/* | |
* Copyright (c) 1982, 1986, 1988, 1993 | |
* The Regents of the University of California. All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions | |
* are met: | |
* 1. Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* 2. Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* 3. Neither the name of the University nor the names of its contributors | |
* may be used to endorse or promote products derived from this software | |
* without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
* SUCH DAMAGE. | |
* | |
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94 | |
* ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp | |
*/ | |
/* | |
* Changes and additions relating to SLiRP are | |
* Copyright (c) 1995 Danny Gasparovski. | |
* | |
* Please read the file COPYRIGHT for the | |
* terms and conditions of the copyright. | |
*/ | |
#include <slirp.h> | |
#include <qemu/osdep.h> | |
#include "ip_icmp.h" | |
static struct ip *ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp); | |
static void ip_freef(Slirp *slirp, struct ipq *fp); | |
static void ip_enq(register struct ipasfrag *p, | |
register struct ipasfrag *prev); | |
static void ip_deq(register struct ipasfrag *p); | |
/* | |
* IP initialization: fill in IP protocol switch table. | |
* All protocols not implemented in kernel go to raw IP protocol handler. | |
*/ | |
void | |
ip_init(Slirp *slirp) | |
{ | |
slirp->ipq.ip_link.next = slirp->ipq.ip_link.prev = &slirp->ipq.ip_link; | |
udp_init(slirp); | |
tcp_init(slirp); | |
icmp_init(slirp); | |
} | |
void ip_cleanup(Slirp *slirp) | |
{ | |
udp_cleanup(slirp); | |
tcp_cleanup(slirp); | |
icmp_cleanup(slirp); | |
} | |
/* | |
* Ip input routine. Checksum and byte swap header. If fragmented | |
* try to reassemble. Process options. Pass to next level. | |
*/ | |
void | |
ip_input(struct mbuf *m) | |
{ | |
Slirp *slirp = m->slirp; | |
register struct ip *ip; | |
int hlen; | |
DEBUG_CALL("ip_input"); | |
DEBUG_ARG("m = %lx", (long)m); | |
DEBUG_ARG("m_len = %d", m->m_len); | |
if (m->m_len < sizeof (struct ip)) { | |
return; | |
} | |
ip = mtod(m, struct ip *); | |
if (ip->ip_v != IPVERSION) { | |
goto bad; | |
} | |
hlen = ip->ip_hl << 2; | |
if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */ | |
goto bad; /* or packet too short */ | |
} | |
/* keep ip header intact for ICMP reply | |
* ip->ip_sum = cksum(m, hlen); | |
* if (ip->ip_sum) { | |
*/ | |
if(cksum(m,hlen)) { | |
goto bad; | |
} | |
/* | |
* Convert fields to host representation. | |
*/ | |
NTOHS(ip->ip_len); | |
if (ip->ip_len < hlen) { | |
goto bad; | |
} | |
NTOHS(ip->ip_id); | |
NTOHS(ip->ip_off); | |
/* | |
* Check that the amount of data in the buffers | |
* is as at least much as the IP header would have us expect. | |
* Trim mbufs if longer than we expect. | |
* Drop packet if shorter than we expect. | |
*/ | |
if (m->m_len < ip->ip_len) { | |
goto bad; | |
} | |
/* Should drop packet if mbuf too long? hmmm... */ | |
if (m->m_len > ip->ip_len) | |
m_adj(m, ip->ip_len - m->m_len); | |
/* check ip_ttl for a correct ICMP reply */ | |
if(ip->ip_ttl==0) { | |
icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl"); | |
goto bad; | |
} | |
/* | |
* If offset or IP_MF are set, must reassemble. | |
* Otherwise, nothing need be done. | |
* (We could look in the reassembly queue to see | |
* if the packet was previously fragmented, | |
* but it's not worth the time; just let them time out.) | |
* | |
* XXX This should fail, don't fragment yet | |
*/ | |
if (ip->ip_off &~ IP_DF) { | |
register struct ipq *fp; | |
struct qlink *l; | |
/* | |
* Look for queue of fragments | |
* of this datagram. | |
*/ | |
for (l = slirp->ipq.ip_link.next; l != &slirp->ipq.ip_link; | |
l = l->next) { | |
fp = container_of(l, struct ipq, ip_link); | |
if (ip->ip_id == fp->ipq_id && | |
ip->ip_src.s_addr == fp->ipq_src.s_addr && | |
ip->ip_dst.s_addr == fp->ipq_dst.s_addr && | |
ip->ip_p == fp->ipq_p) | |
goto found; | |
} | |
fp = NULL; | |
found: | |
/* | |
* Adjust ip_len to not reflect header, | |
* set ip_mff if more fragments are expected, | |
* convert offset of this to bytes. | |
*/ | |
ip->ip_len -= hlen; | |
if (ip->ip_off & IP_MF) | |
ip->ip_tos |= 1; | |
else | |
ip->ip_tos &= ~1; | |
ip->ip_off <<= 3; | |
/* | |
* If datagram marked as having more fragments | |
* or if this is not the first fragment, | |
* attempt reassembly; if it succeeds, proceed. | |
*/ | |
if (ip->ip_tos & 1 || ip->ip_off) { | |
ip = ip_reass(slirp, ip, fp); | |
if (ip == NULL) | |
return; | |
m = dtom(slirp, ip); | |
} else | |
if (fp) | |
ip_freef(slirp, fp); | |
} else | |
ip->ip_len -= hlen; | |
/* | |
* Switch out to protocol's input routine. | |
*/ | |
switch (ip->ip_p) { | |
case IPPROTO_TCP: | |
tcp_input(m, hlen, (struct socket *)NULL); | |
break; | |
case IPPROTO_UDP: | |
udp_input(m, hlen); | |
break; | |
case IPPROTO_ICMP: | |
icmp_input(m, hlen); | |
break; | |
default: | |
m_free(m); | |
} | |
return; | |
bad: | |
m_free(m); | |
} | |
#define iptofrag(P) ((struct ipasfrag *)(((char*)(P)) - sizeof(struct qlink))) | |
#define fragtoip(P) ((struct ip*)(((char*)(P)) + sizeof(struct qlink))) | |
/* | |
* Take incoming datagram fragment and try to | |
* reassemble it into whole datagram. If a chain for | |
* reassembly of this datagram already exists, then it | |
* is given as fp; otherwise have to make a chain. | |
*/ | |
static struct ip * | |
ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp) | |
{ | |
register struct mbuf *m = dtom(slirp, ip); | |
register struct ipasfrag *q; | |
int hlen = ip->ip_hl << 2; | |
int i, next; | |
DEBUG_CALL("ip_reass"); | |
DEBUG_ARG("ip = %lx", (long)ip); | |
DEBUG_ARG("fp = %lx", (long)fp); | |
DEBUG_ARG("m = %lx", (long)m); | |
/* | |
* Presence of header sizes in mbufs | |
* would confuse code below. | |
* Fragment m_data is concatenated. | |
*/ | |
m->m_data += hlen; | |
m->m_len -= hlen; | |
/* | |
* If first fragment to arrive, create a reassembly queue. | |
*/ | |
if (fp == NULL) { | |
struct mbuf *t = m_get(slirp); | |
if (t == NULL) { | |
goto dropfrag; | |
} | |
fp = mtod(t, struct ipq *); | |
insque(&fp->ip_link, &slirp->ipq.ip_link); | |
fp->ipq_ttl = IPFRAGTTL; | |
fp->ipq_p = ip->ip_p; | |
fp->ipq_id = ip->ip_id; | |
fp->frag_link.next = fp->frag_link.prev = &fp->frag_link; | |
fp->ipq_src = ip->ip_src; | |
fp->ipq_dst = ip->ip_dst; | |
q = (struct ipasfrag *)fp; | |
goto insert; | |
} | |
/* | |
* Find a segment which begins after this one does. | |
*/ | |
for (q = fp->frag_link.next; q != (struct ipasfrag *)&fp->frag_link; | |
q = q->ipf_next) | |
if (q->ipf_off > ip->ip_off) | |
break; | |
/* | |
* If there is a preceding segment, it may provide some of | |
* our data already. If so, drop the data from the incoming | |
* segment. If it provides all of our data, drop us. | |
*/ | |
if (q->ipf_prev != &fp->frag_link) { | |
struct ipasfrag *pq = q->ipf_prev; | |
i = pq->ipf_off + pq->ipf_len - ip->ip_off; | |
if (i > 0) { | |
if (i >= ip->ip_len) | |
goto dropfrag; | |
m_adj(dtom(slirp, ip), i); | |
ip->ip_off += i; | |
ip->ip_len -= i; | |
} | |
} | |
/* | |
* While we overlap succeeding segments trim them or, | |
* if they are completely covered, dequeue them. | |
*/ | |
while (q != (struct ipasfrag*)&fp->frag_link && | |
ip->ip_off + ip->ip_len > q->ipf_off) { | |
i = (ip->ip_off + ip->ip_len) - q->ipf_off; | |
if (i < q->ipf_len) { | |
q->ipf_len -= i; | |
q->ipf_off += i; | |
m_adj(dtom(slirp, q), i); | |
break; | |
} | |
q = q->ipf_next; | |
m_free(dtom(slirp, q->ipf_prev)); | |
ip_deq(q->ipf_prev); | |
} | |
insert: | |
/* | |
* Stick new segment in its place; | |
* check for complete reassembly. | |
*/ | |
ip_enq(iptofrag(ip), q->ipf_prev); | |
next = 0; | |
for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link; | |
q = q->ipf_next) { | |
if (q->ipf_off != next) | |
return NULL; | |
next += q->ipf_len; | |
} | |
if (((struct ipasfrag *)(q->ipf_prev))->ipf_tos & 1) | |
return NULL; | |
/* | |
* Reassembly is complete; concatenate fragments. | |
*/ | |
q = fp->frag_link.next; | |
m = dtom(slirp, q); | |
q = (struct ipasfrag *) q->ipf_next; | |
while (q != (struct ipasfrag*)&fp->frag_link) { | |
struct mbuf *t = dtom(slirp, q); | |
q = (struct ipasfrag *) q->ipf_next; | |
m_cat(m, t); | |
} | |
/* | |
* Create header for new ip packet by | |
* modifying header of first packet; | |
* dequeue and discard fragment reassembly header. | |
* Make header visible. | |
*/ | |
q = fp->frag_link.next; | |
/* | |
* If the fragments concatenated to an mbuf that's | |
* bigger than the total size of the fragment, then and | |
* m_ext buffer was alloced. But fp->ipq_next points to | |
* the old buffer (in the mbuf), so we must point ip | |
* into the new buffer. | |
*/ | |
if (m->m_flags & M_EXT) { | |
int delta = (char *)q - m->m_dat; | |
q = (struct ipasfrag *)(m->m_ext + delta); | |
} | |
ip = fragtoip(q); | |
ip->ip_len = next; | |
ip->ip_tos &= ~1; | |
ip->ip_src = fp->ipq_src; | |
ip->ip_dst = fp->ipq_dst; | |
remque(&fp->ip_link); | |
(void) m_free(dtom(slirp, fp)); | |
m->m_len += (ip->ip_hl << 2); | |
m->m_data -= (ip->ip_hl << 2); | |
return ip; | |
dropfrag: | |
m_free(m); | |
return NULL; | |
} | |
/* | |
* Free a fragment reassembly header and all | |
* associated datagrams. | |
*/ | |
static void | |
ip_freef(Slirp *slirp, struct ipq *fp) | |
{ | |
register struct ipasfrag *q, *p; | |
for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link; q = p) { | |
p = q->ipf_next; | |
ip_deq(q); | |
m_free(dtom(slirp, q)); | |
} | |
remque(&fp->ip_link); | |
(void) m_free(dtom(slirp, fp)); | |
} | |
/* | |
* Put an ip fragment on a reassembly chain. | |
* Like insque, but pointers in middle of structure. | |
*/ | |
static void | |
ip_enq(register struct ipasfrag *p, register struct ipasfrag *prev) | |
{ | |
DEBUG_CALL("ip_enq"); | |
DEBUG_ARG("prev = %lx", (long)prev); | |
p->ipf_prev = prev; | |
p->ipf_next = prev->ipf_next; | |
((struct ipasfrag *)(prev->ipf_next))->ipf_prev = p; | |
prev->ipf_next = p; | |
} | |
/* | |
* To ip_enq as remque is to insque. | |
*/ | |
static void | |
ip_deq(register struct ipasfrag *p) | |
{ | |
((struct ipasfrag *)(p->ipf_prev))->ipf_next = p->ipf_next; | |
((struct ipasfrag *)(p->ipf_next))->ipf_prev = p->ipf_prev; | |
} | |
/* | |
* IP timer processing; | |
* if a timer expires on a reassembly | |
* queue, discard it. | |
*/ | |
void | |
ip_slowtimo(Slirp *slirp) | |
{ | |
struct qlink *l; | |
DEBUG_CALL("ip_slowtimo"); | |
l = slirp->ipq.ip_link.next; | |
if (l == NULL) | |
return; | |
while (l != &slirp->ipq.ip_link) { | |
struct ipq *fp = container_of(l, struct ipq, ip_link); | |
l = l->next; | |
if (--fp->ipq_ttl == 0) { | |
ip_freef(slirp, fp); | |
} | |
} | |
} | |
/* | |
* Do option processing on a datagram, | |
* possibly discarding it if bad options are encountered, | |
* or forwarding it if source-routed. | |
* Returns 1 if packet has been forwarded/freed, | |
* 0 if the packet should be processed further. | |
*/ | |
#ifdef notdef | |
int | |
ip_dooptions(m) | |
struct mbuf *m; | |
{ | |
register struct ip *ip = mtod(m, struct ip *); | |
register u_char *cp; | |
register struct ip_timestamp *ipt; | |
register struct in_ifaddr *ia; | |
int opt, optlen, cnt, off, code, type, forward = 0; | |
struct in_addr *sin, dst; | |
typedef uint32_t n_time; | |
n_time ntime; | |
dst = ip->ip_dst; | |
cp = (u_char *)(ip + 1); | |
cnt = (ip->ip_hl << 2) - sizeof (struct ip); | |
for (; cnt > 0; cnt -= optlen, cp += optlen) { | |
opt = cp[IPOPT_OPTVAL]; | |
if (opt == IPOPT_EOL) | |
break; | |
if (opt == IPOPT_NOP) | |
optlen = 1; | |
else { | |
optlen = cp[IPOPT_OLEN]; | |
if (optlen <= 0 || optlen > cnt) { | |
code = &cp[IPOPT_OLEN] - (u_char *)ip; | |
goto bad; | |
} | |
} | |
switch (opt) { | |
default: | |
break; | |
/* | |
* Source routing with record. | |
* Find interface with current destination address. | |
* If none on this machine then drop if strictly routed, | |
* or do nothing if loosely routed. | |
* Record interface address and bring up next address | |
* component. If strictly routed make sure next | |
* address is on directly accessible net. | |
*/ | |
case IPOPT_LSRR: | |
case IPOPT_SSRR: | |
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { | |
code = &cp[IPOPT_OFFSET] - (u_char *)ip; | |
goto bad; | |
} | |
ipaddr.sin_addr = ip->ip_dst; | |
ia = (struct in_ifaddr *) | |
ifa_ifwithaddr((struct sockaddr *)&ipaddr); | |
if (ia == 0) { | |
if (opt == IPOPT_SSRR) { | |
type = ICMP_UNREACH; | |
code = ICMP_UNREACH_SRCFAIL; | |
goto bad; | |
} | |
/* | |
* Loose routing, and not at next destination | |
* yet; nothing to do except forward. | |
*/ | |
break; | |
} | |
off--; /* 0 origin */ | |
if (off > optlen - sizeof(struct in_addr)) { | |
/* | |
* End of source route. Should be for us. | |
*/ | |
save_rte(cp, ip->ip_src); | |
break; | |
} | |
/* | |
* locate outgoing interface | |
*/ | |
bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr, | |
sizeof(ipaddr.sin_addr)); | |
if (opt == IPOPT_SSRR) { | |
#define INA struct in_ifaddr * | |
#define SA struct sockaddr * | |
if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) | |
ia = (INA)ifa_ifwithnet((SA)&ipaddr); | |
} else | |
ia = ip_rtaddr(ipaddr.sin_addr); | |
if (ia == 0) { | |
type = ICMP_UNREACH; | |
code = ICMP_UNREACH_SRCFAIL; | |
goto bad; | |
} | |
ip->ip_dst = ipaddr.sin_addr; | |
bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), | |
(caddr_t)(cp + off), sizeof(struct in_addr)); | |
cp[IPOPT_OFFSET] += sizeof(struct in_addr); | |
/* | |
* Let ip_intr's mcast routing check handle mcast pkts | |
*/ | |
forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); | |
break; | |
case IPOPT_RR: | |
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { | |
code = &cp[IPOPT_OFFSET] - (u_char *)ip; | |
goto bad; | |
} | |
/* | |
* If no space remains, ignore. | |
*/ | |
off--; /* 0 origin */ | |
if (off > optlen - sizeof(struct in_addr)) | |
break; | |
bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr, | |
sizeof(ipaddr.sin_addr)); | |
/* | |
* locate outgoing interface; if we're the destination, | |
* use the incoming interface (should be same). | |
*/ | |
if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && | |
(ia = ip_rtaddr(ipaddr.sin_addr)) == 0) { | |
type = ICMP_UNREACH; | |
code = ICMP_UNREACH_HOST; | |
goto bad; | |
} | |
bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), | |
(caddr_t)(cp + off), sizeof(struct in_addr)); | |
cp[IPOPT_OFFSET] += sizeof(struct in_addr); | |
break; | |
case IPOPT_TS: | |
code = cp - (u_char *)ip; | |
ipt = (struct ip_timestamp *)cp; | |
if (ipt->ipt_len < 5) | |
goto bad; | |
if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) { | |
if (++ipt->ipt_oflw == 0) | |
goto bad; | |
break; | |
} | |
sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); | |
switch (ipt->ipt_flg) { | |
case IPOPT_TS_TSONLY: | |
break; | |
case IPOPT_TS_TSANDADDR: | |
if (ipt->ipt_ptr + sizeof(n_time) + | |
sizeof(struct in_addr) > ipt->ipt_len) | |
goto bad; | |
ipaddr.sin_addr = dst; | |
ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr, | |
m->m_pkthdr.rcvif); | |
if (ia == 0) | |
continue; | |
bcopy((caddr_t)&IA_SIN(ia)->sin_addr, | |
(caddr_t)sin, sizeof(struct in_addr)); | |
ipt->ipt_ptr += sizeof(struct in_addr); | |
break; | |
case IPOPT_TS_PRESPEC: | |
if (ipt->ipt_ptr + sizeof(n_time) + | |
sizeof(struct in_addr) > ipt->ipt_len) | |
goto bad; | |
bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr, | |
sizeof(struct in_addr)); | |
if (ifa_ifwithaddr((SA)&ipaddr) == 0) | |
continue; | |
ipt->ipt_ptr += sizeof(struct in_addr); | |
break; | |
default: | |
goto bad; | |
} | |
ntime = iptime(); | |
bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1, | |
sizeof(n_time)); | |
ipt->ipt_ptr += sizeof(n_time); | |
} | |
} | |
if (forward) { | |
ip_forward(m, 1); | |
return (1); | |
} | |
return (0); | |
bad: | |
icmp_error(m, type, code, 0, 0); | |
return (1); | |
} | |
#endif /* notdef */ | |
/* | |
* Strip out IP options, at higher | |
* level protocol in the kernel. | |
* Second argument is buffer to which options | |
* will be moved, and return value is their length. | |
* (XXX) should be deleted; last arg currently ignored. | |
*/ | |
void | |
ip_stripoptions(register struct mbuf *m, struct mbuf *mopt) | |
{ | |
register int i; | |
struct ip *ip = mtod(m, struct ip *); | |
register caddr_t opts; | |
int olen; | |
olen = (ip->ip_hl<<2) - sizeof (struct ip); | |
opts = (caddr_t)(ip + 1); | |
i = m->m_len - (sizeof (struct ip) + olen); | |
memcpy(opts, opts + olen, (unsigned)i); | |
m->m_len -= olen; | |
ip->ip_hl = sizeof(struct ip) >> 2; | |
} |