blob: c7acac3e8efacefc181cc667bca440262eadf4b9 [file] [log] [blame] [raw]
/* pdp8_dt.c: PDP-8 DECtape simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
dt TC08/TU56 DECtape
11-May-01 RMS Fixed bug in reset
25-Apr-01 RMS Added device enable/disable support
18-Apr-01 RMS Changed to rewind tape before boot
19-Mar-01 RMS Changed bootstrap to support 4k disk monitor
15-Mar-01 RMS Added 129th word to PDP-8 format
PDP-8 DECtapes are represented by fixed length data blocks of 12b words. Two
tape formats are supported:
12b 129 words per block
16b/18b/36b 384 words per block
DECtape motion is measured in 3b lines. Time between lines is 33.33us.
Tape density is nominally 300 lines per inch. The format of a DECtape is
reverse end zone 36000 lines ~ 10 feet
block 0
:
block n
forward end zone 36000 lines ~ 10 feet
A block consists of five 18b header words, a tape-specific number of data
words, and five 18b trailer words. All systems except the PDP-8 use a
standard block length of 256 words; the PDP-8 uses a standard block length
of 86 words (x 18b = 129 words x 12b).
Because a DECtape file only contains data, the simulator cannot support
write timing and mark track and can only do a limited implementation
of read all and write all. Read all assumes that the tape has been
conventionally written forward:
header word 0 0
header word 1 block number (for forward reads)
header words 2,3 0
header word 4 0
:
trailer word 4 checksum
trailer words 3,2 0
trailer word 1 block number (for reverse reads)
trailer word 0 0
Write all writes only the data words and dumps the interblock words in the
bit bucket.
*/
#include "pdp8_defs.h"
#define DT_NUMDR 8 /* #drives */
#define UNIT_V_WLK (UNIT_V_UF + 0) /* write locked */
#define UNIT_WLK (1 << UNIT_V_WLK)
#define UNIT_V_8FMT (UNIT_V_UF + 1) /* 12b format */
#define UNIT_8FMT (1 << UNIT_V_8FMT)
#define UNIT_W_UF 3 /* saved flag width */
#define STATE u3 /* unit state */
#define LASTT u4 /* last time update */
#define DT_WC 07754 /* word count */
#define DT_CA 07755 /* current addr */
/* System independent DECtape constants */
#define DT_EZLIN 36000 /* end zone length */
#define DT_HTLIN 30 /* header/trailer lines */
#define DT_BLKLN 6 /* blk no line in h/t */
#define DT_CSMLN 24 /* checksum line in h/t */
/* 16b, 18b, 36b DECtape constants */
#define D18_WSIZE 6 /* word size in lines */
#define D18_BSIZE 384 /* block size in 12b */
#define D18_TSIZE 578 /* tape size */
#define D18_LPERB (DT_HTLIN + (D18_BSIZE * DT_WSIZE) + DT_HTLIN)
#define D18_FWDEZ (DT_EZLIN + (D18_LPERB * D18_TSIZE))
#define D18_CAPAC (D18_TSIZE * D18_BSIZE) /* tape capacity */
#define D18_NBSIZE ((D18_BSIZE * D8_WSIZE) / D18_WSIZE)
#define D18_FILSIZ (D18_NBSIZE * D18_TSIZE * sizeof (int32))
/* 12b DECtape constants */
#define D8_WSIZE 4 /* word size in lines */
#define D8_BSIZE 129 /* block size in 12b */
#define D8_TSIZE 1474 /* tape size */
#define D8_LPERB (DT_HTLIN + (D8_BSIZE * DT_WSIZE) + DT_HTLIN)
#define D8_FWDEZ (DT_EZLIN + (D8_LPERB * D8_TSIZE))
#define D8_CAPAC (D8_TSIZE * D8_BSIZE) /* tape capacity */
/* This controller */
#define DT_CAPAC D8_CAPAC /* default */
#define DT_WSIZE D8_WSIZE
/* Calculated constants, per unit */
#define DTU_BSIZE(u) (((u) -> flags & UNIT_8FMT)? D8_BSIZE: D18_BSIZE)
#define DTU_TSIZE(u) (((u) -> flags & UNIT_8FMT)? D8_TSIZE: D18_TSIZE)
#define DTU_LPERB(u) (((u) -> flags & UNIT_8FMT)? D8_LPERB: D18_LPERB)
#define DTU_FWDEZ(u) (((u) -> flags & UNIT_8FMT)? D8_FWDEZ: D18_FWDEZ)
#define DTU_CAPAC(u) (((u) -> flags & UNIT_8FMT)? D8_CAPAC: D18_CAPAC)
#define DT_LIN2BL(p,u) (((p) - DT_EZLIN) / DTU_LPERB (u))
#define DT_LIN2OF(p,u) (((p) - DT_EZLIN) % DTU_LPERB (u))
#define DT_LIN2WD(p,u) ((DT_LIN2OF (p,u) - DT_HTLIN) / DT_WSIZE)
#define DT_BLK2LN(p,u) (((p) * DTU_LPERB (u)) + DT_EZLIN)
#define DT_QREZ(u) (((u) -> pos) < DT_EZLIN)
#define DT_QFEZ(u) (((u) -> pos) >= ((uint32) DTU_FWDEZ (u)))
#define DT_QEZ(u) (DT_QREZ (u) || DT_QFEZ (u))
/* Status register A */
#define DTA_V_UNIT 9 /* unit select */
#define DTA_M_UNIT 07
#define DTA_UNIT (DTA_M_UNIT << DTA_V_UNIT)
#define DTA_V_MOT 7 /* motion */
#define DTA_M_MOT 03
#define DTA_V_MODE 6 /* mode */
#define DTA_V_FNC 3 /* function */
#define DTA_M_FNC 07
#define FNC_MOVE 00 /* move */
#define FNC_SRCH 01 /* search */
#define FNC_READ 02 /* read */
#define FNC_RALL 03 /* read all */
#define FNC_WRIT 04 /* write */
#define FNC_WALL 05 /* write all */
#define FNC_WMRK 06 /* write timing */
#define DTA_V_ENB 2 /* int enable */
#define DTA_V_CERF 1 /* clr error flag */
#define DTA_V_CDTF 0 /* clr DECtape flag */
#define DTA_FWDRV (1u << (DTA_V_MOT + 1))
#define DTA_STSTP (1u << DTA_V_MOT)
#define DTA_MODE (1u << DTA_V_MODE)
#define DTA_ENB (1u << DTA_V_ENB)
#define DTA_CERF (1u << DTA_V_CERF)
#define DTA_CDTF (1u << DTA_V_CDTF)
#define DTA_RW (07777 & ~(DTA_CERF | DTA_CDTF))
#define DTA_GETUNIT(x) (((x) >> DTA_V_UNIT) & DTA_M_UNIT)
#define DTA_GETMOT(x) (((x) >> DTA_V_MOT) & DTA_M_MOT)
#define DTA_GETFNC(x) (((x) >> DTA_V_FNC) & DTA_M_FNC)
/* Status register B */
#define DTB_V_ERF 11 /* error flag */
#define DTB_V_MRK 10 /* mark trk err */
#define DTB_V_END 9 /* end zone err */
#define DTB_V_SEL 8 /* select err */
#define DTB_V_PAR 7 /* parity err */
#define DTB_V_TIM 6 /* timing err */
#define DTB_V_MEX 3 /* memory extension */
#define DTB_M_MEX 07
#define DTB_MEX (DTB_M_MEX << DTB_V_MEX)
#define DTB_V_DTF 0 /* DECtape flag */
#define DTB_ERF (1u << DTB_V_ERF)
#define DTB_MRK (1u << DTB_V_MRK)
#define DTB_END (1u << DTB_V_END)
#define DTB_SEL (1u << DTB_V_SEL)
#define DTB_PAR (1u << DTB_V_PAR)
#define DTB_TIM (1u << DTB_V_TIM)
#define DTB_DTF (1u << DTB_V_DTF)
#define DTB_ALLERR (DTB_ERF | DTB_MRK | DTB_END | DTB_SEL | \
DTB_PAR | DTB_TIM)
#define DTB_GETMEX(x) (((x) & DTB_MEX) << (12 - DTB_V_MEX))
/* DECtape state */
#define DTS_V_MOT 3 /* motion */
#define DTS_M_MOT 07
#define DTS_STOP 0 /* stopped */
#define DTS_DECF 2 /* decel, fwd */
#define DTS_DECR 3 /* decel, rev */
#define DTS_ACCF 4 /* accel, fwd */
#define DTS_ACCR 5 /* accel, rev */
#define DTS_ATSF 6 /* @speed, fwd */
#define DTS_ATSR 7 /* @speed, rev */
#define DTS_DIR 01 /* dir mask */
#define DTS_V_FNC 0 /* function */
#define DTS_M_FNC 07
#define DTS_OFR 7 /* "off reel" */
#define DTS_GETMOT(x) (((x) >> DTS_V_MOT) & DTS_M_MOT)
#define DTS_GETFNC(x) (((x) >> DTS_V_FNC) & DTS_M_FNC)
#define DTS_V_2ND 6 /* next state */
#define DTS_V_3RD (DTS_V_2ND + DTS_V_2ND) /* next next */
#define DTS_STA(y,z) (((y) << DTS_V_MOT) | ((z) << DTS_V_FNC))
#define DTS_SETSTA(y,z) uptr -> STATE = DTS_STA (y, z)
#define DTS_SET2ND(y,z) uptr -> STATE = (uptr -> STATE & 077) | \
((DTS_STA (y, z)) << DTS_V_2ND)
#define DTS_SET3RD(y,z) uptr -> STATE = (uptr -> STATE & 07777) | \
((DTS_STA (y, z)) << DTS_V_3RD)
#define DTS_NXTSTA(x) (x >> DTS_V_2ND)
/* Operation substates */
#define DTO_WCO 1 /* wc overflow */
#define DTO_SOB 2 /* start of block */
/* Logging */
#define LOG_MS 001 /* move, search */
#define LOG_RW 002 /* read, write */
#define LOG_RA 004 /* read all */
#define LOG_BL 010 /* block # lblk */
#define DT_UPDINT if ((dtsa & DTA_ENB) && (dtsb & (DTB_ERF | DTB_DTF))) \
int_req = int_req | INT_DTA; \
else int_req = int_req & ~INT_DTA;
#define ABS(x) (((x) < 0)? (-(x)): (x))
extern uint16 M[];
extern int32 int_req, dev_enb;
extern UNIT cpu_unit;
extern int32 sim_switches;
int32 dtsa = 0; /* status A */
int32 dtsb = 0; /* status B */
int32 dt_ltime = 12; /* interline time */
int32 dt_actime = 54000; /* accel time */
int32 dt_dctime = 72000; /* decel time */
int32 dt_substate = 0;
int32 dt_log = 0; /* debug */
int32 dt_logblk = 0;
t_stat dt_svc (UNIT *uptr);
t_stat dt_reset (DEVICE *dptr);
t_stat dt_attach (UNIT *uptr, char *cptr);
t_stat dt_detach (UNIT *uptr);
t_stat dt_boot (int32 unitno);
void dt_deselect (int32 oldf);
void dt_newsa (int32 newf);
void dt_newfnc (UNIT *uptr, int32 newsta);
t_bool dt_setpos (UNIT *uptr);
void dt_schedez (UNIT *uptr, int32 dir);
void dt_seterr (UNIT *uptr, int32 e);
int32 dt_comobv (int32 val);
int32 dt_csum (UNIT *uptr, int32 blk);
int32 dt_gethdr (UNIT *uptr, int32 blk, int32 relpos, int32 dir);
extern uint32 sim_grtime (void);
extern int32 sim_is_running;
/* DT data structures
dt_dev DT device descriptor
dt_unit DT unit list
dt_reg DT register list
dt_mod DT modifier list
*/
UNIT dt_unit[] = {
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) } };
REG dt_reg[] = {
{ ORDATA (DTSA, dtsa, 12) },
{ ORDATA (DTSB, dtsb, 12) },
{ FLDATA (INT, int_req, INT_V_DTA) },
{ FLDATA (ENB, dtsa, DTA_V_ENB) },
{ FLDATA (DTF, dtsb, DTB_V_DTF) },
{ FLDATA (ERF, dtsb, DTB_V_ERF) },
{ ORDATA (WC, M[DT_WC], 18) },
{ ORDATA (CA, M[DT_CA], 18) },
{ DRDATA (LTIME, dt_ltime, 31), REG_NZ },
{ DRDATA (ACTIME, dt_actime, 31), REG_NZ },
{ DRDATA (DCTIME, dt_dctime, 31), REG_NZ },
{ ORDATA (SUBSTATE, dt_substate, 2) },
{ ORDATA (LOG, dt_log, 4), REG_HIDDEN },
{ DRDATA (LBLK, dt_logblk, 12), REG_HIDDEN },
{ DRDATA (POS0, dt_unit[0].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS1, dt_unit[1].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS2, dt_unit[2].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS3, dt_unit[3].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS4, dt_unit[4].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS5, dt_unit[5].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS6, dt_unit[6].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS7, dt_unit[7].pos, 31), PV_LEFT + REG_RO },
{ ORDATA (STATT0, dt_unit[0].STATE, 18), REG_RO },
{ ORDATA (STATT1, dt_unit[1].STATE, 18), REG_RO },
{ ORDATA (STATT2, dt_unit[2].STATE, 18), REG_RO },
{ ORDATA (STATT3, dt_unit[3].STATE, 18), REG_RO },
{ ORDATA (STATT4, dt_unit[4].STATE, 18), REG_RO },
{ ORDATA (STATT5, dt_unit[5].STATE, 18), REG_RO },
{ ORDATA (STATT6, dt_unit[6].STATE, 18), REG_RO },
{ ORDATA (STATT7, dt_unit[7].STATE, 18), REG_RO },
{ DRDATA (LASTT0, dt_unit[0].LASTT, 32), REG_HRO },
{ DRDATA (LASTT1, dt_unit[1].LASTT, 32), REG_HRO },
{ DRDATA (LASTT2, dt_unit[2].LASTT, 32), REG_HRO },
{ DRDATA (LASTT3, dt_unit[3].LASTT, 32), REG_HRO },
{ DRDATA (LASTT4, dt_unit[4].LASTT, 32), REG_HRO },
{ DRDATA (LASTT5, dt_unit[5].LASTT, 32), REG_HRO },
{ DRDATA (LASTT6, dt_unit[6].LASTT, 32), REG_HRO },
{ DRDATA (LASTT7, dt_unit[7].LASTT, 32), REG_HRO },
{ GRDATA (FLG0, dt_unit[0].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG1, dt_unit[1].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG2, dt_unit[2].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG3, dt_unit[3].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG4, dt_unit[4].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG5, dt_unit[5].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG6, dt_unit[6].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG7, dt_unit[7].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ FLDATA (*DEVENB, dev_enb, INT_V_DTA), REG_HRO },
{ NULL } };
MTAB dt_mod[] = {
{ UNIT_WLK, 0, "write enabled", "ENABLED", NULL },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
{ UNIT_8FMT, 0, "16b/18b", NULL, NULL },
{ UNIT_8FMT, UNIT_8FMT, "12b", NULL, NULL },
{ 0 } };
DEVICE dt_dev = {
"DT", dt_unit, dt_reg, dt_mod,
DT_NUMDR, 8, 24, 1, 8, 12,
NULL, NULL, &dt_reset,
&dt_boot, &dt_attach, &dt_detach };
/* IOT routines */
int32 dt76 (int32 pulse, int32 AC)
{
int32 old_dtsa = dtsa, fnc;
UNIT *uptr;
if (pulse & 01) AC = AC | dtsa; /* DTRA */
if (pulse & 06) { /* select */
if (pulse & 02) dtsa = 0; /* DTCA */
if (pulse & 04) { /* DTXA */
if ((AC & DTA_CERF) == 0) dtsb = dtsb & ~DTB_ALLERR;
if ((AC & DTA_CDTF) == 0) dtsb = dtsb & ~DTB_DTF;
dtsa = dtsa ^ (AC & DTA_RW);
AC = 0; } /* clr AC */
if ((old_dtsa ^ dtsa) & DTA_UNIT) dt_deselect (old_dtsa);
uptr = dt_dev.units + DTA_GETUNIT (dtsa); /* get unit */
fnc = DTA_GETFNC (dtsa); /* get fnc */
if (((uptr -> flags) & UNIT_DIS) || /* disabled? */
(fnc >= FNC_WMRK) || /* write mark? */
((fnc == FNC_WALL) && (uptr -> flags & UNIT_WLK)) ||
((fnc == FNC_WRIT) && (uptr -> flags & UNIT_WLK)))
dt_seterr (uptr, DTB_SEL); /* select err */
else dt_newsa (dtsa);
DT_UPDINT; }
return AC;
}
int32 dt77 (int32 pulse, int32 AC)
{
if ((pulse & 01) && (dtsb & (DTB_ERF |DTB_DTF))) /* DTSF */
AC = IOT_SKP | AC;
if (pulse & 02) AC = AC | dtsb; /* DTRB */
if (pulse & 04) { /* DTLB */
dtsb = (dtsb & ~DTB_MEX) | (AC & DTB_MEX);
AC = AC & ~07777; } /* clear AC */
return AC;
}
/* Unit deselect */
void dt_deselect (int32 oldf)
{
int32 old_unit = DTA_GETUNIT (oldf);
UNIT *uptr = dt_dev.units + old_unit;
int32 old_mot = DTS_GETMOT (uptr -> STATE);
if (old_mot >= DTS_ATSF) /* at speed? */
dt_newfnc (uptr, DTS_STA (old_mot, DTS_OFR));
else if (old_mot >= DTS_ACCF) /* accelerating? */
DTS_SET2ND (DTS_ATSF | (old_mot & DTS_DIR), DTS_OFR);
return; }
/* Command register change
1. If change in motion, stop to start
- schedule acceleration
- set function as next state
2. If change in motion, start to stop
- if not already decelerating (could be reversing),
schedule deceleration
3. If change in direction,
- if not decelerating, schedule deceleration
- set accelerating (other dir) as next state
- set function as next next state
4. If not accelerating or at speed,
- schedule acceleration
- set function as next state
5. If not yet at speed,
- set function as next state
6. If at speed,
- set function as current state, schedule function
*/
void dt_newsa (int32 newf)
{
int32 new_unit, prev_mot, prev_fnc, new_fnc;
int32 prev_mving, new_mving, prev_dir, new_dir;
UNIT *uptr;
new_unit = DTA_GETUNIT (newf); /* new, old units */
uptr = dt_dev.units + new_unit;
if ((uptr -> flags & UNIT_ATT) == 0) { /* new unit attached? */
dt_seterr (uptr, DTB_SEL); /* no, error */
return; }
prev_mot = DTS_GETMOT (uptr -> STATE); /* previous motion */
prev_mving = prev_mot != DTS_STOP; /* previous moving? */
prev_dir = prev_mot & DTS_DIR; /* previous dir? */
prev_fnc = DTS_GETFNC (uptr -> STATE); /* prev function? */
new_mving = (newf & DTA_STSTP) != 0; /* new moving? */
new_dir = (newf & DTA_FWDRV) != 0; /* new dir? */
new_fnc = DTA_GETFNC (newf); /* new function? */
if ((prev_mving | new_mving) == 0) return; /* stop to stop */
if (new_mving & ~prev_mving) { /* start? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_actime); /* schedule accel */
DTS_SETSTA (DTS_ACCF | new_dir, 0); /* state = accel */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
if (prev_mving & ~new_mving) { /* stop? */
if ((prev_mot & ~DTS_DIR) != DTS_DECF) { /* !already stopping? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_dctime); } /* schedule decel */
DTS_SETSTA (DTS_DECF | prev_dir, 0); /* state = decel */
return; }
if (prev_dir ^ new_dir) { /* dir chg? */
if ((prev_mot & ~DTS_DIR) != DTS_DECF) { /* !already stopping? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_dctime); } /* schedule decel */
DTS_SETSTA (DTS_DECF | prev_dir, 0); /* state = decel */
DTS_SET2ND (DTS_ACCF | new_dir, 0); /* next = accel */
DTS_SET3RD (DTS_ATSF | new_dir, new_fnc); /* next next = fnc */
return; }
if (prev_mot < DTS_ACCF) { /* not accel/at speed? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* cancel cur */
sim_activate (uptr, dt_actime); /* schedule accel */
DTS_SETSTA (DTS_ACCF | new_dir, 0); /* state = accel */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
if (prev_mot < DTS_ATSF) { /* not at speed? */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
dt_newfnc (uptr, DTS_STA (DTS_ATSF | new_dir, new_fnc));/* state = fnc */
return;
}
/* Schedule new DECtape function
This routine is only called if
- the selected unit is attached
- the selected unit is at speed (forward or backward)
This routine
- updates the selected unit's position
- updates the selected unit's state
- schedules the new operation
*/
void dt_newfnc (UNIT *uptr, int32 newsta)
{
int32 fnc, dir, blk, unum, relpos, newpos;
uint32 oldpos;
oldpos = uptr -> pos; /* save old pos */
if (dt_setpos (uptr)) return; /* update pos */
uptr -> STATE = newsta; /* update state */
fnc = DTS_GETFNC (uptr -> STATE); /* set variables */
dir = DTS_GETMOT (uptr -> STATE) & DTS_DIR;
unum = uptr - dt_dev.units;
if (oldpos == uptr -> pos) /* bump pos */
uptr -> pos = uptr -> pos + (dir? -1: 1);
blk = DT_LIN2BL (uptr -> pos, uptr);
if (dir? DT_QREZ (uptr): DT_QFEZ (uptr)) { /* wrong ez? */
dt_seterr (uptr, DTB_END); /* set ez flag, stop */
return; }
sim_cancel (uptr); /* cancel cur op */
dt_substate = DTO_SOB; /* substate = block start */
switch (fnc) { /* case function */
case DTS_OFR: /* off reel */
if (dir) newpos = -1000; /* rev? < start */
else newpos = DTU_FWDEZ (uptr) + DT_EZLIN + 1000; /* fwd? > end */
break;
case FNC_MOVE: /* move */
dt_schedez (uptr, dir); /* sched end zone */
if (dt_log & LOG_MS) printf ("[DT%d: moving %s]\n", unum, (dir?
"backward": "forward"));
return; /* done */
case FNC_SRCH: /* search */
if (dir) newpos = DT_BLK2LN ((DT_QFEZ (uptr)?
DTU_TSIZE (uptr): blk), uptr) - DT_BLKLN - DT_WSIZE;
else newpos = DT_BLK2LN ((DT_QREZ (uptr)?
0: blk + 1), uptr) + DT_BLKLN + (DT_WSIZE - 1);
if (dt_log & LOG_MS) printf ("[DT%d: searching %s]\n", unum,
(dir? "backward": "forward"));
break;
case FNC_WRIT: /* write */
case FNC_READ: /* read */
case FNC_RALL: /* read all */
case FNC_WALL: /* write all */
if (DT_QEZ (uptr)) { /* in "ok" end zone? */
if (dir) newpos = DTU_FWDEZ (uptr) - DT_HTLIN - DT_WSIZE;
else newpos = DT_EZLIN + DT_HTLIN + (DT_WSIZE - 1);
break; }
relpos = DT_LIN2OF (uptr -> pos, uptr); /* cur pos in blk */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
dt_seterr (uptr, DTB_SEL);
return; }
if (dir) newpos = DT_BLK2LN (((relpos >= (DTU_LPERB (uptr) - DT_HTLIN))?
blk + 1: blk), uptr) - DT_HTLIN - DT_WSIZE;
else newpos = DT_BLK2LN (((relpos < DT_HTLIN)?
blk: blk + 1), uptr) + DT_HTLIN + (DT_WSIZE - 1);
break;
default:
dt_seterr (uptr, DTB_SEL); /* bad state */
return; }
sim_activate (uptr, ABS (newpos - ((int32) uptr -> pos)) * dt_ltime);
return;
}
/* Update DECtape position
DECtape motion is modeled as a constant velocity, with linear
acceleration and deceleration. The motion equations are as follows:
t = time since operation started
tmax = time for operation (accel, decel only)
v = at speed velocity in lines (= 1/dt_ltime)
Then:
at speed dist = t * v
accel dist = (t^2 * v) / (2 * tmax)
decel dist = (((2 * t * tmax) - t^2) * v) / (2 * tmax)
This routine uses the relative (integer) time, rather than the absolute
(floating point) time, to allow save and restore of the start times.
*/
t_bool dt_setpos (UNIT *uptr)
{
uint32 new_time, ut, ulin, udelt;
int32 mot = DTS_GETMOT (uptr -> STATE);
int32 unum, delta;
new_time = sim_grtime (); /* current time */
ut = new_time - uptr -> LASTT; /* elapsed time */
if (ut == 0) return FALSE; /* no time gone? exit */
uptr -> LASTT = new_time; /* update last time */
switch (mot & ~DTS_DIR) { /* case on motion */
case DTS_STOP: /* stop */
delta = 0;
break;
case DTS_DECF: /* slowing */
ulin = ut / (uint32) dt_ltime; udelt = dt_dctime / dt_ltime;
delta = ((ulin * udelt * 2) - (ulin * ulin)) / (2 * udelt);
break;
case DTS_ACCF: /* accelerating */
ulin = ut / (uint32) dt_ltime; udelt = dt_actime / dt_ltime;
delta = (ulin * ulin) / (2 * udelt);
break;
case DTS_ATSF: /* at speed */
delta = ut / (uint32) dt_ltime;
break; }
if (mot & DTS_DIR) uptr -> pos = uptr -> pos - delta; /* update pos */
else uptr -> pos = uptr -> pos + delta;
if ((uptr -> pos < 0) ||
(uptr -> pos > ((uint32) (DTU_FWDEZ (uptr) + DT_EZLIN)))) {
detach_unit (uptr); /* off reel? */
uptr -> STATE = uptr -> pos = 0;
unum = uptr - dt_dev.units;
if (unum == DTA_GETUNIT (dtsa)) /* if selected, */
dt_seterr (uptr, DTB_SEL); /* error */
return TRUE; }
return FALSE;
}
/* Unit service
Unit must be attached, detach cancels operation
*/
t_stat dt_svc (UNIT *uptr)
{
int32 mot = DTS_GETMOT (uptr -> STATE);
int32 dir = mot & DTS_DIR;
int32 fnc = DTS_GETFNC (uptr -> STATE);
int16 *bptr = uptr -> filebuf;
int32 unum = uptr - dt_dev.units;
int32 blk, wrd, ma, relpos, dat;
t_addr ba;
/* Motion cases
Decelerating - if next state != stopped, must be accel reverse
Accelerating - next state must be @speed, schedule function
At speed - do functional processing
*/
switch (mot) {
case DTS_DECF: case DTS_DECR: /* decelerating */
if (dt_setpos (uptr)) return SCPE_OK; /* update pos */
uptr -> STATE = DTS_NXTSTA (uptr -> STATE); /* advance state */
if (uptr -> STATE) /* not stopped? */
sim_activate (uptr, dt_actime); /* must be reversing */
return SCPE_OK;
case DTS_ACCF: case DTS_ACCR: /* accelerating */
dt_newfnc (uptr, DTS_NXTSTA (uptr -> STATE)); /* adv state, sched */
return SCPE_OK;
case DTS_ATSF: case DTS_ATSR: /* at speed */
break; /* check function */
default: /* other */
dt_seterr (uptr, DTB_SEL); /* state error */
return SCPE_OK; }
/* Functional cases
Move - must be at end zone
Search - transfer block number, schedule next block
Off reel - detach unit (it must be deselected)
*/
if (dt_setpos (uptr)) return SCPE_OK; /* update pos */
if (DT_QEZ (uptr)) { /* in end zone? */
dt_seterr (uptr, DTB_END); /* end zone error */
return SCPE_OK; }
blk = DT_LIN2BL (uptr -> pos, uptr); /* get block # */
switch (fnc) { /* at speed, check fnc */
case FNC_MOVE: /* move */
dt_seterr (uptr, DTB_END); /* end zone error */
return SCPE_OK;
case FNC_SRCH: /* search */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
sim_activate (uptr, DTU_LPERB (uptr) * dt_ltime);/* sched next block */
M[DT_WC] = (M[DT_WC] + 1) & 07777; /* incr word cnt */
ma = DTB_GETMEX (dtsb) | M[DT_CA]; /* get mem addr */
if (MEM_ADDR_OK (ma)) M[ma] = blk & 07777; /* store block # */
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; /* set DTF */
break;
case DTS_OFR: /* off reel */
detach_unit (uptr); /* must be deselected */
uptr -> STATE = uptr -> pos = 0; /* no visible action */
break;
/* Read has four subcases
Start of block, not wc ovf - check that DTF is clear, otherwise normal
Normal - increment MA, WC, copy word from tape to memory
if read dir != write dir, bits must be scrambled
if wc overflow, next state is wc overflow
if end of block, possibly set DTF, next state is start of block
Wc ovf, not start of block -
if end of block, possibly set DTF, next state is start of block
Wc ovf, start of block - if end of block reached, timing error,
otherwise, continue to next word
*/
case FNC_READ: /* read */
wrd = DT_LIN2WD (uptr -> pos, uptr); /* get word # */
switch (dt_substate) { /* case on substate */
case DTO_SOB: /* start of block */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
if ((dt_log & LOG_RW) || ((dt_log & LOG_BL) && (blk == dt_logblk)))
printf ("[DT%d: reading block %d %s%s\n",
unum, blk, (dir? "backward": "forward"),
((dtsa & DTA_MODE)? " continuous]": "]"));
dt_substate = 0; /* fall through */
case 0: /* normal read */
M[DT_WC] = (M[DT_WC] + 1) & 07777; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & 07777;
ma = DTB_GETMEX (dtsb) | M[DT_CA]; /* get mem addr */
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
dat = bptr[ba]; /* get tape word */
if (dir) dat = dt_comobv (dat); /* rev? comp obv */
if (MEM_ADDR_OK (ma)) M[ma] = dat; /* mem addr legal? */
if (M[DT_WC] == 0) dt_substate = DTO_WCO; /* wc ovf? */
case DTO_WCO: /* wc ovf, not sob */
if (wrd != (dir? 0: DTU_BSIZE (uptr) - 1)) /* not last? */
sim_activate (uptr, DT_WSIZE * dt_ltime);
else { dt_substate = dt_substate | DTO_SOB;
sim_activate (uptr, ((2 * DT_HTLIN) + DT_WSIZE) * dt_ltime);
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; } /* set DTF */
break;
case DTO_WCO | DTO_SOB: /* next block */
if (wrd == (dir? 0: DTU_BSIZE (uptr))) /* end of block? */
dt_seterr (uptr, DTB_TIM); /* timing error */
else sim_activate (uptr, DT_WSIZE * dt_ltime);
break; }
break;
/* Write has four subcases
Start of block, not wc ovf - check that DTF is clear, set block direction
Normal - increment MA, WC, copy word from memory to tape
if wc overflow, next state is wc overflow
if end of block, possibly set DTF, next state is start of block
Wc ovf, not start of block -
copy 0 to tape
if end of block, possibly set DTF, next state is start of block
Wc ovf, start of block - schedule end zone
*/
case FNC_WRIT: /* write */
wrd = DT_LIN2WD (uptr -> pos, uptr); /* get word # */
switch (dt_substate) { /* case on substate */
case DTO_SOB: /* start block */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
if ((dt_log & LOG_RW) || ((dt_log & LOG_BL) && (blk == dt_logblk)))
printf ("[DT%d: writing block %d %s%s\n", unum, blk,
(dir? "backward": "forward"),
((dtsa & DTA_MODE)? " continuous]": "]"));
dt_substate = 0; /* fall through */
case 0: /* normal write */
M[DT_WC] = (M[DT_WC] + 1) & 07777; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & 07777;
case DTO_WCO: /* wc ovflo */
ma = DTB_GETMEX (dtsb) | M[DT_CA]; /* get mem addr */
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
dat = dt_substate? 0: M[ma]; /* get word */
if (dir) dat = dt_comobv (dat); /* rev? comp obv */
bptr[ba] = dat; /* write word */
if (ba >= uptr -> hwmark) uptr -> hwmark = ba + 1;
if (M[DT_WC] == 0) dt_substate = DTO_WCO;
if (wrd != (dir? 0: DTU_BSIZE (uptr) - 1)) /* not last? */
sim_activate (uptr, DT_WSIZE * dt_ltime);
else { dt_substate = dt_substate | DTO_SOB;
sim_activate (uptr, ((2 * DT_HTLIN) + DT_WSIZE) * dt_ltime);
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; } /* set DTF */
break;
case DTO_WCO | DTO_SOB: /* all done */
dt_schedez (uptr, dir); /* sched end zone */
break; }
break;
/* Read all has two subcases
Not word count overflow - increment MA, WC, copy word from tape to memory
Word count overflow - schedule end zone
*/
case FNC_RALL:
switch (dt_substate) { /* case on substate */
case 0: case DTO_SOB: /* read in progress */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
relpos = DT_LIN2OF (uptr -> pos, uptr); /* cur pos in blk */
M[DT_WC] = (M[DT_WC] + 1) & 07777; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & 07777;
ma = DTB_GETMEX (dtsb) | M[DT_CA]; /* get mem addr */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
wrd = DT_LIN2WD (uptr -> pos, uptr);
ba = (blk * DTU_BSIZE (uptr)) + wrd;
dat = bptr[ba]; /* get tape word */
if (dir) dat = dt_comobv (dat); } /* rev? comp obv */
else dat = dt_gethdr (uptr, blk, relpos, dir); /* get hdr */
sim_activate (uptr, DT_WSIZE * dt_ltime);
if (MEM_ADDR_OK (ma)) M[ma] = dat; /* mem addr legal? */
if (M[DT_WC] == 0) dt_substate = DTO_WCO;
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; /* set DTF */
break;
case DTO_WCO: case DTO_WCO | DTO_SOB: /* all done */
dt_schedez (uptr, dir); /* sched end zone */
break; } /* end case substate */
break;
/* Write all has two subcases
Not word count overflow - increment MA, WC, copy word from memory to tape
Word count overflow - schedule end zone
*/
case FNC_WALL:
switch (dt_substate) { /* case on substate */
case 0: case DTO_SOB: /* read in progress */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
relpos = DT_LIN2OF (uptr -> pos, uptr); /* cur pos in blk */
M[DT_WC] = (M[DT_WC] + 1) & 07777; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & 07777;
ma = DTB_GETMEX (dtsb) | M[DT_CA]; /* get mem addr */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
dat = M[ma]; /* get mem word */
if (dir) dat = dt_comobv (dat);
wrd = DT_LIN2WD (uptr -> pos, uptr);
ba = (blk * DTU_BSIZE (uptr)) + wrd;
bptr[ba] = dat; /* write word */
if (ba >= uptr -> hwmark) uptr -> hwmark = ba + 1; }
/* /* ignore hdr */
sim_activate (uptr, DT_WSIZE * dt_ltime);
if (M[DT_WC] == 0) dt_substate = DTO_WCO;
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; /* set DTF */
break;
case DTO_WCO: case DTO_WCO | DTO_SOB: /* all done */
dt_schedez (uptr, dir); /* sched end zone */
break; } /* end case substate */
break;
default:
dt_seterr (uptr, DTB_SEL); /* impossible state */
break; }
DT_UPDINT; /* update interrupts */
return SCPE_OK;
}
/* Reading the header is complicated, because 18b words are being parsed
out 12b at a time. The sequence of word numbers is directionally
sensitive
Forward Reverse
Word Word Content Word Word Content
(abs) (rel) (abs) (rel)
137 8 rev csm'00 6 6 fwd csm'00
138 9 0000 5 5 0000
139 10 0000 4 4 0000
140 11 0000 3 3 0000
141 12 00'lo rev blk 2 2 00'lo fwd blk
142 13 hi rev blk 1 1 hi fwd blk
143 14 0000 0 0 0000
0 0 0000 143 14 0000
1 1 0000 142 13 0000
2 2 hi fwd blk 141 12 hi rev blk
3 3 lo fwd blk'00 140 11 lo rev blk'00
4 4 0000 139 10 0000
5 5 0000 138 9 0000
6 6 0000 137 8 0000
7 7 00'fwd csm 136 7 00'rev csm
*/
int32 dt_gethdr (UNIT *uptr, int32 blk, int32 relpos, int32 dir)
{
if (relpos >= DT_HTLIN) relpos = relpos - (DT_WSIZE * DTU_BSIZE (uptr));
if (dir) { /* reverse */
switch (relpos / DT_WSIZE) {
case 6: /* fwd csum */
return (dt_comobv (dt_csum (uptr, blk)));
case 2: /* lo fwd blk */
return dt_comobv ((blk & 077) << 6);
case 1: /* hi fwd blk */
return dt_comobv (blk >> 6);
case 12: /* hi rev blk */
return (blk >> 6) & 07777;
case 11: /* lo rev blk */
return ((blk & 077) << 6);
default: /* others */
return 077; } }
else { /* forward */
switch (relpos / DT_WSIZE) {
case 8: /* rev csum */
return (dt_csum (uptr, blk) << 6);
case 12: /* lo rev blk */
return dt_comobv ((blk & 077) << 6);
case 13: /* hi rev blk */
return dt_comobv (blk >> 6);
case 2: /* hi fwd blk */
return ((blk >> 6) & 07777);
case 3: /* lo fwd blk */
return ((blk & 077) << 6);
default: /* others */
break; } }
return 0;
}
/* Utility routines */
/* Set error flag */
void dt_seterr (UNIT *uptr, int32 e)
{
int32 mot = DTS_GETMOT (uptr -> STATE);
dtsa = dtsa & ~DTA_STSTP; /* clear go */
dtsb = dtsb | DTB_ERF | e; /* set error flag */
if (mot >= DTS_ACCF) { /* ~stopped or stopping? */
sim_cancel (uptr); /* cancel activity */
if (dt_setpos (uptr)) return; /* update position */
sim_activate (uptr, dt_dctime); /* sched decel */
DTS_SETSTA (DTS_DECF | (mot & DTS_DIR), 0); } /* state = decel */
DT_UPDINT;
return;
}
/* Schedule end zone */
void dt_schedez (UNIT *uptr, int32 dir)
{
int32 newpos;
if (dir) newpos = DT_EZLIN - DT_WSIZE; /* rev? rev ez */
else newpos = DTU_FWDEZ (uptr) + DT_WSIZE; /* fwd? fwd ez */
sim_activate (uptr, ABS (newpos - ((int32) uptr -> pos)) * dt_ltime);
return;
}
/* Complement obverse routine */
int32 dt_comobv (int32 dat)
{
dat = dat ^ 07777; /* compl obverse */
dat = ((dat >> 9) & 07) | ((dat >> 3) & 070) |
((dat & 070) << 3) | ((dat & 07) << 9);
return dat;
}
/* Checksum routine */
int32 dt_csum (UNIT *uptr, int32 blk)
{
int16 *bptr = uptr -> filebuf;
int32 ba = blk * DTU_BSIZE (uptr);
int32 i, csum, wrd;
csum = 077; /* init csum */
for (i = 0; i < DTU_BSIZE (uptr); i++) { /* loop thru buf */
wrd = bptr[ba + i] ^ 07777; /* get ~word */
csum = csum ^ (wrd >> 6) ^ wrd; }
return (csum & 077);
}
/* Reset routine */
t_stat dt_reset (DEVICE *dptr)
{
int32 i, prev_mot;
UNIT *uptr;
for (i = 0; i < DT_NUMDR; i++) { /* stop all activity */
uptr = dt_dev.units + i;
if (sim_is_running) { /* CAF? */
prev_mot = DTS_GETMOT (uptr -> STATE); /* get motion */
if ((prev_mot & ~DTS_DIR) > DTS_DECF) { /* accel or spd? */
if (dt_setpos (uptr)) continue; /* update pos */
sim_cancel (uptr);
sim_activate (uptr, dt_dctime); /* sched decel */
DTS_SETSTA (DTS_DECF | (prev_mot & DTS_DIR), 0);
} }
else { sim_cancel (uptr); /* sim reset */
uptr -> STATE = 0;
uptr -> LASTT = sim_grtime (); } }
dtsa = dtsb = 0; /* clear status */
DT_UPDINT; /* reset interrupt */
return SCPE_OK;
}
/* Bootstrap routine
This is actually the 4K disk monitor bootstrap, which also
works with OS/8. The reverse is not true - the OS/8 bootstrap
doesn't work with the disk monitor.
*/
#define BOOT_START 0200
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int))
static const int32 boot_rom[] = {
07600, /* 200, CLA CLL */
01216, /* TAD MVB ; move back */
04210, /* JMS DO ; action */
01217, /* TAD K7577 ; addr */
03620, /* DCA I CA */
01222, /* TAD RDF ; read fwd */
04210, /* JMS DO ; action */
05600, /* JMP I 200 ; enter boot */
00000, /* DO, 0 */
06766, /* DTCA!DTXA ; start tape */
03621, /* DCA I WC ; clear wc */
06771, /* DTSF ; wait */
05213, /* JMP .-1 */
05610, /* JMP I DO */
00600, /* MVB, 0600 */
07577, /* K7577, 7757 */
07755, /* CA, 7755 */
07754, /* WC, 7754 */
00220 /* RF, 0220 */
};
t_stat dt_boot (int32 unitno)
{
int32 i;
extern int32 saved_PC;
if (unitno) return SCPE_ARG; /* only unit 0 */
dt_unit[unitno].pos = DT_EZLIN;
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i];
saved_PC = BOOT_START;
return SCPE_OK;
}
/* Attach routine
Determine native or PDP11/15 format
Allocate buffer
If native, read data into buffer
If PDP9/11/15, convert 18b data to 12b and read into buffer
*/
t_stat dt_attach (UNIT *uptr, char *cptr)
{
uint32 pdp18b[D18_NBSIZE];
int32 k, p;
int16 *bptr;
t_stat r;
t_addr ba;
uptr -> flags = uptr -> flags | UNIT_8FMT;
r = attach_unit (uptr, cptr); /* attach */
if (r != SCPE_OK) return r; /* fail? */
if (sim_switches & SWMASK ('F')) /* att foreign? */
uptr -> flags = uptr -> flags & ~UNIT_8FMT; /* PDP8 = F */
else if (!(sim_switches & SWMASK ('N'))) { /* autosize? */
if ((fseek (uptr -> fileref, 0, SEEK_END) == 0) &&
(p = ftell (uptr -> fileref)) &&
(p == D18_FILSIZ)) uptr -> flags = uptr -> flags & ~UNIT_8FMT; }
uptr -> capac = DTU_CAPAC (uptr); /* set capacity */
uptr -> filebuf = calloc (uptr -> capac, sizeof (int16));
if (uptr -> filebuf == NULL) { /* can't alloc? */
detach_unit (uptr);
return SCPE_MEM; }
printf ("%DT: buffering file in memory\n");
rewind (uptr -> fileref); /* start of file */
bptr = uptr -> filebuf; /* file buffer */
if (uptr -> flags & UNIT_8FMT) /* PDP8? */
uptr -> hwmark = fxread (uptr -> filebuf, sizeof (int16),
uptr -> capac, uptr -> fileref);
else { /* PDP9/11/15 */
for (ba = 0; ba < uptr -> capac; ) { /* loop thru file */
k = fxread (pdp18b, sizeof (int32), D18_NBSIZE, uptr -> fileref);
if (k == 0) break;
for ( ; k < D18_NBSIZE; k++) pdp18b[k] = 0;
for (k = 0; k < D18_NBSIZE; k = k + 2) { /* loop thru blk */
bptr[ba] = (pdp18b[k] >> 6) & 07777;
bptr[ba + 1] = ((pdp18b[k] & 077) << 6) |
((pdp18b[k + 1] >> 12) & 077);
bptr[ba + 2] = pdp18b[k + 1] & 07777;
ba = ba + 3; } /* end blk loop */
} /* end file loop */
uptr -> hwmark = ba; } /* end else */
uptr -> flags = uptr -> flags | UNIT_BUF; /* set buf flag */
uptr -> pos = DT_EZLIN; /* beyond leader */
uptr -> LASTT = sim_grtime (); /* last pos update */
return SCPE_OK;
}
/* Detach routine
Cancel in progress operation
If native, write buffer to file
If PDP9/11/15, convert 12b buffer to 18b and write to file
Deallocate buffer
*/
t_stat dt_detach (UNIT* uptr)
{
uint32 pdp18b[D18_NBSIZE];
int32 k;
int32 unum = uptr - dt_dev.units;
int16 *bptr;
t_addr ba;
if (!(uptr -> flags & UNIT_ATT)) return SCPE_OK;
if (sim_is_active (uptr)) {
sim_cancel (uptr);
if ((unum == DTA_GETUNIT (dtsa)) && (dtsa & DTA_STSTP)) {
dtsb = dtsb | DTB_ERF | DTB_SEL | DTB_DTF;
DT_UPDINT; }
uptr -> STATE = uptr -> pos = 0; }
if (uptr -> hwmark) { /* any data? */
printf ("DT: writing buffer to file\n");
rewind (uptr -> fileref); /* start of file */
bptr = uptr -> filebuf; /* file buffer */
if (uptr -> flags & UNIT_8FMT) /* PDP8? */
fxwrite (uptr -> filebuf, sizeof (int16), /* write file */
uptr -> hwmark, uptr -> fileref);
else { /* PDP9/11/15 */
for (ba = 0; ba < uptr -> hwmark; ) { /* loop thru buf */
for (k = 0; k < D18_NBSIZE; k = k + 2) {
pdp18b[k] = ((bptr[ba] & 07777) << 6) |
((bptr[ba + 1] >> 6) & 077);
pdp18b[k + 1] = ((bptr[ba + 1] & 077) << 12) |
(bptr[ba + 2] & 07777);
ba = ba + 3; } /* end loop blk */
fxwrite (pdp18b, sizeof (int32),
D18_NBSIZE, uptr -> fileref);
} /* end loop buf */
} /* end else */
if (ferror (uptr -> fileref)) perror ("I/O error");
} /* end if hwmark */
free (uptr -> filebuf); /* release buf */
uptr -> flags = uptr -> flags & ~UNIT_BUF; /* clear buf flag */
uptr -> filebuf = NULL; /* clear buf ptr */
uptr -> flags = uptr -> flags | UNIT_8FMT; /* default fmt */
uptr -> capac = DT_CAPAC; /* default size */
return detach_unit (uptr);
}