blob: 506e143a495cc322b27f3d2b96812e3b59b592de [file] [log] [blame] [raw]
/* pdp18b_stddev.c: 18b PDP's standard devices
Copyright (c) 1993-2016, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
ptr paper tape reader
ptp paper tape punch
tti keyboard
tto teleprinter
clk clock
15-Mar-16 RMS Added unix v0 terminal support
07-Mar-16 RMS Revised for dynamically allocated memory
13-Sep-15 RMS Added APIVEC register to PTR, CLK only
28-Mar-15 RMS Revised to use sim_printf
18-Apr-12 RMS Added clk_cosched routine
Revised clk and tti scheduling
18-Jun-07 RMS Added UNIT_IDLE to console input, clock
18-Oct-06 RMS Added PDP-15 programmable duplex control
Fixed handling of non-printable characters in KSR mode
Changed clock to be free-running
Fixed out-of-tape behavior for PDP-9 vs PDP-15
Synced keyboard to clock
30-Jun-06 RMS Fixed KSR-28 shift tracking
20-Jun-06 RMS Added KSR ASCII reader support
13-Jun-06 RMS Fixed Baudot letters/figures inversion for PDP-4
Fixed PDP-4/PDP-7 default terminal to be local echo
22-Nov-05 RMS Revised for new terminal processing routines
28-May-04 RMS Removed SET TTI CTRL-C
16-Feb-04 RMS Fixed bug in hardware read-in mode bootstrap
14-Jan-04 RMS Revised IO device call interface
CAF does not turn off the clock
29-Dec-03 RMS Added console backpressure support
26-Jul-03 RMS Increased PTP, TTO timeouts for PDP-15 operating systems
Added hardware read-in mode support for PDP-7/9/15
25-Apr-03 RMS Revised for extended file support
14-Mar-03 RMS Clean up flags on detach
01-Mar-03 RMS Added SET/SHOW CLK freq, SET TTI CTRL-C
22-Dec-02 RMS Added break support
01-Nov-02 RMS Added 7B/8B support to terminal
05-Oct-02 RMS Added DIBs, device number support, IORS call
14-Jul-02 RMS Added ASCII reader/punch support (Hans Pufal)
30-May-02 RMS Widened POS to 32b
29-Nov-01 RMS Added read only unit support
25-Nov-01 RMS Revised interrupt structure
17-Sep-01 RMS Removed multiconsole support
07-Sep-01 RMS Added terminal multiplexor support
17-Jul-01 RMS Moved function prototype
10-Jun-01 RMS Cleaned up IOT decoding to reflect hardware
27-May-01 RMS Added multiconsole support
10-Mar-01 RMS Added funny format loader support
05-Mar-01 RMS Added clock calibration support
22-Dec-00 RMS Added PDP-9/15 half duplex support
30-Nov-00 RMS Fixed PDP-4/7 bootstrap loader for 4K systems
30-Oct-00 RMS Standardized register naming
06-Jan-97 RMS Fixed PDP-4 console input
16-Dec-96 RMS Fixed bug in binary ptr service
*/
#include "pdp18b_defs.h"
#include "sim_tmxr.h"
#include <ctype.h>
#define UNIT_V_RASCII (UNIT_V_UF + 0) /* reader ASCII */
#define UNIT_RASCII (1 << UNIT_V_RASCII)
#define UNIT_V_KASCII (UNIT_V_UF + 1) /* KSR ASCII */
#define UNIT_KASCII (1 << UNIT_V_KASCII)
#define UNIT_V_PASCII (UNIT_V_UF + 0) /* punch ASCII */
#define UNIT_PASCII (1 << UNIT_V_PASCII)
extern int32 *M;
extern int32 int_hwre[API_HLVL+1], PC, ASW;
extern int32 api_vec[API_HLVL][32];
extern UNIT cpu_unit;
int32 clk_state = 0;
int32 ptr_err = 0, ptr_stopioe = 0, ptr_state = 0;
int32 ptp_err = 0, ptp_stopioe = 0;
int32 tti_2nd = 0; /* 2nd char waiting */
int32 tty_shift = 0; /* KSR28 shift state */
int32 tti_fdpx = 0; /* prog mode full duplex */
int32 clk_tps = 60; /* ticks/second */
int32 tmxr_poll = 16000; /* term mux poll */
uint32 clk_task_last = 0;
uint32 clk_task_timer = 0;
const int32 asc_to_baud[128] = {
000,000,000,000,000,000,000,064, /* bell */
000,000,0110,000,000,0102,000,000, /* lf, cr */
000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,
0104,066,061,045,062,000,053,072, /* space - ' */
076,051,000,000,046,070,047,067, /* ( - / */
055,075,071,060,052,041,065,074, /* 0 - 7 */
054,043,056,057,000,000,000,063, /* 8 - ? */
000,030,023,016,022,020,026,013, /* @ - G */
005,014,032,036,011,007,006,003, /* H - O */
015,035,012,024,001,034,017,031, /* P - W */
027,025,021,000,000,000,000,000, /* X - _ */
000,030,023,016,022,020,026,013, /* ` - g */
005,014,032,036,011,007,006,003, /* h - o */
015,035,012,024,001,034,017,031, /* p - w */
027,025,021,000,000,000,000,000 /* x - DEL */
};
const char baud_to_asc[64] = {
0 ,'T',015,'O',' ','H','N','M',
012,'L','R','G','I','P','C','V',
'E','Z','D','B','S','Y','F','X',
'A','W','J', 0 ,'U','Q','K', 0,
0 ,'5','\r','9',' ','#',',','.',
012,')','4','&','8','0',':',';',
'3','"','$','?','\a','6','!','/',
'-','2','\'',0 ,'7','1','(', 0
};
int32 ptr (int32 dev, int32 pulse, int32 dat);
int32 ptp (int32 dev, int32 pulse, int32 dat);
int32 tti (int32 dev, int32 pulse, int32 dat);
int32 tto (int32 dev, int32 pulse, int32 dat);
int32 clk_iors (void);
int32 ptr_iors (void);
int32 ptp_iors (void);
int32 tti_iors (void);
int32 tto_iors (void);
t_stat clk_svc (UNIT *uptr);
t_stat ptr_svc (UNIT *uptr);
t_stat ptp_svc (UNIT *uptr);
t_stat tti_svc (UNIT *uptr);
t_stat tto_svc (UNIT *uptr);
t_stat clk_reset (DEVICE *dptr);
t_stat ptr_reset (DEVICE *dptr);
t_stat ptp_reset (DEVICE *dptr);
t_stat tti_reset (DEVICE *dptr);
t_stat tto_reset (DEVICE *dptr);
t_stat ptr_attach (UNIT *uptr, char *cptr);
t_stat ptp_attach (UNIT *uptr, char *cptr);
t_stat ptr_detach (UNIT *uptr);
t_stat ptp_detach (UNIT *uptr);
t_stat ptr_boot (int32 unitno, DEVICE *dptr);
t_stat tty_set_mode (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat clk_set_freq (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat clk_show_freq (FILE *st, UNIT *uptr, int32 val, void *desc);
int32 clk_task_upd (t_bool clr);
extern int32 upd_iors (void);
/* CLK data structures
clk_dev CLK device descriptor
clk_unit CLK unit
clk_reg CLK register list
*/
DIB clk_dib = { 0, 0, &clk_iors, { NULL } };
UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE, 0), 16000 };
REG clk_reg[] = {
{ FLDATAD (INT, int_hwre[API_CLK], INT_V_CLK, "interrupt pending flag") },
{ FLDATAD (DONE, int_hwre[API_CLK], INT_V_CLK, "device done flag") },
{ FLDATAD (ENABLE, clk_state, 0, "clock enable") },
#if defined (PDP15)
{ ORDATAD (TASKTIMER, clk_task_timer, 18, "task timer") },
{ DRDATA (TASKLAST, clk_task_last, 32), REG_HRO },
#endif
{ DRDATAD (TIME, clk_unit.wait, 24, "clock frequency"), REG_NZ + PV_LEFT },
{ DRDATA (TPS, clk_tps, 8), PV_LEFT + REG_HRO },
{ ORDATA (APIVEC, api_vec[API_CLK][INT_V_CLK], 6), REG_HRO },
{ NULL }
};
MTAB clk_mod[] = {
{ MTAB_XTD|MTAB_VDV, 50, NULL, "50HZ",
&clk_set_freq, NULL, NULL },
{ MTAB_XTD|MTAB_VDV, 60, NULL, "60HZ",
&clk_set_freq, NULL, NULL },
{ MTAB_XTD|MTAB_VDV, 0, "FREQUENCY", NULL,
NULL, &clk_show_freq, NULL },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno },
{ 0 }
};
DEVICE clk_dev = {
"CLK", &clk_unit, clk_reg, clk_mod,
1, 0, 0, 0, 0, 0,
NULL, NULL, &clk_reset,
NULL, NULL, NULL,
&clk_dib, 0
};
/* PTR data structures
ptr_dev PTR device descriptor
ptr_unit PTR unit
ptr_reg PTR register list
*/
DIB ptr_dib = { DEV_PTR, 1, &ptr_iors, { &ptr } };
UNIT ptr_unit = {
UDATA (&ptr_svc, UNIT_SEQ+UNIT_ATTABLE+UNIT_ROABLE, 0),
SERIAL_IN_WAIT
};
REG ptr_reg[] = {
{ ORDATAD (BUF, ptr_unit.buf, 18, "last data item processed") },
{ FLDATAD (INT, int_hwre[API_PTR], INT_V_PTR, "interrupt pending flag") },
{ FLDATAD (DONE, int_hwre[API_PTR], INT_V_PTR, "device done flag") },
#if defined (IOS_PTRERR)
{ FLDATAD (ERR, ptr_err, 0, "error flag") },
#endif
{ ORDATA (STATE, ptr_state, 5), REG_HRO },
{ DRDATAD (POS, ptr_unit.pos, T_ADDR_W, "position in the input file"), PV_LEFT },
{ DRDATAD (TIME, ptr_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT },
{ FLDATAD(STOP_IOE, ptr_stopioe, 0, "stop on I/O error") },
{ ORDATA (APIVEC, api_vec[API_PTR][INT_V_PTR], 6), REG_HRO },
{ NULL }
};
MTAB ptr_mod[] = {
{ UNIT_RASCII, UNIT_RASCII, "even parity ASCII", NULL },
{ UNIT_KASCII, UNIT_KASCII, "forced parity ASCII", NULL },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno },
{ 0 }
};
DEVICE ptr_dev = {
"PTR", &ptr_unit, ptr_reg, ptr_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &ptr_reset,
&ptr_boot, &ptr_attach, &ptr_detach,
&ptr_dib, 0
};
/* PTP data structures
ptp_dev PTP device descriptor
ptp_unit PTP unit
ptp_reg PTP register list
*/
DIB ptp_dib = { DEV_PTP, 1, &ptp_iors, { &ptp } };
UNIT ptp_unit = {
UDATA (&ptp_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT
};
REG ptp_reg[] = {
{ ORDATAD (BUF, ptp_unit.buf, 8, "last data item processed") },
{ FLDATAD (INT, int_hwre[API_PTP], INT_V_PTP, "interrupt pending flag") },
{ FLDATAD (DONE, int_hwre[API_PTP], INT_V_PTP, "device done flag") },
#if defined (IOS_PTPERR)
{ FLDATAD (ERR, ptp_err, 0, "error flag") },
#endif
{ DRDATAD (POS, ptp_unit.pos, T_ADDR_W, "position in the output file"), PV_LEFT },
{ DRDATAD (TIME, ptp_unit.wait, 24, "time from I/O initiation to inturrupt"), PV_LEFT },
{ FLDATAD (STOP_IOE, ptp_stopioe, 0, "stop on I/O error") },
{ NULL }
};
MTAB ptp_mod[] = {
{ UNIT_PASCII, UNIT_PASCII, "7b ASCII", NULL },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno },
{ 0 }
};
DEVICE ptp_dev = {
"PTP", &ptp_unit, ptp_reg, ptp_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &ptp_reset,
NULL, &ptp_attach, &ptp_detach,
&ptp_dib, 0
};
/* TTI data structures
tti_dev TTI device descriptor
tti_unit TTI unit
tti_reg TTI register list
*/
#if defined (KSR28)
#define TTI_WIDTH 5
#define TTI_FIGURES (1 << TTI_WIDTH)
#define TTI_BOTH (1 << (TTI_WIDTH + 1))
#define BAUDOT_LETTERS 037
#define BAUDOT_FIGURES 033
#else
#define TTI_WIDTH 8
#endif
#define TTI_MASK ((1 << TTI_WIDTH) - 1)
#define TTUF_V_HDX (TTUF_V_UF + 0) /* half duplex */
#define TTUF_V_UNIX (TTUF_V_UF + 1)
#define TTUF_HDX (1 << TTUF_V_HDX)
#define TTUF_UNIX (1 << TTUF_V_UNIX)
DIB tti_dib = { DEV_TTI, 1, &tti_iors, { &tti } };
UNIT tti_unit = { UDATA (&tti_svc, UNIT_IDLE+TT_MODE_KSR+TTUF_HDX, 0), 0 };
REG tti_reg[] = {
{ ORDATAD (BUF, tti_unit.buf, TTI_WIDTH, "last data item processed") },
#if defined (KSR28)
{ ORDATA (BUF2ND, tti_2nd, TTI_WIDTH), REG_HRO },
#endif
{ FLDATAD (INT, int_hwre[API_TTI], INT_V_TTI, "interrupt pending flag") },
{ FLDATAD (DONE, int_hwre[API_TTI], INT_V_TTI, "device done flag") },
#if defined (PDP15)
{ FLDATA (FDPX, tti_fdpx, 0) },
#endif
{ DRDATAD (POS, tti_unit.pos, T_ADDR_W, "number of characters input"), PV_LEFT },
{ DRDATAD (TIME, tti_unit.wait, 24, "input polling interval (if 0, the keyboard is polled synchronously with line clock)"), PV_LEFT },
{ NULL }
};
MTAB tti_mod[] = {
#if !defined (KSR28)
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode },
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode },
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode },
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7P, "7b", NULL, NULL },
#if !defined (PDP15)
{ TTUF_UNIX|TT_PAR|TT_MODE, TTUF_UNIX|TT_PAR_MARK|TT_MODE_7B, "Unix v0", "UNIX", &tty_set_mode },
#endif
#endif
{ TTUF_HDX, 0 , "full duplex", "FDX", NULL },
{ TTUF_HDX, TTUF_HDX, "half duplex", "HDX", NULL },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno, NULL },
{ 0 }
};
DEVICE tti_dev = {
"TTI", &tti_unit, tti_reg, tti_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &tti_reset,
NULL, NULL, NULL,
&tti_dib, 0
};
/* TTO data structures
tto_dev TTO device descriptor
tto_unit TTO unit
tto_reg TTO register list
*/
#if defined (KSR28)
#define TTO_WIDTH 5
#define TTO_FIGURES (1 << TTO_WIDTH)
#else
#define TTO_WIDTH 8
#endif
#define TTO_MASK ((1 << TTO_WIDTH) - 1)
DIB tto_dib = { DEV_TTO, 1, &tto_iors, { &tto } };
UNIT tto_unit = { UDATA (&tto_svc, TT_MODE_KSR, 0), 1000 };
REG tto_reg[] = {
{ ORDATAD (BUF, tto_unit.buf, TTO_WIDTH, "last data item processed") },
#if defined (KSR28)
{ FLDATA (SHIFT, tty_shift, 0), REG_HRO },
#endif
{ FLDATAD (INT, int_hwre[API_TTO], INT_V_TTO, "interrupt pending flag") },
{ FLDATAD (DONE, int_hwre[API_TTO], INT_V_TTO, "device done flag") },
{ DRDATAD (POS, tto_unit.pos, T_ADDR_W, "number of characters output"), PV_LEFT },
{ DRDATAD (TIME, tto_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT },
{ NULL }
};
MTAB tto_mod[] = {
#if !defined (KSR28)
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode },
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode },
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode },
{ TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7P, "7p", "7P", &tty_set_mode },
#if !defined (PDP15)
{ TTUF_UNIX|TT_PAR|TT_MODE, TTUF_UNIX|TT_PAR_MARK|TT_MODE_7B, "Unix v0", "UNIX", &tty_set_mode },
#endif
#endif
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno },
{ 0 }
};
DEVICE tto_dev = {
"TTO", &tto_unit, tto_reg, tto_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &tto_reset,
NULL, NULL, NULL,
&tto_dib, 0
};
/* Clock: IOT routine */
int32 clk (int32 dev, int32 pulse, int32 dat)
{
if (pulse & 001) { /* CLSF */
if (TST_INT (CLK))
dat = dat | IOT_SKP;
}
if (pulse & 004) { /* CLON/CLOF */
CLR_INT (CLK); /* clear flag */
if (pulse & 040) /* CLON */
clk_state = 1;
else clk_state = 0; /* CLOF */
}
return dat;
}
/* Unit service */
t_stat clk_svc (UNIT *uptr)
{
int32 t;
t = sim_rtc_calb (clk_tps); /* calibrate clock */
tmxr_poll = t; /* set mux poll */
sim_activate_after (uptr, 1000000/clk_tps); /* reactivate unit */
#if defined (PDP15)
clk_task_upd (FALSE); /* update task timer */
#endif
if (clk_state) { /* clock on? */
M[7] = (M[7] + 1) & DMASK; /* incr counter */
if (M[7] == 0) /* ovrflo? set flag */
SET_INT (CLK);
}
return SCPE_OK;
}
#if defined (PDP15)
/* Task timer update (PDP-15 XVM only)
The task timer increments monotonically at 100Khz. Since this can't be
simulated accurately, updates are done by interpolation since the last
reading. The timer is also updated at clock events to keep the cycle
counters from wrapping around more than once between updates. */
int32 clk_task_upd (t_bool clr)
{
uint32 delta, val, iusec10;
uint32 cur = sim_grtime ();
double usec10;
if (cur > clk_task_last)
delta = cur - clk_task_last;
else delta = clk_task_last - cur;
usec10 = ((((double) delta) * 100000.0) /
(((double) tmxr_poll) * ((double) clk_tps)));
iusec10 = (int32) usec10;
val = (clk_task_timer + iusec10) & DMASK;
if (clr)
clk_task_timer = 0;
else clk_task_timer = val;
clk_task_last = cur;
return ((int32) val);
}
#endif
/* IORS service */
int32 clk_iors (void)
{
return (TST_INT (CLK)? IOS_CLK: 0);
}
/* Reset routine */
t_stat clk_reset (DEVICE *dptr)
{
int32 t;
sim_register_clock_unit (&clk_unit); /* declare clock unit */
CLR_INT (CLK); /* clear flag */
if (!sim_is_running) { /* RESET (not CAF)? */
t = sim_rtc_init (clk_unit.wait); /* init calibration */
tmxr_poll = t; /* set mux poll */
sim_activate_abs (&clk_unit, t); /* activate unit */
clk_state = 0; /* clock off */
clk_task_timer = 0;
clk_task_last = 0;
}
return SCPE_OK;
}
/* Set frequency */
t_stat clk_set_freq (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (cptr)
return SCPE_ARG;
if ((val != 50) && (val != 60))
return SCPE_IERR;
clk_tps = val;
return SCPE_OK;
}
/* Show frequency */
t_stat clk_show_freq (FILE *st, UNIT *uptr, int32 val, void *desc)
{
fprintf (st, (clk_tps == 50)? "50Hz": "60Hz");
return SCPE_OK;
}
/* Paper tape reader out-of-tape handling
The PDP-4 and PDP-7 readers behaved like most early DEC readers; when
they ran out of tape, they hung. It was up to the program to sense this
condition by running a timer.
The PDP-9 reader controller synthesized the out of tape condition by
noticing whether there was a transition on the feed hole within a window.
The out-of-tape flag was treated like the reader flag in most cases.
The PDP-15 reader controller received the out-of-tape flag as a static
condition from the reader itself and simply reported it via IORS. */
/* Paper tape reader: IOT routine */
int32 ptr (int32 dev, int32 pulse, int32 dat)
{
if (pulse & 001) { /* RSF */
if (TST_INT (PTR))
dat = dat | IOT_SKP;
}
if (pulse & 002) { /* RRB, RCF */
CLR_INT (PTR); /* clear flag */
dat = dat | ptr_unit.buf; /* return buffer */
}
if (pulse & 004) { /* RSA, RSB */
ptr_state = (pulse & 040)? 18: 0; /* set mode */
CLR_INT (PTR); /* clear flag */
#if !defined (PDP15) /* except on PDP15 */
ptr_err = 0; /* clear error */
#endif
ptr_unit.buf = 0; /* clear buffer */
sim_activate (&ptr_unit, ptr_unit.wait);
}
return dat;
}
/* Unit service */
t_stat ptr_svc (UNIT *uptr)
{
int32 temp;
if ((ptr_unit.flags & UNIT_ATT) == 0) { /* attached? */
#if defined (IOS_PTRERR)
SET_INT (PTR); /* if err, set flag */
ptr_err = 1; /* set error */
#endif
return IORETURN (ptr_stopioe, SCPE_UNATT);
}
if ((temp = getc (ptr_unit.fileref)) == EOF) { /* end of file? */
#if defined (IOS_PTRERR)
SET_INT (PTR); /* if err, set flag */
ptr_err = 1; /* set error */
#endif
if (feof (ptr_unit.fileref)) {
if (ptr_stopioe)
sim_printf ("PTR end of file\n");
else return SCPE_OK;
}
else sim_perror ("PTR I/O error");
clearerr (ptr_unit.fileref);
return SCPE_IOERR;
}
if (ptr_state == 0) { /* ASCII */
if (ptr_unit.flags & UNIT_RASCII) { /* want parity? */
ptr_unit.buf = temp = temp & 0177; /* parity off */
while ((temp = temp & (temp - 1)))
ptr_unit.buf = ptr_unit.buf ^ 0200; /* count bits */
ptr_unit.buf = ptr_unit.buf ^ 0200; /* set even parity */
}
else if (ptr_unit.flags & UNIT_KASCII) /* KSR ASCII? */
ptr_unit.buf = (temp | 0200) & 0377; /* forced parity */
else ptr_unit.buf = temp & 0377;
}
else if (temp & 0200) { /* binary */
ptr_state = ptr_state - 6;
ptr_unit.buf = ptr_unit.buf | ((temp & 077) << ptr_state);
}
if (ptr_state == 0) /* if done, set flag */
SET_INT (PTR);
else sim_activate (&ptr_unit, ptr_unit.wait); /* else restart */
ptr_unit.pos = ptr_unit.pos + 1;
return SCPE_OK;
}
/* Reset routine */
t_stat ptr_reset (DEVICE *dptr)
{
ptr_state = 0; /* clear state */
ptr_unit.buf = 0;
CLR_INT (PTR); /* clear flag */
#if defined (PDP15) /* PDP15, static err */
if (((ptr_unit.flags & UNIT_ATT) == 0) || feof (ptr_unit.fileref))
ptr_err = 1;
else
#endif
ptr_err = 0; /* all other, clr err */
sim_cancel (&ptr_unit); /* deactivate unit */
return SCPE_OK;
}
/* IORS service */
int32 ptr_iors (void)
{
return ((TST_INT (PTR)? IOS_PTR: 0)
#if defined (IOS_PTRERR)
| (ptr_err? IOS_PTRERR: 0)
#endif
);
}
/* Attach routine */
t_stat ptr_attach (UNIT *uptr, char *cptr)
{
t_stat reason;
reason = attach_unit (uptr, cptr);
if (reason != SCPE_OK)
return reason;
ptr_err = 0; /* attach clrs error */
ptr_unit.flags = ptr_unit.flags & ~(UNIT_RASCII|UNIT_KASCII);
if (sim_switches & SWMASK ('A'))
ptr_unit.flags = ptr_unit.flags | UNIT_RASCII;
if (sim_switches & SWMASK ('K'))
ptr_unit.flags = ptr_unit.flags | UNIT_KASCII;
return SCPE_OK;
}
/* Detach routine */
t_stat ptr_detach (UNIT *uptr)
{
#if defined (PDP15)
ptr_err = 1;
#endif
ptr_unit.flags = ptr_unit.flags & ~UNIT_RASCII;
return detach_unit (uptr);
}
/* Hardware RIM loader routines, PDP-7/9/15 */
int32 ptr_getw (UNIT *uptr, int32 *hi)
{
int32 word, bits, st, ch;
word = st = bits = 0;
do {
if ((ch = getc (uptr->fileref)) == EOF)
return -1;
uptr->pos = uptr->pos + 1;
if (ch & 0200) {
word = (word << 6) | (ch & 077);
bits = (bits << 1) | ((ch >> 6) & 1);
st++;
}
} while (st < 3);
if (hi != NULL)
*hi = bits;
return word;
}
t_stat ptr_rim_load (UNIT *uptr, int32 origin)
{
int32 bits, val;
for (;;) { /* word loop */
if ((val = ptr_getw (uptr, &bits)) < 0)
return SCPE_FMT;
if (bits & 1) { /* end of tape? */
if ((val & 0760000) == OP_JMP) {
PC = ((origin - 1) & 060000) | (val & 017777);
return SCPE_OK;
}
else if (val == OP_HLT)
return STOP_HALT;
break;
}
else if (MEM_ADDR_OK (origin))
M[origin++] = val;
}
return SCPE_FMT;
}
#if defined (PDP4) || defined (PDP7)
/* Bootstrap routine, PDP-4 and PDP-7
In a 4K system, the boostrap resides at 7762-7776.
In an 8K or greater system, the bootstrap resides at 17762-17776.
Because the program is so small, simple masking can be
used to remove addr<5> for a 4K system. */
#define BOOT_START 017577
#define BOOT_FPC 017577 /* funny format loader */
#define BOOT_RPC 017770 /* RIM loader */
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int))
static const int32 boot_rom[] = {
0700144, /* rsb */
0117762, /* ff, jsb r1b */
0057666, /* dac done 1 */
0117762, /* jms r1b */
0057667, /* dac done 2 */
0117762, /* jms r1b */
0040007, /* dac conend */
0057731, /* dac conbeg */
0440007, /* isz conend */
0117762, /* blk, jms r1b */
0057673, /* dac cai */
0741100, /* spa */
0617665, /* jmp done */
0117762, /* jms r1b */
0057777, /* dac tem1 */
0317673, /* add cai */
0057775, /* dac cks */
0117713, /* jms r1a */
0140010, /* dzm word */
0457777, /* cont, isz tem1 */
0617632, /* jmp cont1 */
0217775, /* lac cks */
0740001, /* cma */
0740200, /* sza */
0740040, /* hlt */
0700144, /* rsb */
0617610, /* jmp blk */
0117713, /* cont1, jms r1a */
0057762, /* dac tem2 */
0117713, /* jms r1a */
0742010, /* rtl */
0742010, /* rtl */
0742010, /* rtl */
0742010, /* rtl */
0317762, /* add tem2 */
0057762, /* dac tem2 */
0117713, /* jms r1a */
0742020, /* rtr */
0317726, /* add cdsp */
0057713, /* dac r1a */
0517701, /* and ccma */
0740020, /* rar */
0317762, /* add tem2 */
0437713, /* xct i r1a */
0617622, /* jmp cont */
0617672, /* dsptch, jmp code0 */
0617670, /* jmp code1 */
0617700, /* jmp code2 */
0617706, /* jmp code3 */
0417711, /* xct code4 */
0617732, /* jmp const */
0740000, /* nop */
0740000, /* nop */
0740000, /* nop */
0200007, /* done, lac conend */
0740040, /* xx */
0740040, /* xx */
0517727, /* code1, and imsk */
0337762, /* add i tem2 */
0300010, /* code0, add word */
0740040, /* cai, xx */
0750001, /* clc */
0357673, /* tad cai */
0057673, /* dac cai */
0617621, /* jmp cont-1 */
0711101, /* code2, spa cla */
0740001, /* ccma, cma */
0277762, /* xor i tem2 */
0300010, /* add word */
0040010, /* code2a, dac word */
0617622, /* jmp cont */
0057711, /* code3, dac code4 */
0217673, /* lac cai */
0357701, /* tad ccma */
0740040, /* code4, xx */
0617622, /* jmp cont */
0000000, /* r1a, 0 */
0700101, /* rsf */
0617714, /* jmp .-1 */
0700112, /* rrb */
0700104, /* rsa */
0057730, /* dac tem */
0317775, /* add cks */
0057775, /* dac cks */
0217730, /* lac tem */
0744000, /* cll */
0637713, /* jmp i r1a */
0017654, /* cdsp, dsptch */
0760000, /* imsk, 760000 */
0000000, /* tem, 0 */
0000000, /* conbeg, 0 */
0300010, /* const, add word */
0060007, /* dac i conend */
0217731, /* lac conbeg */
0040010, /* dac index */
0220007, /* lac i conend */
0560010, /* con1, sad i index */
0617752, /* jmp find */
0560010, /* sad i index */
0617752, /* jmp find */
0560010, /* sad i index */
0617752, /* jmp find */
0560010, /* sad i index */
0617752, /* jmp find */
0560010, /* sad i index */
0617752, /* jmp find */
0617737, /* jmp con1 */
0200010, /* find, lac index */
0540007, /* sad conend */
0440007, /* isz conend */
0617704, /* jmp code2a */
0000000,
0000000,
0000000,
0000000,
0000000, /* r1b, 0 */
0700101, /* rsf */
0617763, /* jmp .-1 */
0700112, /* rrb */
0700144, /* rsb */
0637762, /* jmp i r1b */
0700144, /* go, rsb */
0117762, /* g, jms r1b */
0057775, /* dac cks */
0417775, /* xct cks */
0117762, /* jms r1b */
0000000, /* cks, 0 */
0617771 /* jmp g */
};
t_stat ptr_boot (int32 unitno, DEVICE *dptr)
{
size_t i;
int32 mask, wd;
#if defined (PDP7)
if (sim_switches & SWMASK ('H')) /* hardware RIM load? */
return ptr_rim_load (&ptr_unit, ASW);
#endif
if (ptr_dib.dev != DEV_PTR) /* non-std addr? */
return STOP_NONSTD;
if (MEMSIZE < 8192) /* 4k? */
mask = 0767777;
else mask = 0777777;
for (i = 0; i < BOOT_LEN; i++) {
wd = boot_rom[i];
if ((wd >= 0040000) && (wd < 0640000))
wd = wd & mask;
M[(BOOT_START & mask) + i] = wd;
}
PC = ((sim_switches & SWMASK ('F'))? BOOT_FPC: BOOT_RPC) & mask;
return SCPE_OK;
}
#else
/* PDP-9 and PDP-15 have built-in hardware RIM loaders */
t_stat ptr_boot (int32 unitno, DEVICE *dptr)
{
return ptr_rim_load (&ptr_unit, ASW);
}
#endif
/* Paper tape punch: IOT routine */
int32 ptp (int32 dev, int32 pulse, int32 dat)
{
if (pulse & 001) { /* PSF */
if (TST_INT (PTP))
dat = dat | IOT_SKP;
}
if (pulse & 002) /* PCF */
CLR_INT (PTP);
if (pulse & 004) { /* PSA, PSB, PLS */
CLR_INT (PTP); /* clear flag */
ptp_unit.buf = (pulse & 040)? /* load punch buf */
(dat & 077) | 0200: dat & 0377; /* bin or alpha */
sim_activate (&ptp_unit, ptp_unit.wait); /* activate unit */
}
return dat;
}
/* Unit service */
t_stat ptp_svc (UNIT *uptr)
{
SET_INT (PTP); /* set flag */
if ((ptp_unit.flags & UNIT_ATT) == 0) { /* not attached? */
ptp_err = 1; /* set error */
return IORETURN (ptp_stopioe, SCPE_UNATT);
}
if (ptp_unit.flags & UNIT_PASCII) { /* ASCII mode? */
ptp_unit.buf = ptp_unit.buf & 0177; /* force 7b */
if ((ptp_unit.buf == 0) || (ptp_unit.buf == 0177))
return SCPE_OK; /* skip null, del */
}
if (putc (ptp_unit.buf, ptp_unit.fileref) == EOF) { /* I/O error? */
ptp_err = 1; /* set error */
sim_perror ("PTP I/O error");
clearerr (ptp_unit.fileref);
return SCPE_IOERR;
}
ptp_unit.pos = ptp_unit.pos + 1;
return SCPE_OK;
}
/* IORS service */
int32 ptp_iors (void)
{
return ((TST_INT (PTP)? IOS_PTP: 0)
#if defined (IOS_PTPERR)
| (ptp_err? IOS_PTPERR: 0)
#endif
);
}
/* Reset routine */
t_stat ptp_reset (DEVICE *dptr)
{
ptp_unit.buf = 0;
CLR_INT (PTP); /* clear flag */
ptp_err = (ptp_unit.flags & UNIT_ATT)? 0: 1;
sim_cancel (&ptp_unit); /* deactivate unit */
return SCPE_OK;
}
/* Attach routine */
t_stat ptp_attach (UNIT *uptr, char *cptr)
{
t_stat reason;
reason = attach_unit (uptr, cptr);
if (reason != SCPE_OK)
return reason;
ptp_err = 0;
ptp_unit.flags = ptp_unit.flags & ~UNIT_PASCII;
if (sim_switches & SWMASK ('A'))
ptp_unit.flags = ptp_unit.flags | UNIT_PASCII;
return reason;
}
/* Detach routine */
t_stat ptp_detach (UNIT *uptr)
{
ptp_err = 1;
ptp_unit.flags = ptp_unit.flags & ~UNIT_PASCII;
return detach_unit (uptr);
}
/* Terminal input: IOT routine */
int32 tti (int32 dev, int32 pulse, int32 dat)
{
if (pulse & 001) { /* KSF */
if (TST_INT (TTI))
dat = dat | IOT_SKP;
}
if (pulse & 002) { /* KRS/KRB */
CLR_INT (TTI); /* clear flag */
dat = dat | (tti_unit.buf & TTI_MASK); /* return buffer */
#if defined (PDP15)
if (pulse & 020) /* KRS? */
tti_fdpx = 1;
else tti_fdpx = 0; /* no, KRB */
#endif
}
if (pulse & 004) { /* IORS */
dat = dat | upd_iors ();
}
return dat;
}
/* Unit service */
t_stat tti_svc (UNIT *uptr)
{
#if defined (KSR28) /* Baudot... */
int32 in, c, out;
sim_clock_coschedule (uptr, tmxr_poll); /* continue poll */
if (tti_2nd) { /* char waiting? */
uptr->buf = tti_2nd; /* return char */
tti_2nd = 0; /* not waiting */
}
else {
if ((in = sim_poll_kbd ()) < SCPE_KFLAG)
return in;
c = asc_to_baud[in & 0177]; /* translate char */
if (c == 0) /* untranslatable? */
return SCPE_OK;
if ((c & TTI_BOTH) || /* case insensitive? */
(((c & TTI_FIGURES)? 1: 0) == tty_shift)) /* right case? */
uptr->buf = c & TTI_MASK;
else { /* send case change */
if (c & TTI_FIGURES) { /* to figures? */
uptr->buf = BAUDOT_FIGURES;
tty_shift = 1;
}
else { /* no, to letters */
uptr->buf = BAUDOT_LETTERS;
tty_shift = 0;
}
tti_2nd = c & TTI_MASK; /* save actual char */
}
if ((uptr->flags & TTUF_HDX) && /* half duplex? */
((out = sim_tt_outcvt (in, TT_GET_MODE (uptr->flags) | TTUF_KSR)) >= 0)) {
sim_putchar (out);
tto_unit.pos = tto_unit.pos + 1;
}
}
#else /* ASCII... */
int32 c, out;
sim_clock_coschedule (uptr, tmxr_poll); /* continue poll */
if ((c = sim_poll_kbd ()) < SCPE_KFLAG) /* no char or error? */
return c;
out = c & 0177; /* mask echo to 7b */
if (c & SCPE_BREAK) /* break? */
c = 0;
else c = sim_tt_inpcvt (c, TT_GET_MODE (uptr->flags) | TTUF_KSR);
if (uptr->flags & TTUF_UNIX) { /* unix v0? */
if (c == 0215) /* cr -> lf */
c = out = 0212;
else if (c == 0212) /* lf -> cr */
c = out = 0215;
else if (c == 0233) /* esc -> altmode */
c = 0375;
}
if ((uptr->flags & TTUF_HDX) && !tti_fdpx && out && /* half duplex and */
((out = sim_tt_outcvt (out, TT_GET_MODE (uptr->flags) | TTUF_KSR)) >= 0)) {
sim_putchar (out); /* echo */
tto_unit.pos = tto_unit.pos + 1;
}
uptr->buf = c; /* got char */
#endif
uptr->pos = uptr->pos + 1;
SET_INT (TTI); /* set flag */
return SCPE_OK;
}
/* IORS service */
int32 tti_iors (void)
{
return (TST_INT (TTI)? IOS_TTI: 0);
}
/* Reset routine */
t_stat tti_reset (DEVICE *dptr)
{
tmxr_set_console_units (&tti_unit, &tto_unit);
CLR_INT (TTI); /* clear flag */
if (!sim_is_running) { /* RESET (not CAF)? */
tti_unit.buf = 0; /* clear buffer */
tti_2nd = 0;
tty_shift = 0; /* clear state */
tti_fdpx = 0; /* clear dpx mode */
}
sim_activate (&tti_unit, KBD_WAIT (tti_unit.wait, tmxr_poll));
return SCPE_OK;
}
/* Terminal output: IOT routine */
int32 tto (int32 dev, int32 pulse, int32 dat)
{
if (pulse & 001) { /* TSF */
if (TST_INT (TTO))
dat = dat | IOT_SKP;
}
if (pulse & 002) /* clear flag */
CLR_INT (TTO);
if (pulse & 004) { /* load buffer */
sim_activate (&tto_unit, tto_unit.wait); /* activate unit */
tto_unit.buf = dat & TTO_MASK; /* load buffer */
}
return dat;
}
/* Unit service */
t_stat tto_svc (UNIT *uptr)
{
int32 c;
t_stat r;
#if defined (KSR28) /* Baudot... */
if (uptr->buf == BAUDOT_FIGURES) /* set figures? */
tty_shift = 1;
else if (uptr->buf == BAUDOT_LETTERS) /* set letters? */
tty_shift = 0;
else {
c = baud_to_asc[uptr->buf | (tty_shift << 5)]; /* translate */
#else
c = sim_tt_outcvt (uptr->buf, TT_GET_MODE (uptr->flags) | TTUF_KSR);
if (c >= 0) {
#endif
if ((r = sim_putchar_s (c)) != SCPE_OK) { /* output; error? */
sim_activate (uptr, uptr->wait); /* retry? */
return ((r == SCPE_STALL)? SCPE_OK: r);
}
}
SET_INT (TTO); /* set flag */
uptr->pos = uptr->pos + 1;
return SCPE_OK;
}
/* IORS service */
int32 tto_iors (void)
{
return (TST_INT (TTO)? IOS_TTO: 0);
}
/* Reset routine */
t_stat tto_reset (DEVICE *dptr)
{
tto_unit.buf = 0; /* clear buffer */
tty_shift = 0; /* clear state */
CLR_INT (TTO); /* clear flag */
sim_cancel (&tto_unit); /* deactivate unit */
return SCPE_OK;
}
/* Set mode */
t_stat tty_set_mode (UNIT *uptr, int32 val, char *cptr, void *desc)
{
tti_unit.flags = (tti_unit.flags & ~(TTUF_UNIX|TT_PAR|TT_MODE)) | val;
tto_unit.flags = (tto_unit.flags & ~(TTUF_UNIX|TT_PAR|TT_MODE)) | val;
return SCPE_OK;
}