This is determined by
AND'ing the set bits with their 2's complement; only the low
order (highest priority) bit will differ. 1 less than
that, or'd with the single set bit itself, is the mask of
possible interrupting devices. If ION is clear, only devices
4 and 5 are eligible to interrupt.
2. dev_flg & dev_ctl & dev_fbf determines the outstanding
interrupt requests. All three bits must be on for a device
to request an interrupt. This is the masked under the
result from #1 to determine the highest priority interrupt,
if any.
*/
uint32 calc_int (void)
{
int32 j, lomask, mask[2], req[2];
lomask = dev_flg[0] & dev_ctl[0] & ~M_NXDEV; /* start chain calc */
req[0] = lomask & dev_fbf[0]; /* calc requests */
lomask = lomask & (-lomask); /* chain & -chain */
mask[0] = lomask | (lomask - 1); /* enabled devices */
req[0] = req[0] & mask[0]; /* highest request */
if (ion) { /* ion? */
if (lomask == 0) { /* no break in chn? */
mask[1] = dev_flg[1] & dev_ctl[1]; /* do all devices */
req[1] = mask[1] & dev_fbf[1];
mask[1] = mask[1] & (-mask[1]);
mask[1] = mask[1] | (mask[1] - 1);
req[1] = req[1] & mask[1];
}
else req[1] = 0;
}
else {
req[0] = req[0] & (INT_M (PWR) | INT_M (PRO));
req[1] = 0;
}
if (req[0]) { /* if low request */
for (j = 0; j < 32; j++) { /* find dev # */
if (req[0] & INT_M (j)) return j;
}
}
if (req[1]) { /* if hi request */
for (j = 0; j < 32; j++) { /* find dev # */
if (req[1] & INT_M (j)) return (32 + j);
}
}
return 0;
}
/* Memory access routines */
uint8 ReadB (uint32 va)
{
int32 pa;
if (dms_enb) pa = dms (va >> 1, dms_ump, RD);
else pa = va >> 1;
if (va & 1) return (ReadPW (pa) & 0377);
else return ((ReadPW (pa) >> 8) & 0377);
}
uint8 ReadBA (uint32 va)
{
uint32 pa;
if (dms_enb) pa = dms (va >> 1, dms_ump ^ MAP_LNT, RD);
else pa = va >> 1;
if (va & 1) return (ReadPW (pa) & 0377);
else return ((ReadPW (pa) >> 8) & 0377);
}
uint16 ReadW (uint32 va)
{
uint32 pa;
if (dms_enb) pa = dms (va, dms_ump, RD);
else pa = va;
return ReadPW (pa);
}
uint16 ReadWA (uint32 va)
{
uint32 pa;
if (dms_enb) pa = dms (va, dms_ump ^ MAP_LNT, RD);
else pa = va;
return ReadPW (pa);
}
uint32 ReadF (uint32 va)
{
uint32 t = ReadW (va);
uint32 t1 = ReadW ((va + 1) & VAMASK);
return (t << 16) | t1;
}
uint16 ReadIO (uint32 va, uint32 map)
{
uint32 pa;
if (dms_enb) pa = dms_io (va, map);
else pa = va;
return M[pa];
}
uint16 ReadPW (uint32 pa)
{
if (pa <= 1) return ABREG[pa];
return M[pa];
}
uint16 ReadTAB (uint32 addr)
{
if (addr == 0) return saved_AR;
else if (addr == 1) return saved_BR;
else return ReadIO (addr, dms_ump);
}
/* Memory protection test for writes
From Dave Bryan: The problem is that memory writes aren't being checked for
an MP violation if DMS is enabled, i.e., if DMS is enabled, and the page is
writable, then whether the target is below the MP fence is not checked. [The
simulator must] do MP check on all writes after DMS translation and violation
checks are done (so, to pass, the page must be writable AND the target must
be above the MP fence). */
#define MP_TEST(x) (CTL (PRO) && ((x) > 1) && ((x) < mp_fence))
void WriteB (uint32 va, uint32 dat)
{
uint32 pa, t;
if (dms_enb) pa = dms (va >> 1, dms_ump, WR);
else pa = va >> 1;
if (MP_TEST (va >> 1)) ABORT (ABORT_PRO);
if (MEM_ADDR_OK (pa)) {
t = ReadPW (pa);
if (va & 1) t = (t & 0177400) | (dat & 0377);
else t = (t & 0377) | ((dat & 0377) << 8);
WritePW (pa, t);
}
return;
}
void WriteBA (uint32 va, uint32 dat)
{
uint32 pa, t;
if (dms_enb) {
dms_viol (va >> 1, MVI_WPR); /* viol if prot */
pa = dms (va >> 1, dms_ump ^ MAP_LNT, WR);
}
else pa = va >> 1;
if (MP_TEST (va >> 1)) ABORT (ABORT_PRO);
if (MEM_ADDR_OK (pa)) {
t = ReadPW (pa);
if (va & 1) t = (t & 0177400) | (dat & 0377);
else t = (t & 0377) | ((dat & 0377) << 8);
WritePW (pa, t);
}
return;
}
void WriteW (uint32 va, uint32 dat)
{
uint32 pa;
if (dms_enb) pa = dms (va, dms_ump, WR);
else pa = va;
if (MP_TEST (va)) ABORT (ABORT_PRO);
if (MEM_ADDR_OK (pa)) WritePW (pa, dat);
return;
}
void WriteWA (uint32 va, uint32 dat)
{
int32 pa;
if (dms_enb) {
dms_viol (va, MVI_WPR); /* viol if prot */
pa = dms (va, dms_ump ^ MAP_LNT, WR);
}
else pa = va;
if (MP_TEST (va)) ABORT (ABORT_PRO);
if (MEM_ADDR_OK (pa)) WritePW (pa, dat);
return;
}
void WriteIO (uint32 va, uint32 dat, uint32 map)
{
uint32 pa;
if (dms_enb) pa = dms_io (va, map);
else pa = va;
if (MEM_ADDR_OK (pa)) M[pa] = dat & DMASK;
return;
}
void WritePW (uint32 pa, uint32 dat)
{
if (pa <= 1) ABREG[pa] = dat & DMASK;
else M[pa] = dat & DMASK;
return;
}
/* DMS relocation for CPU access */
uint32 dms (uint32 va, uint32 map, uint32 prot)
{
uint32 pgn, mpr;
if (va <= 1) return va; /* A, B */
pgn = VA_GETPAG (va); /* get page num */
if (pgn == 0) { /* base page? */
uint32 dms_fence = dms_sr & MST_FENCE; /* get fence value */
if ((dms_sr & MST_FLT)? /* check unmapped */
(va >= dms_fence): /* 1B10: >= fence */
(va < dms_fence)) { /* 0B10: < fence */
if (prot == WR) dms_viol (va, MVI_BPG); /* if W, viol */
return va; /* no mapping */
}
}
mpr = dms_map[map + pgn]; /* get map reg */
if (mpr & prot) dms_viol (va, prot); /* prot violation? */
return (MAP_GETPAG (mpr) | VA_GETOFF (va));
}
/* DMS relocation for IO access */
uint32 dms_io (uint32 va, uint32 map)
{
uint32 pgn, mpr;
if (va <= 1) return va; /* A, B */
pgn = VA_GETPAG (va); /* get page num */
if (pgn == 0) { /* base page? */
uint32 dms_fence = dms_sr & MST_FENCE; /* get fence value */
if ((dms_sr & MST_FLT)? /* check unmapped */
(va >= dms_fence): /* 1B10: >= fence */
(va < dms_fence)) { /* 0B10: < fence */
return va; /* no mapping */
}
}
mpr = dms_map[map + pgn]; /* get map reg */
return (MAP_GETPAG (mpr) | VA_GETOFF (va));
}
/* DMS relocation for console access */
uint32 dms_cons (uint32 va, int32 sw)
{
uint32 map_sel;
if (sw & SWMASK ('V')) map_sel = dms_ump; /* switch? select map */
else if (sw & SWMASK ('S')) map_sel = SMAP;
else if (sw & SWMASK ('U')) map_sel = UMAP;
else if (sw & SWMASK ('P')) map_sel = PAMAP;
else if (sw & SWMASK ('Q')) map_sel = PBMAP;
else return va; /* no switch, physical */
if (va >= VASIZE) return MEMSIZE; /* virtual, must be 15b */
else if (dms_enb) return dms_io (va, map_sel); /* DMS on? go thru map */
else return va; /* else return virtual */
}
/* Mem protect and DMS validation for jumps */
void mp_dms_jmp (uint32 va)
{
uint32 pgn = VA_GETPAG (va); /* get page num */
if ((pgn == 0) && (va > 1)) { /* base page? */
uint32 dms_fence = dms_sr & MST_FENCE; /* get fence value */
if ((dms_sr & MST_FLT)? /* check unmapped */
(va >= dms_fence): /* 1B10: >= fence */
(va < dms_fence)) { /* 0B10: < fence */
dms_viol (va, MVI_BPG); /* if W, viol */
return; /* PRO not set */
}
}
if (CTL (PRO) && (va < mp_fence)) ABORT (ABORT_PRO); /* base page MPR */
return;
}
/* DMS read and write maps */
uint16 dms_rmap (uint32 mapi)
{
mapi = mapi & MAP_MASK;
return (dms_map[mapi] & ~MAP_MBZ);
}
void dms_wmap (uint32 mapi, uint32 dat)
{
mapi = mapi & MAP_MASK;
dms_map[mapi] = (uint16) (dat & ~MAP_MBZ);
return;
}
/* DMS violation */
void dms_viol (uint32 va, uint32 st)
{
dms_vr = st | VA_GETPAG (va) |
((st & (MVI_RPR | MVI_WPR))? MVI_MEB: 0) | /* set MEB */
(dms_enb? MVI_MEM: 0) | /* set MEM */
(dms_ump? MVI_UMP: 0); /* set UMAP */
if (CTL (PRO)) { /* protected? */
mp_mevff = 1; /* signal dms */
ABORT (ABORT_PRO); /* abort */
}
return;
}
/* DMS update status */
uint32 dms_upd_sr (void)
{
dms_sr = dms_sr & ~(MST_ENB | MST_UMP | MST_PRO);
if (dms_enb) dms_sr = dms_sr | MST_ENB;
if (dms_ump) dms_sr = dms_sr | MST_UMP;
if (CTL (PRO)) dms_sr = dms_sr | MST_PRO;
return dms_sr;
}
/* Device 0 (CPU) I/O routine
NOTE: LIx/MIx reads floating I/O bus (0 on all machines).
From Dave Bryan: RTE uses the undocumented instruction "SFS 0,C" to both test
and turn off the interrupt system. This is confirmed in the "RTE-6/VM
Technical Specifications" manual (HP 92084-90015), section 2.3.1 "Process
the Interrupt", subsection "A.1 $CIC":
"Test to see if the interrupt system is on or off. This is done with the
SFS 0,C instruction. In either case, turn it off (the ,C does it)."
...and in section 5.8, "Parity Error Detection":
"Because parity error interrupts can occur even when the interrupt system
is off, the code at $CIC must be able to save the complete system status.
The major hole in being able to save the complete state is in saving the
interrupt system state. In order to do this in both the 21MX and the 21XE
the instruction 103300 was used to both test the interrupt system and
turn it off." */
int32 cpuio (int32 inst, int32 IR, int32 dat)
{
int i;
switch (inst) { /* case on opcode */
case ioFLG: /* flag */
ion = (IR & I_HC)? 0: 1; /* interrupts off/on */
return dat;
case ioSFC: /* skip flag clear */
if (!ion) PC = (PC + 1) & VAMASK;
break;
case ioSFS: /* skip flag set */
if (ion) PC = (PC + 1) & VAMASK;
break;
case ioLIX: /* load */
dat = 0; /* returns 0 */
break;
case ioCTL: /* control */
if (IR & I_CTL) { /* =CLC 02,03,06..77 */
devdisp (DMALT0, inst, I_CTL + DMALT0, 0);
devdisp (DMALT1, inst, I_CTL + DMALT1, 0);
for (i = 6; i <= I_DEVMASK; i++)
devdisp (i, inst, I_CTL + i, 0);
}
break;
default:
break;
}
if (IR & I_HC) ion = 0; /* HC option */
return dat;
}
/* Device 1 (overflow) I/O routine
NOTE: The S register is read-only on the 2115/2116. */
int32 ovfio (int32 inst, int32 IR, int32 dat)
{
switch (inst) { /* case on opcode */
case ioFLG: /* flag */
O = (IR & I_HC)? 0: 1; /* clear/set overflow */
return dat;
case ioSFC: /* skip flag clear */
if (!O) PC = (PC + 1) & VAMASK;
break; /* can clear flag */
case ioSFS: /* skip flag set */
if (O) PC = (PC + 1) & VAMASK;
break; /* can clear flag */
case ioMIX: /* merge */
dat = dat | SR;
break;
case ioLIX: /* load */
dat = SR;
break;
case ioOTX: /* output */
if (UNIT_CPU_TYPE != UNIT_TYPE_211X) SR = dat;
break;
default:
break;
}
if (IR & I_HC) O = 0; /* HC option */
return dat;
}
/* Device 4 (power fail) I/O routine */
int32 pwrio (int32 inst, int32 IR, int32 dat)
{
switch (inst) { /* case on opcode */
case ioMIX: /* merge */
dat = dat | intaddr;
break;
case ioLIX: /* load */
dat = intaddr;
break;
default:
break;
}
return dat;
}
/* Device 5 (memory protect) I/O routine
From Dave Bryan: Examination of the schematics for the MP card in the
engineering documentation shows that the SFS and SFC I/O backplane signals
gate the output of the MEVFF onto the SKF line unconditionally. */
int32 proio (int32 inst, int32 IR, int32 dat)
{
switch (inst) { /* case on opcode */
case ioSFC: /* skip flag clear */
if (!mp_mevff) PC = (PC + 1) & VAMASK; /* skip if mem prot */
break;
case ioSFS: /* skip flag set */
if (mp_mevff) PC = (PC + 1) & VAMASK; /* skip if DMS */
break;
case ioMIX: /* merge */
dat = dat | mp_viol;
break;
case ioLIX: /* load */
dat = mp_viol;
break;
case ioOTX: /* output */
mp_fence = dat & VAMASK;
if (cpu_unit.flags & UNIT_2100) iop_sp = mp_fence;
break;
case ioCTL: /* control clear/set */
if ((IR & I_CTL) == 0) { /* STC */
setCTL (PRO);
dms_vr = 0;
mp_evrff = 1; /* allow mp_viol upd */
mp_mevff = 0; /* clear DMS flag */
}
break;
default:
break;
}
if (IR & I_HC) { clrFLG (PRO); } /* HC option */
return dat;
}
/* Devices 2,3 (secondary DMA) I/O routine */
int32 dmsio (int32 inst, int32 IR, int32 dat)
{
int32 ch;
ch = IR & 1; /* get channel num */
switch (inst) { /* case on opcode */
case ioMIX: /* merge */
dat = dat | dmac[ch].cw3;
break;
case ioLIX: /* load */
dat = dmac[ch].cw3;
break;
case ioOTX: /* output */
if (CTL (DMALT0 + ch)) dmac[ch].cw3 = dat;
else dmac[ch].cw2 = dat;
break;
case ioCTL: /* control clear/set */
if (IR & I_CTL) { clrCTL (DMALT0 + ch); } /* CLC */
else { setCTL (DMALT0 + ch); } /* STC */
break;
default:
break;
}
return dat;
}
/* Devices 6,7 (primary DMA) I/O routine
NOTE: LIx/MIx reads floating S-bus (1 on 21MX, 0 on 2116/2100). */
int32 dmpio (int32 inst, int32 IR, int32 dat)
{
int32 ch;
ch = IR & 1; /* get channel number */
switch (inst) { /* case on opcode */
case ioFLG: /* flag */
if ((IR & I_HC) == 0) { /* set->abort */
setFLG (DMA0 + ch); /* set flag */
clrCMD (DMA0 + ch); /* clr cmd */
}
break;
case ioSFC: /* skip flag clear */
if (FLG (DMA0 + ch) == 0) PC = (PC + 1) & VAMASK;
break;
case ioSFS: /* skip flag set */
if (FLG (DMA0 + ch) != 0) PC = (PC + 1) & VAMASK;
break;
case ioLIX: /* load */
dat = 0;
case ioMIX: /* merge */
if (UNIT_CPU_TYPE == UNIT_TYPE_21MX) dat = DMASK;
break;
case ioOTX: /* output */
dmac[ch].cw1 = dat;
break;
case ioCTL: /* control */
if (IR & I_CTL) { clrCTL (DMA0 + ch); } /* CLC: cmd unchgd */
else { /* STC */
setCTL (DMA0 + ch); /* set ctl, cmd */
setCMD (DMA0 + ch);
}
break;
default:
break;
}
if (IR & I_HC) { clrFLG (DMA0 + ch); } /* HC option */
return dat;
}
/* DMA cycle routine
The last cycle (word count reaches 0) logic is quite tricky.
Input cases:
- CLC requested: issue CLC
Output cases:
- neither STC nor CLC requested: issue CLF
- STC requested but not CLC: issue STC,C
- CLC requested but not STC: issue CLC,C
- STC and CLC both requested: issue STC,C and CLC,C, in that order
Either: issue EDT
*/
void dma_cycle (uint32 ch, uint32 map)
{
int32 temp, dev, MA;
int32 inp = dmac[ch].cw2 & DMA2_OI; /* input flag */
dev = dmac[ch].cw1 & I_DEVMASK; /* get device */
MA = dmac[ch].cw2 & VAMASK; /* get mem addr */
if (inp) { /* input? */
temp = devdisp (dev, ioLIX, dev, 0); /* do LIA dev */
WriteIO (MA, temp, map); /* store data */
}
else {
temp = ReadIO (MA, map); /* read data */
devdisp (dev, ioOTX, dev, temp); /* do OTA dev */
}
dmac[ch].cw2 = (dmac[ch].cw2 & DMA2_OI) | ((dmac[ch].cw2 + 1) & VAMASK);
dmac[ch].cw3 = (dmac[ch].cw3 + 1) & DMASK; /* incr wcount */
if (dmac[ch].cw3) { /* more to do? */
if (dmac[ch].cw1 & DMA1_STC) /* if STC flag, */
devdisp (dev, ioCTL, I_HC + dev, 0); /* do STC,C dev */
else devdisp (dev, ioFLG, I_HC + dev, 0); /* else CLF dev */
}
else {
if (inp) { /* last cycle, input? */
if (dmac[ch].cw1 & DMA1_CLC) /* CLC at end? */
devdisp (dev, ioCTL, I_CTL + dev, 0); /* yes */
} /* end input */
else { /* output */
if ((dmac[ch].cw1 & (DMA1_STC | DMA1_CLC)) == 0)
devdisp (dev, ioFLG, I_HC + dev, 0); /* clear flag */
if (dmac[ch].cw1 & DMA1_STC) /* if STC flag, */
devdisp (dev, ioCTL, I_HC + dev, 0); /* do STC,C dev */
if (dmac[ch].cw1 & DMA1_CLC) /* CLC at end? */
devdisp (dev, ioCTL, I_HC + I_CTL + dev, 0); /* yes */
} /* end output */
setFLG (DMA0 + ch); /* set DMA flg */
clrCMD (DMA0 + ch); /* clr DMA cmd */
devdisp (dev, ioEDT, dev, 0); /* do EDT */
}
return;
}
/* Unimplemented device routine
NOTE: For SC < 10, LIx/MIx reads floating S-bus (-1 on 21MX, 0 on 2116/2100).
For SC >= 10, LIx/MIx reads floating I/O bus (0 on all machines). */
int32 nulio (int32 inst, int32 IR, int32 dat)
{
int32 devd;
devd = IR & I_DEVMASK; /* get device no */
switch (inst) { /* case on opcode */
case ioSFC: /* skip flag clear */
PC = (PC + 1) & VAMASK;
break;
case ioLIX: /* load */
dat = 0;
case ioMIX: /* merge */
if ((devd < VARDEV) && (UNIT_CPU_TYPE == UNIT_TYPE_21MX))
dat = DMASK;
break;
default:
break;
}
return (stop_dev << IOT_V_REASON) | dat;
}
/* Reset routines */
t_stat cpu_reset (DEVICE *dptr)
{
E = 0;
O = 0;
ion = ion_defer = 0;
clrCMD (PWR);
clrCTL (PWR);
clrFLG (PWR);
clrFBF (PWR);
dev_srq[0] = dev_srq[0] & ~M_FXDEV;
dms_enb = dms_ump = 0; /* init DMS */
dms_sr = 0;
dms_vr = 0;
pcq_r = find_reg ("PCQ", NULL, dptr);
sim_brk_types = ALL_BKPTS;
sim_brk_dflt = SWMASK ('E');
if (M == NULL) M = calloc (PASIZE, sizeof (uint16));
if (M == NULL) return SCPE_MEM;
if (pcq_r) pcq_r->qptr = 0;
else return SCPE_IERR;
sim_vm_post = &hp_post_cmd; /* set cmd post proc */
return SCPE_OK;
}
t_stat mp_reset (DEVICE *dptr)
{
clrCTL (PRO);
clrFLG (PRO);
clrFBF (PRO);
mp_fence = 0; /* init mprot */
mp_viol = 0;
mp_mevff = 0;
mp_evrff = 1;
return SCPE_OK;
}
t_stat dma0_reset (DEVICE *tptr)
{
hp_enbdis_pair (&dma0_dev, &dma1_dev); /* make pair cons */
clrCMD (DMA0);
clrCTL (DMA0);
setFLG (DMA0);
clrSRQ (DMA0);
clrCTL (DMALT0);
if (sim_switches & SWMASK ('P')) /* power up? */
dmac[0].cw1 = dmac[0].cw2 = dmac[0].cw3 = 0;
return SCPE_OK;
}
t_stat dma1_reset (DEVICE *tptr)
{
hp_enbdis_pair (&dma1_dev, &dma0_dev); /* make pair cons */
clrCMD (DMA1);
clrCTL (DMA1);
setFLG (DMA1);
clrSRQ (DMA1);
clrCTL (DMALT1);
if (sim_switches & SWMASK ('P')) /* power up? */
dmac[1].cw1 = dmac[1].cw2 = dmac[1].cw3 = 0;
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
int32 d;
addr = dms_cons (addr, sw);
if (addr >= MEMSIZE) return SCPE_NXM;
if (!(sw & SIM_SW_REST) && (addr == 0)) d = saved_AR;
else if (!(sw & SIM_SW_REST) && (addr == 1)) d = saved_BR;
else d = M[addr];
if (vptr != NULL) *vptr = d & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
addr = dms_cons (addr, sw);
if (addr >= MEMSIZE) return SCPE_NXM;
if (!(sw & SIM_SW_REST) && (addr == 0)) saved_AR = val & DMASK;
else if (!(sw & SIM_SW_REST) && (addr == 1)) saved_BR = val & DMASK;
else M[addr] = val & DMASK;
return SCPE_OK;
}
/* Memory size validation */
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
uint32 i;
if ((val <= 0) || (val > PASIZE) || ((val & 07777) != 0) ||
((UNIT_CPU_TYPE != UNIT_TYPE_21MX) && (val > VASIZE)))
return SCPE_ARG;
if (!(sim_switches & SWMASK ('F'))) { /* force truncation? */
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_INCOMP;
}
MEMSIZE = val;
for (i = MEMSIZE; i < PASIZE; i++) M[i] = 0;
return SCPE_OK;
}
/* Set device number */
t_stat hp_setdev (UNIT *uptr, int32 num, char *cptr, void *desc)
{
DEVICE *dptr = (DEVICE *) desc;
DIB *dibp;
int32 i, newdev;
t_stat r;
if (cptr == NULL) return SCPE_ARG;
if ((desc == NULL) || (num > 1)) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
newdev = get_uint (cptr, 8, I_DEVMASK - num, &r);
if (r != SCPE_OK) return r;
if (newdev < VARDEV) return SCPE_ARG;
for (i = 0; i <= num; i++, dibp++) dibp->devno = newdev + i;
return SCPE_OK;
}
/* Show device number */
t_stat hp_showdev (FILE *st, UNIT *uptr, int32 num, void *desc)
{
DEVICE *dptr = (DEVICE *) desc;
DIB *dibp;
int32 i;
if ((desc == NULL) || (num > 1)) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
fprintf (st, "devno=%o", dibp->devno);
for (i = 1; i <= num; i++) fprintf (st, "/%o", dibp->devno + i);
return SCPE_OK;
}
/* Make a pair of devices consistent */
void hp_enbdis_pair (DEVICE *ccp, DEVICE *dcp)
{
if (ccp->flags & DEV_DIS) dcp->flags = dcp->flags | DEV_DIS;
else dcp->flags = dcp->flags & ~DEV_DIS;
return;
}
/* Command post-processor
Update T register to contents of memory addressed by M register. */
void hp_post_cmd (t_bool from_scp)
{
TR = ReadTAB (MR); /* sync T with M */
return;
}
/* Test for device conflict */
t_bool dev_conflict (void)
{
DEVICE *dptr, *cdptr;
DIB *dibp, *chkp;
uint32 i, j, dno;
for (i = 0; cdptr = sim_devices[i]; i++) {
chkp = (DIB *) cdptr->ctxt;
if (chkp && !(cdptr->flags & DEV_DIS)) {
dno = chkp->devno;
for (j = 0; dptr = sim_devices[j]; j++) {
dibp = (DIB *) dptr->ctxt;
if (dibp && !(dptr->flags & DEV_DIS) &&
(chkp != dibp) && (dno == dibp->devno)) {
printf ("%s device number conflict, devno = %d\n",
sim_dname (dptr), dno);
if (sim_log) fprintf (sim_log,
"%s device number conflict, devno = %d\n",
sim_dname (dptr), dno);
return TRUE;
}
}
}
}
return FALSE;
}
/* Configuration validation
- Checks that the current CPU type supports the option selected.
- Ensures that FP/FFP and IOP are mutually exclusive if CPU is 2100.
- Disables memory protect if 2116 is selected.
- Enables memory protect if 2100 or 21MX or DMS is selected.
- Enables DMA if 2116 or 2100 or 21MX is selected.
- Memory is trimmed to 32K if 2116 or 2100 is selected. */
t_bool cpu_set_opt (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 opt = (int32) desc;
int32 i;
uint32 mod;
mod = MOD_CURRENT;
for (i = 0; opt_val[i].cpuf != 0; i++) {
if ((opt == opt_val[i].optf) && (mod & opt_val[i].cpuf)) {
if (mod == MOD_2100)
if ((opt == UNIT_FP) || (opt == UNIT_FFP))
uptr->flags = uptr->flags & ~UNIT_IOP;
else if (opt == UNIT_IOP)
uptr->flags = uptr->flags & ~(UNIT_FP | UNIT_FFP);
if (opt == TYPE_211X)
mp_dev.flags = mp_dev.flags | DEV_DIS;
else if ((opt == UNIT_DMS) || (opt == TYPE_2100) || (opt == TYPE_21MX))
mp_dev.flags = mp_dev.flags & ~DEV_DIS;
if ((opt == TYPE_211X) || (opt == TYPE_2100) || (opt == TYPE_21MX)) {
dma0_dev.flags = dma0_dev.flags & ~DEV_DIS;
dma1_dev.flags = dma1_dev.flags & ~DEV_DIS;
}
if (((opt == TYPE_211X) || (opt == TYPE_2100)) && (MEMSIZE > VASIZE))
return cpu_set_size (uptr, VASIZE, cptr, desc);
return SCPE_OK;
}
}
return SCPE_NOFNC;
}
/* IBL routine (CPU boot) */
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
{
extern const uint16 ptr_rom[IBL_LNT], dq_rom[IBL_LNT];
extern const uint16 ms_rom[IBL_LNT], ds_rom[IBL_LNT];
int32 dev = (SR >> IBL_V_DEV) & I_DEVMASK;
int32 sel = (SR >> IBL_V_SEL) & IBL_M_SEL;
if (dev < 010) return SCPE_NOFNC;
switch (sel) {
case 0: /* PTR boot */
ibl_copy (ptr_rom, dev);
break;
case 1: /* DP/DQ boot */
ibl_copy (dq_rom, dev);
break;
case 2: /* MS boot */
ibl_copy (ms_rom, dev);
break;
case 3: /* DS boot */
ibl_copy (ds_rom,dev);
break;
}
return SCPE_OK;
}
/* IBL boot ROM copy
- Use memory size to set the initial PC and base of the boot area
- Copy boot ROM to memory, updating I/O instructions
- Place 2's complement of boot base in last location
Notes:
- SR settings are done by the caller
- Boot ROM's must be assembled with a device code of 10 (10 and 11 for
devices requiring two codes)
*/
t_stat ibl_copy (const uint16 pboot[IBL_LNT], int32 dev)
{
int32 i;
uint16 wd;
if (dev < 010) return SCPE_ARG; /* valid device? */
PC = ((MEMSIZE - 1) & ~IBL_MASK) & VAMASK; /* start at mem top */
for (i = 0; i < IBL_LNT; i++) { /* copy bootstrap */
wd = pboot[i]; /* get word */
if (((wd & I_NMRMASK) == I_IO) && /* IO instruction? */
((wd & I_DEVMASK) >= 010) && /* dev >= 10? */
(I_GETIOOP (wd) != ioHLT)) /* not a HALT? */
M[PC + i] = (wd + (dev - 010)) & DMASK; /* change dev code */
else M[PC + i] = wd; /* leave unchanged */
}
M[PC + IBL_DPC] = (M[PC + IBL_DPC] + (dev - 010)) & DMASK; /* patch DMA ctrl */
M[PC + IBL_END] = (~PC + 1) & DMASK; /* fill in start of boot */
return SCPE_OK;
}